ebook img

Generation system adequacy studies in the presence of wind energy resources PDF

127 Pages·2017·3.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generation system adequacy studies in the presence of wind energy resources

Generation system adequacy studies in the presence of wind energy resources Mads Bjørkeland Master of Energy and Environmental Engineering Submission date: February 2018 Supervisor: Vijay Vadlamudi, IEL Norwegian University of Science and Technology Department of Electric Power Engineering i Abstract Variablerenewableenergysourceslikewindpowerareinexponentialgrowthworldwide. One of the major challenges regarding high penetration of wind energy in the power system is the degradationofgenerationadequacyduetotheintermittentandrandomnatureofwind. Thedeterministicapproachesappliedtodaytoensuresufficientpowersystemadequacyareill- fittohandlestochasticgenerationbehaviour. Inresponse,severalgenerationadequacymetrics withprobabilisticbasishavebeendevelopedinliterature. Probabilisticmethodsforgeneration adequacy assessment are crucial for securing future power system operation and renewable generationintegration. As part of a project to construct a computational framework for power system reliability this thesisfocusesongenerationadequacyassessmentofpowersystemswiththepresenceofwind power. Theappliedconceptsincludegenerationadequacymetrics(LOLEandEENS)1 andca- pacitycredits(ELCC,EFCandECC)2.Toevaluatethegenerationadequacyofrelevanttestsys- tems(RoyBillintonTestSystemandIEEE-ReliabilityTestSystem),MATLABscriptsthatcompute adequacymetricsandcapacitycreditshavebeendevelopedanddeployed. Toevaluatethere- liability effect from wind power generation, a wind farm has been modelled and integrated in thetestsystems. Evaluationsapplyingseveraladequacymetricsandcapacitycreditshavebeen conductedonthetestsystemsincludingintegratedwindpoweralongwithrelevantsensitivity analyses. Fromthethesisworkithasbecomeevidentthatthemyriadofgenerationadequacymetrics,ca- pacitycreditsandtheircombinationsprovideapowerfulmeansofevaluatingdifferentaspects of power system reliability, thereby contributing to optimising renewable energy integration. However, the multitude of possibilities and lack of an established methodological approach makestheprocessofidentifyingtheoptimalmetriccombinationaknowledge-intensivetask. 1Loss-of-LoadExpectation(LOLE),ExpectedEnergyNotServed(EENS) 2EffectiveLoadCarryingCapabilities(ELCC),EquivalentFirmCapacity(EFC),EquivalentConventionalCapac- ity(ECC) iii Sammendrag Variable fornybare energikilder som vindkraft er i eksponentiell global vekst. En av de største utfordringenemedstoreandelervindkraftikraftsystemeterredusertleveringspålitelighet,som skyldesdetilfeldigeogperiodiskeegenskapenetilvind. Dagensdeterministiskemetoderforåsikretilstrekkeligleveringspålitelighetikraftsystemethåndterer dårlig stokastisk kraftgenerasjon. Dette har ført til at det i litteraturen er utviklet flere pålite- lighetskonseptermedprobabilistiskgrunnlag.Probabilistiskemetoderforåevaluereleveringspålite- ligheterfundamentaleforåsikrefremtidigsystemdriftogintegreringavfornybarenergi. Som del av et prosjekt for å utvikle en databasert beregningsramme for leveringspålitelighet i kraftsystemer, fokusererdenneoppgavenpåevalueringavtilstrekkeliggenerasjonikraftsyste- mermedvindkraft.Anvendtekonsepterinkludererflereberegningsmetoderforleveringspålite- lighet(LOLEogEENS)3ogkapasitetsbidrag(ELCC,EFCogECC)4.Foråevaluereleveringspålite- ligheten i relevante testsystemer (Roy Billinton Test System and IEEE-Reliability Test System), harenMATLABkodesomberegnerleveringspålitelighetogkapasitetsbidragetblittutvikletog anvendt. For å evaluere kapasitetsbidraget til vindkraft har en vindfarm blitt modellert og in- tegrert i testsystemene. Evalueringer som anvender flere ulike metoder for å beregne lever- ingspålitelighet og kapasitetsbidrag ble utført for test systemene, i tillegg ble det gjennomført flererelevantesensitivitetsanalyser. Arbeidet med oppgaven har gjort det klart at mangfoldet av metoder for beregning av lever- ingspålitelighet,kapasitetsbidragogdereskombinasjonerbidrarmedgodefremgangsmåterfor åevaluereulikeaspektermedkraftsystempålitelighet. Deovernevntemetodenekanogsåbidra tilintegreringenavfornybarenergi. Derimotvilmangfoldetavmuligheter,sammenmedman- gelen på en etablert fremgangsmåte, gjøre prosessen med å identifisere de optimale kombi- nasjoneneavmetoderforberegningavleveringspålitelighetogkapasitetsbidragsværtkrevende. 3Loss-of-LoadExpectation(LOLE),ExpectedEnergyNotServed(EENS) 4EffectiveLoadCarryingCapabilities(ELCC),EquivalentFirmCapacity(EFC),EquivalentConventionalCapac- ity(ECC) v Preface This Master’s Thesis is the conclusion of my Master of Science degree in Energy and Environ- mentalEngineeringwiththeDepartmentofElectricPowerEngineeringattheNorwegianUni- versityofScienceandTechnology(NTNU).ThethesisdealswithconceptsfromPowerSystem Reliability (PSR) and statistical approaches to wind modelling. The work was performed un- derthesupervisionbyAssociateProfessorVijayVenuVadlamudiattheDepartmentofElectric PowerEngineering,NTNU. This work builds on a literature review part of a specialisation project undertaken during Autumn2017. Overthecourseofthefivemonthsthisworkhasbeenconducted,Ihavegaineda insightsintotheknowledgeofPSRstudiesingeneralandgenerationadequacyinparticular.My sincerestgratitudegoestomysupervisor,VijayVenuVadlamudiwithoutwhomthisworkwould neverhavecometofruition. Hehasalwaysbeenavailable,willingtoanswermyquestionsand encouragedmeinmyendeavours. AlsototheseveralprofessorsatNTNUwhohaveanswered my inquiries, and to my fellow students at the office who have provided an excellent working environment,Iowemygratitude. Lastbutnotleast,IwouldliketothankMariLaugloandEs- penAronsveenforhelpingmewiththemonumentaltaskofproofreading. Trondheim,1.2.2018 MadsBjørkeland Contents Abstract i Sammendrag iii Preface v Abbreviations ix Nomenclature xii ListofFigures xiv ListofTables xv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 ThesisStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Overview:WindPowerandGenerationAdequacy 5 2.1 IncreaseinWindPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 GlobalWindPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 WindEnergyinNorway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 GenerationAdequacyintheNordicPowerMarket. . . . . . . . . . . . . . . . . . . . 10 vii CONTENTS viii 3 PowerSystemReliability 13 3.1 HierarchicalLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 GenerationAdequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 GenerationAdequacyConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Loss-of-LoadBasedIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 LoadModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 GenerationModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 GenerationAdequacyIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 CapacityCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 ELCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.2 EFCandECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 WindGenerationModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 WindModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.2 GeneratorModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.3 WindFarmModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 MethodologicalApproach 44 4.1 ELCCUsingLOLEMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.1 SimpleExampleForELCCCalculationUsingLOLE . . . . . . . . . . . . . . . 45 4.2 ELCCUsingEENSMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1 SimpleExampleForELCCCalculationUsingEENS . . . . . . . . . . . . . . . 49 4.3 EFCandECCUsingLOLEMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 SimpleExampleforECCCalculationUsingtheLOLEMetric . . . . . . . . . 52 5 CaseStudy:ApplicationofELCCandECC 54 5.1 WindSpeedData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 RBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 GenerationData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.2 LoadData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 IEEE-RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.1 GenerationData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Description:
adequacy assessment are crucial for securing future power system operation and .. Frequency Restoration Reserves Manual. HL observed in Figure 5.21 that the capacity credit values are stabilised around 9-12 derated states.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.