ebook img

Genesis of Diamonds and associated Phases PDF

143 Pages·2017·3.717 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genesis of Diamonds and associated Phases

Yuriy A. Litvin Genesis of Diamonds and Associated Phases 123 YuriyA.Litvin Institute of Experimental Mineralogy Russian Academy of Sciences Chernogolovka,Moscow Region Russia ISSN 2366-1585 ISSN 2366-1593 (electronic) SpringerMineralogy ISBN978-3-319-54542-4 ISBN978-3-319-54543-1 (eBook) DOI 10.1007/978-3-319-54543-1 LibraryofCongressControlNumber:2017933544 ©SpringerInternationalPublishingAG2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Diamond-bearing upper mantle eclogite rock has been found in 1897 at South African kimberlitic pipe. It is now appreciated that this eclogite represents the first natural sample wherein diamonds have been combined with the genetically asso- ciatedmineralphases.Lateron,thediamond-associatedphaseswerediscoveredas primarysolid,hardenedliquidandvolatileinclusionsofthegreatdiversity.Several tens of years of a purposeful and intensive analytic investigation of the diamond- hosted mineral phases will allow the evidence of the multicomponent multiphase composition ofnaturalparental media for diamonds and associated phases at 150– 800kmdepthsoftheEarth’smantle.Andonlyinthelastdecadeanunderstanding has arrived that a progress of the genetic mineralogy of diamonds and associated phases can be solely provided by a methodology of physicochemical experimental study of the relevant multicomponent heterogeneous diamond-producing mineral systems. The actual PT conditions at the upper mantle, transition zone and lower mantle depths are bound to be reproduced in the experimental research. This book has the academic directionality and deals with the present state of geneticmineralogyofdiamondandassociatedphases.Contentsofthebookmaybe referred to three main divisions. First, the analytic mineralogical data of evident geneticinteresthavebeenbrieflycharacterized.Secondpartofthebookisfocused on high-pressure experimental studies of diamond-parental multicomponent min- eralsystems.Therewiththeirboundarycompositionsarespecifiedhavingregardto the natural chemistry of diamond-hosted inclusions from the depths of the upper mantle, transition zone and lower mantle. Experimental physicochemical results allows to substantiate the completely miscible silicate-(±oxide)-carbonatite melts with dissolved carbon as the parental media for diamonds and associated mineral phases over the all mantle depths. Experimental melting phase diagrams are lively presentative for the syngenesis relations of diamonds and minerals associated in their primary inclusions. The melting phase relations have made a direct determi- nation of the physicochemical mechanism of diamond nucleation in carbon- oversaturated melts–solutions.Moreover,themeltingdiagramsofferaclearerview of how the joint crystallization of diamonds and paragenetic minerals may originate. The combined physicochemical experimental and mineralogical data provide a means for substantiation of the mantle-carbonatite theory of genesis of diamonds andassociatedphasesattheEarthmantledepthsof150–800km.Intheconclusive part,allthevarietyofmineralinclusionsindiamondsoftheuppermantle,transition zone and lower mantle is genetically classified. Along with this, partition coeffi- cientsoftraceandscatteredelementsbetweenminerals-in-inclusionsanddiamond- parental melts are first experimentally determined. The results of physicochemical experiments provide for investigation of mechanisms offractional ultrabasic–basic evolution of diamond-parental melts which are responsible for paragenetic transi- tions in the course of the genetic processes for diamonds and associated phases under the upper and lower mantle conditions. Physicochemical experimental and analytical mineralogical data are compatible with the concept that the reservoirs– chambers of silicate-(±oxide)-carbonatite-carbon melts–solutions, parental for diamonds and associated phases, had been generated within the enclosing Earth’s mantle rocks. Chernogolovka, Moscow Region, Russia Yuriy A. Litvin Contents 1 Introduction: Physico-Chemical Experiments as the Key to Diamond Genesis Problems .. .... .... .... .... .... ..... .... 1 1.1 Diamond-Hosted Inclusions as a “Window” into the Mantle Diamond-Parental Media ... .... .... .... .... .... ..... .... 1 1.2 General Composition of Diamond-Producing System from Syngenetic Inclusions.. .... .... .... .... .... ..... .... 3 1.3 Principal Problems in Genesis of Diamond and Associated Phases. .... .... .... ..... .... .... .... .... .... ..... .... 4 1.4 Physico-Chemical Experiments in Study of Diamond Origin. .... 4 1.5 Early Assumptions for Diamond-Parental Medium.... ..... .... 6 2 Mantle Rocks and Diamond-Associated Phases: Role in Diamond Origin .. .... ..... .... .... .... .... .... ..... .... 7 2.1 Xenoliths of Native Upper-Mantle Rocks in Kimberlites .... .... 8 2.2 Transition-Zone and Lower-Mantle Petrology from High-Pressure Experiments.. .... .... .... .... .... ..... .... 11 2.3 Primary Mineral Inclusions in Upper-Mantle Diamonds..... .... 13 2.4 Primary Mineral Inclusions in Transition-Zone and Lower-Mantle Diamonds.... .... .... .... .... ..... .... 16 2.5 Xenoliths of Diamond-Bearing Rocks in Kimberlites.. ..... .... 20 References.. .... .... .... ..... .... .... .... .... .... ..... .... 23 3 Strongly Compressed Carbonate Systems in Diamond Genesis. .... 31 3.1 Congruent Melting of Carbonate Minerals at High Pressure.. .... 32 3.2 Melting of Multicomponent Carbonate Systems as to Mantle Geothermal Regime .. ..... .... .... .... .... .... ..... .... 38 3.3 Complete Liquid Miscibility in Silicate-(±Oxide)-Carbonate Systems ... .... .... ..... .... .... .... .... .... ..... .... 41 3.4 Diamond Solubility and Carbon-Oversaturated Carbonate-Bearing Melts-Solutions.... .... .... .... ..... .... 42 References.. .... .... .... ..... .... .... .... .... .... ..... .... 49 4 Upper-Mantle Diamond-Parental Systems in Physico-Chemical Experiment .... .... .... ..... .... .... .... .... .... ..... .... 55 4.1 Syngenesis Criterion for Parental Melts of Diamonds and Associated Minerals.... .... .... .... .... .... ..... .... 56 4.2 Concentration Barrier of Diamond Nucleation ... .... ..... .... 63 4.3 Physico-Chemical Mechanisms of Syngenesis of Diamonds and Associated Phases ..... .... .... .... .... .... ..... .... 67 4.4 Xenogenetic Upper-Mantle Minerals in Diamond-Producing Processes .. .... .... ..... .... .... .... .... .... ..... .... 74 4.5 Principles of Genetic Classification of Syngenetic Inclusions in Upper-Mantle Diamonds . .... .... .... .... .... ..... .... 81 References.. .... .... .... ..... .... .... .... .... .... ..... .... 83 5 Physico-Chemical Features of Lower-Mantle Diamond-Parental Systems..... .... .... .... .... .... ..... .... 87 5.1 Paradoxical Assemblage of Stishovite and Oxide Inclusions in Lower-Mantle Diamonds . .... .... .... .... .... ..... .... 87 5.2 Physico-Chemical Mechanism of Stishovite Paradox by Experimental Evidence .. .... .... .... .... .... ..... .... 89 5.3 Parental Melts and Genetic Mechanisms for Lower-Mantle Diamonds and Inclusions ... .... .... .... .... .... ..... .... 94 5.4 Some Remarks on Genetic Classification of Syngenetic Inclusions in Lower-Mantle Diamonds. .... .... .... ..... .... 96 References.. .... .... .... ..... .... .... .... .... .... ..... .... 96 6 Ultrabasic-Basic Fractionating of Mantle Magmas and Diamond-Parental Melts ... .... .... .... .... .... ..... .... 99 6.1 Peritectic Reactions of Orthopyroxene and Olivine in Upper-Mantle Magma Evolution ... .... .... .... ..... .... 99 6.2 Olivine Garnetization and Evolution of Upper-Mantle Diamond-Parental Melts.... .... .... .... .... .... ..... .... 102 6.3 Fractionary Syngenesis Diagram for Upper-Mantle Diamonds and Associated Phases ..... .... .... .... .... .... ..... .... 107 6.4 Fractionary Evolution of Lower-Mantle Magmas and Diamond-Parental Melts. .... .... .... .... .... ..... .... 110 References.. .... .... .... ..... .... .... .... .... .... ..... .... 112 7 Mantle-Carbonatite Conception of Diamond and Associated Phases Genesis.. .... .... .... .... .... ..... .... 115 7.1 Generalized Composition Diagram of Upper-Mantle Diamond-Parental Medium.. .... .... .... .... .... ..... .... 115 7.2 Generalized Composition Diagrams of Lower-Mantle and Transition-Zone Diamond-Parental Media ... .... ..... .... 118 7.3 Basics of the Mantle-Carbonatite Theory of Diamond Genesis.. ..... .... .... .... .... .... ..... .... 121 7.4 Experimental TE Partition Coefficients for Diamond-Parental Systems ... .... .... ..... .... .... .... .... .... ..... .... 123 7.5 Formation and Evolution of the Mantle Reservoirs of Silicate-Oxide-Carbonate-Carbon Melts Parental for Diamonds and Associated Phases.. .... .... .... ..... .... 129 References.. .... .... .... ..... .... .... .... .... .... ..... .... 133 Abbreviations Alm Almandine Fe Al Si O 3 2 3 12 Ap Apatite Ca (PO ) (F,Cl) 5 4 3 Arg Aragonite CaCO 3 Bn Bornite Cu FeS 5 4 Brd, FBrd Bridgmanite MgSiO , (Mg,Fe)SiO 3 3 Cal Calcite CaCO 3 CaPrv Ca-perovskite CaSiO 3 Chal Chalipite Fe C 2 Chr Chromite FeCr O 2 4 Coe Coesite SiO 2 Cog Cogenite Fe C 3 Cpx Clinopyroxene (Ca,Na)(Mg,Fe)(Si,Al) O ! (Di∙Hd∙Jd) 2 6 ss Cpy Chalcopyrite CuFeS 2 Crn Corundum Al O 2 3 D Diamond C Di Diopside CaMgSi O 2 6 Dj Djerfisherite K (Cu,Fe,Ni) S Cl 8 23 26 Dol Dolomite CaMg(CO ) 3 2 Egg Al-phase AlSiO OH 3 En Enstatite MgSiO 3 Fa Fayalite Fe SiO 2 4 FeNio Native Fe-Ni alloy Feo Native iron Fo Forsterite Mg SiO 2 4 Fs Ferrosilite FeSiO 3 G Graphite C Gros Grossularite Ca Al Si O 3 2 3 12 Grt Garnet (Mg,Fe,Ca) (Al,Cr) Si O ! (Prp∙Alm∙Gros) 3 2 3 12 ss Hax Haxonite (Fe,Ni,Co) 23 Hd Hedenbergite CaFeSi O 2 6 Hz Heazlewoodite Ni S 3 2 Ilm, PIlm Ilmenite FeTiO , picroilmenite (Fe,Mg)TiO 3 3 Jd Jadeite NaAlSi O 2 6 Ky Kyanite Al SiO 2 5 L Liquid, melt Mag Magnetite Fe2+Fe3+O 2 4 Maj, MgMaj Mg-majoritic garnet Mg (Mg,Fe,Al,Si) Si O 3 2 3 12 Mgs Magnesite MgCO 3 Mois Moissanite SiC Mss Monosulfide solid solution phases (FeS∙NiS) ss Nah Nahkolite NaHCO 3 NaMaj Na-majorite Na MgSi O 2 5 12 Nyer Niererite Na Ca(CO ) 2 3 2 Ol Olivine (Mg,Fe) SiO ! (Fo∙Fa) 2 4 ss Omph Omphacite, Jd-rich clinopyroxene Opx Orthopyroxene (Mg,Fe)SiO ! (En∙Fs) 3 ss Per, FPer Periclase MgO, ferropericlase (Mg,Fe)O Pn Pentlandite (Fe,Ni) S 9 8 Po Pyrrhotite FeS Prp Pyrope Mg Al Si O 3 2 3 12 Py Pyrite FeS 2 Qtz Quartz SiO 2 Rt Rutile TiO 2 Rw Ringwoodite Mg SiO 2 4 Sa Sanidine (K,Na)AlSi O 3 8 Sd Siderite FeCO 3 Spl, CrSpl Spinel MgAl O , Cr-spinel Mg(Al,Cr) O 2 4 2 4 Sti Stishovite SiO 2 TAPP Tetragonal almandite-pyrope phase (Mg,Fe2+) (Mg,Fe3+)(Al,Cr, 2 Mn) Si O 2 3 12 Ttn Titanite CaTiO 3 Vio Violarite Ni FeS 3 4 Wd Wadsleite Mg SiO 2 4 Wus, MWus Wustite FeO, magnesiowustite (Fe,Mg)O Zrn Zircon ZrSiO 4 Chapter 1 Introduction: Physico-Chemical Experiments as the Key to Diamond Genesis Problems Crystalgrowthof diamonds atthe Earth’s mantle depths of 150–800 kmhad been accompanied by a fragmentary capturing minerals, melts and volatile compounds (asdiamond-hostedinclusions)fromtheparentalmelts.Thisindicatesconvincingly that diamonds were originated jointly with the phases of primary hermetic inclu- sionsinacommonparental medium. Thisopens uppossibilitiesfor evaluatingthe general chemistry ofnaturaldiamond-producingsystems fromthecompositionsof significantly different phases associated with diamonds in primary inclusions. Of particular value is that it has been made possible to determine the boundary compositions for the experimental systems which duplicate the natural ones responsible for genesis of diamonds and associated phases. As a consequence, the principal problems of diamond genetic mineralogy may be formulated. It became apparent, that the methodology of physico-chemical experiments is of crucial importanceinsolutionofthegeneticproblemsfordiamondsandassociatedphases. 1.1 Diamond-Hosted Inclusions as a “Window” into the Mantle Diamond-Parental Media Mineralogy of diamond-hosted primary inclusions makes it possible to establish that diamonds have been transferred to the Earth’s crust from depths of the upper mantle (150–400 km), transition zone (400–670 km) and upper horizons of the lower mantle (670–800 km). Comprehensive studies of physical relationships between diamonds and their inclusions prove with assurance that the growing diamonds have in essence sampled the heterogeneous fragments of diamond- parental media. In a certain sense natural diamonds and their primary inclusions may be considered as a peculiar kind of the in situ “window” into heterogeneous partial melts-solutions responsible for genesis of diamonds and associated phases. Mineralsofthediamond-freeupper-mantlerocksfromxenolithsinkimberlitesand

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.