ebook img

Generators for a module of vector-valued Siegel modular forms of degree 2 PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generators for a module of vector-valued Siegel modular forms of degree 2

GENERATORS FOR A MODULE OF VECTOR-VALUED SIEGEL MODULAR FORMS OF DEGREE 2 ∗ Christiaan van Dorp January 15, 2013 3 1 0 2 Abstract n a Inthispaperwewilldescribeallvector-valuedSiegelmodularformsofdegree2andweight J Sym6(St)⊗detk(St)withkodd. Thesevector-valuedformsconstituteamoduleoverthering 4 ofclassicalSiegelmodularformsofdegree2andevenweightandthismoduleturnsoutto 1 befree. Inordertofindgenerators,wegeneralizecertainRankin-Cohendifferentialoper- atorsontriplesofclassicalSiegelmodularformsthatwerefirstconsideredbyIbukiyama ] G andwefindaRankin-Cohenbracketonvector-valuedSiegelmodularforms. A . h 1 Introduction t a m In comparison to elliptic modular forms, Siegel modular forms and especially vector-valued [ Siegelmodularformsaremuchlessunderstood. Althoughthedimensionsofthevectorspaces 1 of genus 2 modular forms are known due to Tsushima [18], explicit generators are unknown v in almost all cases. For some instances however, such generators are known. These ‘first few’ 0 1 examplesareduetoSatoh[17]andIbukiyama[12,13]. 9 Tsushima’sdimensionformulacangiveclues—apartfromthedimensions—aboutthestructure 2 . of the modules of forms. For instance, the dimension formula can predict relations and in 1 0 those cases the modules will not be free. When no relations are predicted, the modules could 3 be freely generated over the ring of classical modular forms of even weight. Ibukiyama has 1 conjecturedthatoneofthemoduleshestudiedisinfactfree,buthedidnotprovethis[13]. In : v this paper we will prove his hypothesis and in order to do this, we develop some methods for i X constructingvector-valuedSiegelmodularformsofgenus2. Ourmethodallowsustocompute r afeweigenvaluesfortheHeckeoperators. Ourresultsagreewithcalculationsdonebyvander a GeerbasedonhisjointworkwithFaber[6,7]. 1.1 Siegel modular forms We will first introduce some notions and notation. Let V be a finite dimensional (cid:67)-vector space, g a positive integer and let ρ:GL(g,(cid:67))→GL(V) be a representation. A Siegel modular form f of weight ρ and genus (degree) g≥2 is then a V-valued holomorphic function on the ∗ Korteweg- de Vries Institute for Mathematics, Universiteit van Amsterdam, Amsterdam. Current address: TheoreticalBiologyandBioinformatics,UniversiteitUtrecht,Utrecht. 1 Siegel upper half-space H that satisfies for every element γ of the symplectic group Γ := g g Sp(2g,(cid:90))thefunctionalequation f(γ·τ)=ρ(j(γ,τ))f(τ), τ∈H . g Herewewrite j(γ,τ):=cτ+d forthefactorofautomorphyandγ·τ:=(aτ+b)(cτ+d)−1,where (cid:179) (cid:180) a,b,c,d∈gl(g,(cid:90))andγ= a b ∈Γ . ASiegelmodularform f hasaFourierseries c d g f(τ)=(cid:88)a(n)qn, qn:=e2πiσ(nτ), n where the sum is taken over the set Sg := (cid:169)n=(nij)(cid:175)(cid:175) nii∈(cid:90),2nij∈(cid:90),nij=nji(cid:170) of all half- integer, symmetric g×g matrices n and σ(x) denotes the trace of a square matrix x. We will (cid:48) write x forthetransposeofamatrix xandwhen yisasquarematrixofappropriatesize,then y[x]:=x(cid:48)yx. TheFouriertransforma ofaSiegelmodularform f =(cid:80)a (n)qn definesafunctiona :S →V f f f g and if g>1, then a (n)(cid:54)=0 =⇒ n(cid:186)0 (the Koecher principle). Denote by S+ the subset of S f g g ofsemi-positivematrices. Aform f forwhich a (n)vanishesfornon-positive n∈S+ iscalleda f g cusp form. We will denote the space of modular forms of weight ρ by Mρ(Γg) and the space of (cid:179) (cid:180) cusp forms by Sρ(Γg). The general linear group GL(g,(cid:90))(cid:44)→Γg, embedded by u(cid:55)→ u0 u(cid:48)0−1 , acts onS+ by u:n(cid:55)→unu(cid:48) andtheFouriertransform a of f behaveswellunderthisaction: g f a (unu(cid:48))=ρ(u)a (n). (1) f f From now on, we assume that g =2 unless otherwise specified. For convenience, we often (cid:179) (cid:180) write square matrices a b as (a,b;c,d) and when no confusion can be possible, we will write c d (n,r/2;r/2,m)∈S as(n,m,r). TheirreduciblerepresentationsρofGL(2,(cid:67))canbecharacterized 2 bytheirhighestweightvector(λ1≥λ2)andifλ2<0,thendim(cid:67)Mρ(Γ2)=0. Thereforeweonly have to consider ‘polynomial’ representations. If we write j=λ −λ and k=λ , then ρ will 1 2 2 beisomorphictoSymj(St)⊗detk(St),whereStdenotesthestandardrepresentationofGL(2,(cid:67)) and Symj and detk denote the j-fold symmetric product and k-th power of the determinant respectively. The representation Symj(St)⊗detk(St) is abbreviated to (j,k) and we write k to denotetheweight(0,k). The structure of the ring of classical Siegel modular forms M∗ :=(cid:76)kMk(Γ2) of genus 2 was determinedbyIgusa[14]. Thesubring M∗0:=(cid:76)k≡0(2)Mk(Γ2)⊆M∗ isapolynomialring: M0=(cid:67)[ϕ ,ϕ ,χ ,χ ], ∗ 4 6 10 12 where ϕ and ϕ are Eisenstein series of weight 4 and 6 (with Fourier series normalized 4 6 at(0,0,0))andχ andχ arecuspformsofweight10and12(withFourierseriesnormalized 10 12 at (1,1,1)). Satoh has determined the structure of the M∗0-module M(ij,∗) :=(cid:76)k≡i(2)M(j,k)(Γ2) for(j,i)=(2,0)andIbukiyamadidthesamefor(j,i)=(2,1),(4,0),(4,1)and(6,0). Inthispaper wewilldeterminethestructureof M1 . Ourmainresultcanbeformulatedasfollows. (6,∗) MainTheorem. TheM0-moduleM1 isfreelygeneratedbysevenelementsF ofweight(6,k) ∗ (6,∗) k with k∈{11,13,15,17,19,21,23}. We shall give the elements mentioned in the above theorem explicitly, but in order to do this weneedtointroduceRankin-CohendifferentialoperatorsonSiegelmodularforms. 2 1.2 Rankin-Cohen operators Rankin-Cohenoperators(RC-operators)sendt-tuplesofclassicalSiegelmodularformsto(pos- sibly vector-valued) Siegel modular forms. They are therefore useful when we want to find generators for modules of Siegel modular forms. RC-operators were studied in full general- ity by (among others) Ibukiyama, Eholzer and Choie [11, 5, 3]. The general construction of RC-operatorscanbequitecumbersomeandthereforeweonlyexplainthegenus2casehere. WriteH =(cid:169)p∈(cid:67)[x,y]|∀λ∈(cid:67):p(λx,λy)=λjp(x,y)(cid:170)forthespaceofhomogeneouspolynomials j of degree j in two variables x and y. The representation ρ:=Symj(St)⊗det(cid:96)(St):GL(2,(cid:67))→ GL(H )isgivenexplicitlyby: j (ρ(G)·p)(x,y)=det(G)(cid:96)·p((x,y)G), G∈GL(2,(cid:67)), p∈H . j Let R =(cid:67)[rs |0<i≤ j≤2,0<s≤t]bethepolynomialringinthe3tvariablesrs andconsider t ij ij an element P of Hj⊗(cid:67)Rt. It is convenient to write P(r111,...,r2t2,x,y)=:P(r1,...,rt;v), where rs =(cid:161)rs ,rs ;rs ,rs (cid:162) is a symmetric 2×2 matrix and v=(x,y)(cid:48). Using this notation, we can 11 12 12 22 givethefollowingdefinition. Definition1.1. Anelement P of Hj⊗(cid:67)Rt iscalledρ-homogeneousif P(Gr1G(cid:48),...,GrtG(cid:48);v)=det(G)(cid:96)·P(r1,...,rt;G(cid:48)v) forallG∈GL(2,(cid:67)). Ibukiyama refers to certain special elements P of the space Hj⊗(cid:67)Rt as ‘associated poly- nomials’, since they are ‘associated’ to other polynomials P˜ called ‘pluri-harmonic’ polyno- mials [11]. These polynomials P˜ can be constructed from P by first choosing an element k=(k ,...,k )∈(cid:90)t , which we will refer to as a type, and then replacing the matrices rs by 1 t >0 ξsξs(cid:48) withξs=(ξs )a2×2k matrixofindeterminates: ij s P(cid:55)→P˜ : Hj⊗(cid:67)Rt→Hj⊗(cid:67)(cid:67)[ξsij|0<i≤2,0< j<2ks,0<s≤t], P˜(ξ1 ,...,ξt ,x,y):=P(ξ1ξ1(cid:48),...,ξtξt(cid:48);v). 11 2,2kt Note that the map P (cid:55)→P˜ depends on the choice of the type k and that for P ∈Hj⊗(cid:67)Rt, the polynomial P˜ isnotnecessarilypluri-harmonic. Wecannowgivethefollowingdefinition. Definition 1.2. An element P ∈Hj⊗(cid:67)Rt is called k-harmonic if P˜ is harmonic in the sense that ∆P˜:= (cid:88) ∂2P˜ =0. (∂ξs )2 i,j,s ij Polynomials that are ρ-homogeneous and k-harmonic can be used to define RC-operators as shown in the following theorem and therefore we will refer to these polynomials as RC- polynomials. ThespaceofRC-polynomialsisdenotedbyHρ(k)⊂Hj⊗(cid:67)Rt. Writeτ=(τ1,z;z,τ2) foranelementτ∈H andwrite|k|=(cid:80) k . 2 s s Theorem 1.3 (Ibukiyama). Suppose that P ∈ Hρ(k) with ρ = (j,(cid:96)) and let f1,...,ft be classical Siegel modular forms on Γ of weight k ,...,k respectively. Write d/dτs := 2 1 t (cid:161)∂/∂τs,1∂/∂zs;1∂/∂zs,∂/∂τs(cid:162). The H -valuedfunction 1 2 2 2 j D[P](f1,...,ft)(τ):= (2πi1)j/2+(cid:96) P(d/dτ1,...,d/dτt;v)f1(τ1)···ft(τt)(cid:175)(cid:175)τ1=···=τt=τ, τ∈H2 (2) 3 isaSiegelmodularformofweightρ⊗det|k|(St)=(j,(cid:96)+|k|)andgenus2. A more general version of Theorem 1.3 was proven by Ibukiyama [11]. Ibukiyama and oth- ers also give explicit examples of RC-polynomials and all RC-polynomials for type of length 2 were determined explicitly by Miyawaki [15]. If the length t of the type k equals 2, then a non-zero Siegel modular form that has been constructed using a RC-operator will only have weight (j,(cid:96)) with (cid:96) odd if a classical Siegel modular form of odd weight has been used in this construction [17, 12]. The cusp form χ ∈M (Γ ) is such a classical Siegel modular form of 35 35 2 oddweight,butifweweretouseitinaconstructionwithanRC-operator,theweightofthere- sultingSiegelmodularformwillhave(cid:96)≥39. Thedimensionofe.g. M (Γ )equals1,hence (2,21) 2 we need RC-operators with a higher type length in order to get forms of ‘low’ weight. This ‘trade-off’ causes further problems when we increase j and we will give a (partial) solution to this problem below by introducing a Rankin-Cohen bracket on vector-valued Siegel modular forms. IbukiyamaconstructedRC-polynomialsofweight(2,1)and(4,1)andtypelength t=3inorder tofindgeneratorsfor M1 and M1 . Wewillgeneralizethesepolynomialstofindgenerators (2,∗) (4,∗) for M1 , but our generalization can also be used to find other vector-valued Siegel modular (6,∗) formsofweight(j,(cid:96))with j≥2and(cid:96)≥15odd. 1.3 Acknowledgements We would like to thank Gerard van der Geer, who stimulated the author to write this paper, andFabienCléryfortheusefuldiscussionsandtheircorrectionsandcomments. 2 Results TheHilbert-Poincaréseriesforthedimensionsof M(6,(cid:96))(Γ2)with(cid:96)oddisgivenby(cf. [18]) (cid:88) dim(cid:67)M(6,(cid:96))(Γ2)·X(cid:96)= X11(+1−XX134+)(1X−15X+6X)(117−+XX1019)(+1−XX211+2)X23. (3) (cid:96)≡1(2) This suggests that we should look for generators for M1 of weights (6,(cid:96)) with (cid:96) = (6,∗) 11,13,...,23. We will first give two methods for constructing forms of weight (6,(cid:96)) with (cid:96)=15,17,...,23and(cid:96)=11,13respectivelyandthenwewillgiveexplicitgenerators. 2.1 RC-polynomials of weight (j,1) We start with an example by Ibukiyama and Eholzer [5]. The RC-polynomials for elliptic modular forms were studied by Rankin and Cohen [4] and they can be used to construct RC- polynomialsofweight(j,0). Suchagenus1RC-polynomial p ∈(cid:67)[r ,r ]canbewrittenas j,k 1 2 pj,k(r1,r2)=(cid:88)j/2(−1)i(cid:179)j/i2(cid:180)(k1+j/2−1)i(k2+j/2−1)j/2−ir1j/2−ir2i , j≡0(2). (4) i=0 Here we use the Pochhammer symbol (x) := x(x−1)(x−2)···(x−n+1). The corresponding n RC-polynomial P ∈H (k)isthengivenby j,k (j,0) P (r1,r2;v):=p (r1[v],r2[v]), j,k j,k 4 anditiseasytoverifythat P isindeed(j,0)-homogeneousand k-harmonic. Givenapolyno- j,k mial pinthevariablesr ,...,r ,wethendenotethemapthatreplacesthevariablesr byrs[v] 1 t s byΨ: Ψ:p(r1,...,rt)(cid:55)→p(r1[v],...,rt[v]):(cid:67)[r1,...,rt]−→(cid:77)Hj⊗(cid:67)Rt. j≥0 We will now give a construction that uses elliptic (i.e. genus g=1) RC-polynomials and pro- ducesRC-polynomialsofweight(j,1)andtype k=(k ,k ,k ). Wefirstconsiderthecrossprod- 1 2 3 uct on the space of 2×2 symmetric matrices. Let J=(0,1;−1,0) and define for A=(a,b;b,c) andB=(a(cid:48),b(cid:48);b(cid:48),c(cid:48)) (cid:181) 2ab(cid:48)−2ba(cid:48) ac(cid:48)−ca(cid:48) (cid:182) A×B:=AJB−BJA= , (5) ac(cid:48)−ca(cid:48) 2bc(cid:48)−2cb(cid:48) then(GAG(cid:48))×(GBG(cid:48))=det(G)·G(A×B)G(cid:48) forallG∈GL(2,(cid:67)). Definition2.1. TheoperatorMk:(cid:67)[r1,r2,r3]−→(cid:76)jHj⊗(cid:67)R3 isdefinedasfollows: (cid:179) (cid:180) (cid:179) (cid:180) (cid:179) (cid:180) M p=r1×r2[v]Ψ k p+r ∂ p −r1×r3[v]Ψ k p+r ∂ p +r2×r3[v]Ψ k p+r ∂ p . k 3 3∂r 2 2∂r 1 1∂r 3 2 1 Proposition 2.2. Let p= pj,(k1+1,k2+1) be the elliptic RC-polynomial defined by equation (4), thenM p isaRC-polynomialofweight(j+2,1)andtype k=(k ,k ,k ). k 1 2 3 TheproofofProposition2.2iselementarybutverytedious. Wewillthereforeomitthedetails. The operator M can be shown to ‘commute’ with the Laplacian ∆ at the cost of a shift in the k type (k ,k ,k )(cid:55)→(k +1,k +1,k +1). The above result then follows immediately. Note that 1 2 3 1 2 3 wecouldalsouseotherappropriatepolynomials p∈(cid:67)[r ,r ,r ]. 1 2 3 We now have a recipe to construct vector-valued Siegel modular forms of weight (j,(cid:96)) with (cid:96) odd. First take f ∈ M (Γ ) for s = 1,2,3, then choose an elliptic RC-polynomial p = s ks 2 pj−2,(k1+1,k2+1) and define P =M(k1,k2,k3)p ∈H(j,1)(k1,k2,k3). Theorem 1.3 then tells us that thefunctionD[P](f1,f2,f3)isanelementof M(j,|k|+1)(Γ2). Thiswouldbeofnouseiftheresult- ingSiegelmodularformsvanishidentically. WecanshowthatD[P](f ,f ,f )isnon-vanishing 1 2 3 bycomputinganon-zeroFouriercoefficient. If f =(cid:80) a (n)qn andD[P](f ,f ,f )=(cid:80) b(n)qn, s n s 1 2 3 n then (cid:88) b(n)= P(n ,n ,n ;v)a (n )a (n )a (n ). (6) 1 2 3 1 1 2 2 3 3 (nn1,n+2n,n+3)n∈(=S+2n)3 1 2 3 Althoughthisisasimpleformula,thefactthatwetakeasumoveralltriples(n ,n ,n )∈(S+)3 1 2 3 2 such that n +n +n =n can result in a computationally difficult problem, since the number 1 2 3 ofpartitions n +n +n =ngrowsveryfastasthetraceσ(n)grows. 1 2 3 Example2.3. TheoperatorM definedinDefinition2.1generalisesthepolynomialsgivenby k Ibukiyama[12,13]. Thesepolynomialsaregivenby M 1∈H (k) and M (cid:161)(k +1)r −(k +1)r (cid:162)∈H (k) k (2,1) k 1 2 2 1 (4,1) with k=(k ,k ,k ). Ibukiyama uses these polynomials to define Rankin–Cohen brackets on 1 2 3 triplesofclassicalSiegelmodularformsandshowsthattheresultingvector-valuedSiegelmod- ularformsgeneratethemodules M1 and M1 . TheoperatorD[M 1]canalsobedescribed (2,∗) (4,∗) k 5 in terms of the cross product (5) and Satoh’s RC-brackets [17]. Satoh uses the space of sym- metric2×2complexmatricesasarepresentationspaceforSym2(St)(wheretheGL(2,(cid:67))action isgivenbyG:A(cid:55)→GAG(cid:48) for A asymmetricmatrixandG∈GL(2,(cid:67)))andthendefines [f1,f2]:=k1f1ddτf2−k2f2ddτf1∈M(2,k1+k2)(Γ2), fs∈Mks(Γ2). Let f ∈M (Γ )for s=1,2,3. Then s ks 2 F:=[f1,f2]×[f1,f3]∈M(2,2k1+k2+k3+1)(Γ2) and unraveling the definitions easily shows that F is divisible by f1 in the M∗-module M(2,∗). Ibukiyama’sRC-brackets[f ,f ,f ](in[12])arethengivenby[f ,f ,f ]:=cF/f forsomenon- 1 2 3 1 2 3 1 zeroconstant c. 2.2 A Rankin-Cohen bracket on vector-valued Siegel modular forms OuraimistofindallSiegelmodularformsofweight(6,(cid:96))with(cid:96)odd. Formula(3)showsthat dim(cid:67)M(6,11)(Γ2)=1andthelowest(cid:96)forwhichwecanusetheoperatorMk toconstructanon- zeroformofweight(6,(cid:96))equals15. Notethatbytaking k=(4,4,4)and p=p ,wecanget 4,(5,5) a form D[M p](ϕ ,ϕ ,ϕ )∈M (Γ ), but unfortunately this form vanishes identically. This k 4 4 4 (6,13) 2 means that the above described construction with M is not sufficient for our purpose, unless k we would be able to divide by a classical Siegel modular form, but this appears to be quite difficult without prior knowledge of the quotient. Ibukiyama encountered a similar problem whenhedeterminedallmodularformsofweight(6,(cid:96))with(cid:96)evenandhesolvedthisbyusing athetaseriesΘ ofweight(6,8)(cf.[13,9])andaKlingen-Eisensteinseries E ofweight(6,6) 8 6 (cf. [2]). These forms can not be constructed directly by means of RC-operators. However, as wewillpointoutbelow, wecanuseRC-operatorstocomputetheirFouriercoefficients. Inthis paperwehavescaledΘ suchthattheFouriercoefficientofΘ at(1,1,1)equals x4y2+2x3y3+ 8 8 x2y4. Theform E isscaledsuchthatitsFouriercoefficientat(1,0,0)equals x6. 6 The forms Θ and E can be used to construct forms of weight (6,13) and (6,11). In order to 8 6 see how this can be done, we must first give a new interpretation of the operators D[M p], k where p is an elliptic RC-polynomial. Choose p= pj−2,(k1+1,k2+1) and let fs ∈ Mks(Γ2) for s= 1,2,3. Also let q= pj,(k1,k2) and define F=D[Ψq](f1,f2)∈M(j,k1+k2)(Γ2). We can re-write G:= D[M p](f ,f ,f )insuchawaythat k 1 2 3 G=c·(cid:169)F,f (cid:170) 3 tfohreseoxmacetbdielisnceriaprtifoonrmof(cid:169)(cid:169)··,,··(cid:170)(cid:170)obneloMw(,j,bku1+tkl2e)(tΓu2)s×fiMrstk3s(tΓa2t)eatnhde aadcvoannsttaagnetocf∈th(cid:67)is∗.effWoret.wWillegciavne replace the modular form F that was defined via a RC-operator by any other modular form of weight (j,k +k ). So for instance, we can take F=E and f =ϕ and if we then apply (cid:169)·,·(cid:170), 1 2 6 3 4 weget (cid:169)E ,ϕ (cid:170)∈M (Γ ). 6 4 (6,11) 2 Wewillnowgiveanexplicitformulafor(cid:169)·,·(cid:170). Definition2.4. Supposethat F∈M(j,k)(Γ2)andϕ∈M(cid:96)(Γ2). DefinethedeterminantW(r)by (cid:175) (cid:175) (cid:175) r11 r12 r22 (cid:175) (cid:175) (cid:175) W(r):=(cid:175)(cid:175) y2 −xy x2 (cid:175)(cid:175):Hj→Hj⊗(cid:67)R1. (cid:175) ∂2 ∂2 ∂2 (cid:175) (cid:175) ∂x2 ∂x∂y ∂y2 (cid:175) 6 Wenowdefinethebrackets(cid:169)·,·(cid:170)asfollows. (cid:169)F,ϕ(cid:170):= 1 (cid:179)(k+j/2−1)W(cid:161)dϕ(cid:162)F−(cid:96)ϕW(cid:161) d (cid:162)F(cid:180). (j−1)2πi dτ dτ Byourconsiderationsabove,wethenhavethefollowingresult. Proposition 2.5. Take F andϕasinDefinition2.4. Theform(cid:169)F,ϕ(cid:170)isthenaSiegelmodular formofweight(j,k+(cid:96)+1). Inordertobeabletoworkwiththeforms(cid:169)F,ϕ(cid:170),weneedtoknowhowtocomputeFouriercoef- ficients. Wecaneasilyfindaformulasimilarto(6). Writeϕ=(cid:80)n(cid:186)0a(n)qn andF=(cid:80)n(cid:186)0b(n)qn andlet(cid:169)F,ϕ(cid:170)=(cid:80)n(cid:186)0c(n)qn,thenweget (cid:88) (j−1)c(n)= (k+j/2−1)a(n )W(n )b(n )−(cid:96)a(n )W(n )b(n ). (7) 1 1 2 1 2 2 (nn1,n+2n)∈(=Sn+2)2 1 2 Remark. A modular form that is defined using the brackets (cid:169)·,·(cid:170) will always be a cusp form. Supposethatweuse F∈M(j,k)(Γ2)andϕ∈M(cid:96)(Γ2)inordertoconstruct(cid:169)F,ϕ(cid:170)∈M(j,k+(cid:96)+1)(Γ2), then either k+(cid:96)+1 is odd and hence (cid:169)F,ϕ(cid:170) must be a cusp form, or one of the integers (cid:96) or k isodd,implyingthat F orϕisacuspform. We can also see directly from Formula (7) that the brackets map to S(Γ ) by considering the 2 Fouriercoefficientsatsingularindicesn. Supposethatn=n +n wheren,n ,n ∈S+ andnis 1 2 1 2 2 singular,thenwecanfinda u∈SL(2,(cid:90))suchthat unu(cid:48)=(ν,0,0), un u(cid:48)=(ν ,0,0)and un u(cid:48)= 1 1 2 (ν ,0,0). Hence, byFormula(1)wecanassumewithoutlossofgeneralitythat n isoftheform 2 n=(ν,0,0). The Fourier coefficients b(n) of F for n=(ν,0,0) always have the form α(ν)·xj for someconstantα(ν). Therefore,wegetfor s=1,2that (cid:175) (cid:175) (cid:175) −xy x2 (cid:175) W(n )b(n )=ν (cid:175) (cid:175)α(ν )xj=0. s 2 s(cid:175) ∂2 ∂2 (cid:175) 2 (cid:175) ∂x∂y ∂y2 (cid:175) Thisshowsthat c(n)inFormula(7)vanishesforsingular n. 2.3 Generators for M1 (6,∗) As promised, we will now give explicit generators for M1 . We first use the brackets (cid:169)·,·(cid:170) to (6,∗) defineformsofweight(6,11)and(6,13): F :=(cid:169)E ,ϕ (cid:170)/1152, F :=(cid:169)Θ ,ϕ (cid:170)/4 11 6 4 13 8 4 andfortheremainderofthegenerators,weusetheconstructionwithM . Choosethefollowing k ellipticRC-polynomials p andtypes k : i i p polynomial type k i i p (r ,r ) = (5r2−14r r +7r2)/160 (5,4,5) 15 1 2 1 1 2 2 p (r ,r ) = (4r2−8r r +3r2)/192 (5,6,5) 17 1 2 1 1 2 2 p (r ,r ) = (22r2−24r r +5r2)/1920 (4,10,4) 19 1 2 1 1 2 2 p (r ,r ) = (22r2−24r r +5r2)/2880 (4,10,6) 21 1 2 1 1 2 2 p (r ,r ) = (13r2−14r r +3r2)/16 (5,12,5) 23 1 2 1 1 2 2 7 k λ(2)on N (Γ ) λ(2)on S (Γ ) (6,k) 2 (6,k) 2 6 −24·(1+24) — 8 — 0 10 216·(1+28) 1680 11 — −11616 12 −528·(1+210) X2−22368X+57231360 13 — −24000 15 — X2+68256X+593510400 17 — X3+363264X2+136028160X−4603543289856000 19 — X4+1202400X3−1311202861056X2 −179858880190218240X−1566691549034368204800 Table1: EigenvaluesoftheHeckeoperatorT(2)onM (Γ )forsomevaluesofk. Ifapolynomialin X (6,k) 2 is given, the eigenvalues λ(2) are the roots of this polynomial. The space N (Γ ) is the orthogonal (6,k) 2 complementofS (Γ )withrespecttothePeterssonproduct. (6,k) 2 Wethenwrite P =M p for i=15,17,...,23anddefinemodularforms F asfollows. i ki i i F modularform weight i F = D[P ](χ ,ϕ ,χ ) (6,15) 15 15 5 4 5 F = D[P ](χ ,ϕ ,χ ) (6,17) 17 17 5 6 5 F = D[P ](ϕ ,χ ,ϕ ) (6,19) 19 19 4 10 4 F = D[P ](ϕ ,χ ,ϕ ) (6,21) 21 21 4 10 6 F = D[P ](χ ,χ ,χ ) (6,23) 23 23 5 12 5 The form χ denotes the square root of χ in the ring of holomorphic functions on H (see 5 10 2 e.g.[8]). Ourmainresultcannowbeformulatedasfollows: MainTheorem. The M0-module M1 isfreeandcanbewrittenasthefollowingdirectsum: ∗ (6,∗) M1 =(cid:77)F ·M0, (6,∗) i ∗ i∈I where F aredefinedaboveandthedirectsumistakenovertheset I={11,13,15,17,19,21,23}. i 2.4 Eigenvalues of the Hecke operators Since we now know all modular forms of weight (6,k) with k∈(cid:90), we can calculate the eigen- values of the Hecke operators T(p) (cf. [2, 1]). We did this for p=2,3 and some k (Table 1 and2). At our request, G. van der Geer computed some of these eigenvalues using a completely independent method that is based on counting points on hyperelliptic curves over finite fields [9, 6, 7]. The values listed here agree with these. Also note that the characteristic polynomialsof T(2)and T(3)on S (Γ )with k=12and15havethefollowingdiscriminant: (6,k) 2 k ∆(det(T(2)−X)) ∆(det(T(3)−X)) 12 2103272601 2143672132601 15 2103229·83·103 2123829·53283·103 8 k λ(3)on S (Γ ) (6,k) 2 8 −27000 10 −6120 11 −106488 12 X2+335664X−14832719455680 13 −8505000 15 X2+228022128X+8319716602228800 17 X3+1086146712X2−341960280255362880X−188775313801934579676864000 Table2: EigenvaluesoftheHeckeoperatorT(3)onM (Γ )forsomevaluesofk. (6,k) 2 This shows for p=2,3 that the eigenvalues of T(p) on S (Γ ) and S (Γ ) are elements (cid:112) (cid:112) (6,12) 2 (6,15) 2 ofthesamequadraticnumberfield(cid:81)( 601)and(cid:81)( 29·83·103)respectively. Wealsoverified thatthecharacteristicpolynomialsofT(2)andT(3)onS (Γ )definethesamenumberfield. (6,17) 2 3 Proof of the main theorem We will only give a sketch of the full proof since it involves many elementary computations. Let U denote the Hodge bundle corresponding to the factor of automorphy j. The forms F i definedabovearesectionsofSym6(U)⊗L⊗ki,whereLdenotesthelinebundledet(U). Inorder to show that the forms F are independent over M0, we have to show that χ :=F ∧F ∧ i ∗ 140 11 13 ···∧F ∈L⊗140 isnon-vanishing. Theformχ isanelementof M (Γ )andwecancompute 23 140 140 2 theFouriercoefficientsofthisform. Wewillthereforeprovethemaintheorembycomputinga non-zeroFouriercoefficientofχ . Writeχ =(cid:80) c(n)qn and F =(cid:80) a (n)qn. Thefollowing 140 140 n i n i formulaholdsfortheFouriercoefficients c(n): (cid:88) c(n)= det(a (n ),a (n ),...,a (n )). (8) 11 1 13 2 23 7 (cid:80)ini=n As mentioned above, this can be hard to compute if σ(n) is large. In order to find a non-zero Fourier coefficient c(n) of χ , we need at least σ(n)≥14 since the forms F are cusp forms. 140 i Indeed,undertheSiegeloperatorΦ,theformsF maptoellipticmodularformsofoddweight. i Theseformsallvanish. Using algorithms provided by Resnikoff and Saldaña [16], we calculated Fourier coefficients of the classical Siegel modular forms ϕ ,ϕ ,χ and χ . The Fourier coefficients of χ can be 4 6 10 12 5 computedusingχ2=χ .1 WethenwereabletocomputeFouriercoefficientsoftheforms F . 5 10 i In order to find Fourier coefficients of F and F , we first had to compute Fourier coeffi- 11 13 cients of E and Θ . The modular form ϕ E is an element of M (Γ ) and this space has 6 8 4 6 (6,10) 2 dimension 2. Using a RC-polynomial of weight (6,0) and the modular forms ϕ and ϕ , we 4 6 can find a modular forms F in the space M (Γ ) (cf. Ibukiyama [13]) and this form is not 10 (6,10) 2 an eigenform. Hence, we can find Fourier coefficients of F and T(2)F . For some α,β∈(cid:81), 10 10 we must have αF +βT(2)F =ϕ E . The form E is an eigenform and by a theorem due to 10 10 4 6 6 Arakawa [2] we know the corresponding eigenvalue of T(2) (cf. Table 1). This gives a relation 1WhilecomputingtheFouriercoefficientsofχ5 weencounteredanerrorinTableIVof[16]. Thecoefficientsat calculationclasses(3,3,3)and(2,6,0)shouldhaveoppositesign. 9 i 11 13 15 17 19 21 23 n (1,1,0) (1,1,1) (2,1,0) (2,1,0) (2,1,1) (2,1,1) (2,2,1) a (n) 0 0 0 0 1 −5 3 i −20 −2 312 0 14 −10 −37 0 −5 0 0 36 −6 −50 0 0 180 −300 24 −24 0 0 5 0 0 0 −30 50 20 2 −102 354 0 −12 37 0 0 0 0 0 0 −3 Table 3: A few Fourier coefficients of the forms F . The Fourier coefficients are written as column i vectors. The determinant of the above matrix occurs in the sum (8) for c(12,8,4). This determinant equals214355311. for the Fourier coefficients of E and using this relation, we were able to find α and β. This 6 alsoallowedustocomputetheFouriercoefficientsof E . 6 AsimilarmethodcanbeusedtocomputeFouriercoefficientsofΘ . AgainusingaRC-operator 8 ofweight(6,2)andthemodularformsϕ andϕ ,wecanfindamodularformF inS (Γ ) 4 6 12 (6,12) 2 (cf. Ibukiyama [13]). This form is again not an eigenform. The form ϕ Θ ∈S (Γ ) must 4 8 (6,12) 2 be a linear combination αF +βT(2)F and since Ibukiyama has computed a few Fourier 12 12 coefficientsofΘ (cf. [10]),wewereabletodetermineαandβ. 8 Wethenusedformulas(6)and(7)tocomputeFouriercoefficientsoftheformsF . Afewexam- i plesaregiveninTable3. We wrote a script to compute the Fourier coefficient of χ at n =(12,8,4) and found that 140 c(12,8,4)=−2183752(cid:54)=0. We checked our computations by also computing the Fourier coeffi- cientat(12,8,−4)andfoundthat c(12,8,−4)=c(12,8,4)whichisinlinewithequation(1). This provesourmainresult. References [1] A. N. Andrianov. Euler products corresponding to Siegel modular forms of genus 2. Rus- sianMath.Surveys,29(3):45–116,1974. [2] T. Arakawa. Vector valued Siegel’s modular forms of degree two and the associated An- drianovL-functions. Manuscriptamath.,44:155–185,1983. [3] Y.ChoieandW.Eholzer. Rankin-CohenoperatorsforJacobiandSiegelforms. Journalof NumberTheory,68:160–177,1998. [4] H. Cohen. Sums involving the values at negative integers of L-functions of quadratic characters. MathematischeAnnalen,217:271–285,1975. [5] W.EholzerandT.Ibukiyama.Rankin-CohentypedifferentialoperatorsforSiegelmodular forms. InternationalJournalofMathematics,9(4):442–463,1998. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.