ebook img

Generators of Markov Chains: From a Walk in the Interior to a Dance on the Boundary PDF

280 Pages·2020·3.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generators of Markov Chains: From a Walk in the Interior to a Dance on the Boundary

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 190 EditorialBoard J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO GENERATORSOFMARKOVCHAINS ElementarytreatmentsofMarkovchains,especiallythosedevotedtodiscrete-timeand finite state-space theory, leave the impression that everything is smooth and easy to understand.ThisexpositionoftheworksofKolmogorov,Feller,Chung,Kato,andother mathematical luminaries, which focuses on time-continuous chains but is not so far frombeingelementaryitself,remindsusagainthattheimpressionisfalse:aninfinite, butdenumerable,state-spaceiswherethefunbegins. IfyouhavenotheardofBlackwell’sexample(inwhichallstatesareinstantaneous), do not understand what the minimal process is, or do not know what happens after explosion,diverightin.Butbewarelestyouareenchanted:‘therearemorespellsthan yourcommonplacemagicianseverdreamedof.’ Adam Bobrowski is Professor and Chairman of the Department of Mathematics at Lublin University of Technology, Poland. He is a pure mathematician who uses the languageofoperatorsemigroupstodescribestochasticprocesses.Hehasauthoredand coauthorednearly70papersonthesubjectandfivebooks,includingFunctionalAnaly- sisforProbabilityandStochasticProcesses(2005)andConvergenceofOne-Parameter OperatorSemigroups(2016). CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard J.Bertoin,B.Bollobás,W.Fulton,B.Kra,I.Moerdijk,C.Praeger,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visitwww.cambridge.org/mathematics. AlreadyPublished 150 P.MattilaFourierAnalysisandHausdorffDimension 151 M.Viana&K.OliveiraFoundationsofErgodicTheory 152 V.I.Paulsen&M.RaghupathiAnIntroductiontotheTheoryofReproducingKernelHilbertSpaces 153 R.Beals&R.WongSpecialFunctionsandOrthogonalPolynomials 154 V.JurdjevicOptimalControlandGeometry:IntegrableSystems 155 G.PisierMartingalesinBanachSpaces 156 C.T.C.WallDifferentialTopology 157 J.C.Robinson,J.L.Rodrigo&W.SadowskiTheThree-DimensionalNavier–StokesEquations 158 D.HuybrechtsLecturesonK3Surfaces 159 H.Matsumoto&S.TaniguchiStochasticAnalysis 160 A.Borodin&G.OlshanskiRepresentationsoftheInfiniteSymmetricGroup 161 P.WebbFiniteGroupRepresentationsforthePureMathematician 162 C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis 163 A.BovierGaussianProcessesonTrees 164 P.SchneiderGaloisRepresentationsand(φ,(cid:3))Modules 165 P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166 D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167 D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168 J.Carlson,S.Müller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169 J.M.LandsbergGeometryandComplexityTheory 170 J.S.MilneAlgebraicGroups 171 J.Gough&J.KupschQuantumFieldsandProcesses 172 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173 P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174 P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175 G.NavarroCharacterTheoryandtheMcKayConjecture 176 P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic Representations 177 E.PetersonFormalGeometryandBordismOperators 178 A.OgusLecturesonLogarithmicAlgebraicGeometry 179 N.NikolskiHardySpaces 180 D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra 181 A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry 182 N.NikolskiToeplitzMatricesandOperators 183 A.YekutieliDerivedCategories 184 C.DemeterFourierRestriction,DecouplingandApplications 185 D.Barnes&C.RoitzheimFoundationsofStableHomotopyTheory 186 V.Vasyunin&A.VolbergTheBellmanFunctionTechniqueinHarmonicAnalysis 187 M.Geck&G.MalleTheCharacterTheoryofFiniteGroupsofLieType 188 B.RichterCategoryTheoryforHomotopyTheory 189 R.Willett&G.YuHigherIndexTheory ‘FascinatingMarkovChains’byMarekBobrowski.Inadifferentversionofthis cartoonbyW.Chojnacki,theroleoftheanonymousexaminerisplayedbyan antagonistofA.A.Markov,thatis,PavelNiekrasov,whosays,‘Contrarytomy beliefs,thesechainsarereallyfascinating!’See[50]fortheentirestory. Generators of Markov Chains From a Walk in the Interior to a Dance on the Boundary ADAM BOBROWSKI LublinUniversityofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,New Delhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108495790 DOI:10.1017/9781108863070 (cid:2)c AdamBobrowski2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 PrintedintheUnitedKingdombyTJBooksLtd,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-49579-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. TomydancingBeatka Imetamanonce...towhomHeystexclaimed,innoconnectionwithanythingin particular(itwasinthebilliard-roomoftheclub):‘Iamenchantedwiththese islands!’Heshotitoutsuddenly,aproposdesbottes,astheFrenchsay,andwhile chalkinghiscue.Andperhapsitwassomesortofenchantment.Therearemore spellsthanyourcommonplacemagicianseverdreamedof. J.Conrad(J.T.K.Korzeniowski),Victory Niesprawiłes´mizawodu,synu.Przeciwnie,zadziwiłes´mnie.Zdołałes´dac´zsiebie wie˛cej,niz˙emodciebieoczekiwał. TeodorParnicki,Srebrneorły Markovchainsmerelywalkintheirregularstatespace,butonthecliffsoftheir boundaries,theydance. JohannGottfriedvonSpacerniak Contents Preface pagexi ANontechnicalIntroduction xv 1 AGuidedTourthroughtheLandofOperatorSemigroups 1 1.1 SemigroupsandGenerators 1 1.2 TheHille–YosidaTheorem 12 1.3 PerturbationTheorems 21 1.4 ApproximationandConvergenceTheorems 23 1.5 DualandSun-DualSemigroups 27 1.6 Appendix:OnConvergenceinl1 34 1.7 Notes 38 2 GeneratorsversusIntensityMatrices 39 2.1 TransitionMatricesandMarkovOperatorsinl1 39 2.2 TheMatrixofIntensities 44 2.3 TheUniformCase 49 2.4 TheGenerator 51 2.5 Intensities,Generators,andInfinitesimalDescription 64 2.6 BacktotheFirstKolmogorov–Kendall–ReuterExample 70 2.7 BacktotheSecondKolmogorov–Kendall–ReuterExample 76 2.8 Blackwell’sExample 82 2.9 Notes 87 3 BoundaryTheory:CoreResults 89 3.1 Kato’sTheorem 90 3.2 TheQuestionofExplosiveness 95 3.3 PureBirthProcessExample 105 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.