Generation system adequacy studies in the presence of wind energy resources Mads Bjørkeland Master of Energy and Environmental Engineering Submission date: February 2018 Supervisor: Vijay Vadlamudi, IEL Norwegian University of Science and Technology Department of Electric Power Engineering i Abstract Variablerenewableenergysourceslikewindpowerareinexponentialgrowthworldwide. One of the major challenges regarding high penetration of wind energy in the power system is the degradationofgenerationadequacyduetotheintermittentandrandomnatureofwind. Thedeterministicapproachesappliedtodaytoensuresufficientpowersystemadequacyareill- fittohandlestochasticgenerationbehaviour. Inresponse,severalgenerationadequacymetrics withprobabilisticbasishavebeendevelopedinliterature. Probabilisticmethodsforgeneration adequacy assessment are crucial for securing future power system operation and renewable generationintegration. As part of a project to construct a computational framework for power system reliability this thesisfocusesongenerationadequacyassessmentofpowersystemswiththepresenceofwind power. Theappliedconceptsincludegenerationadequacymetrics(LOLEandEENS)1 andca- pacitycredits(ELCC,EFCandECC)2.Toevaluatethegenerationadequacyofrelevanttestsys- tems(RoyBillintonTestSystemandIEEE-ReliabilityTestSystem),MATLABscriptsthatcompute adequacymetricsandcapacitycreditshavebeendevelopedanddeployed. Toevaluatethere- liability effect from wind power generation, a wind farm has been modelled and integrated in thetestsystems. Evaluationsapplyingseveraladequacymetricsandcapacitycreditshavebeen conductedonthetestsystemsincludingintegratedwindpoweralongwithrelevantsensitivity analyses. Fromthethesisworkithasbecomeevidentthatthemyriadofgenerationadequacymetrics,ca- pacitycreditsandtheircombinationsprovideapowerfulmeansofevaluatingdifferentaspects of power system reliability, thereby contributing to optimising renewable energy integration. However, the multitude of possibilities and lack of an established methodological approach makestheprocessofidentifyingtheoptimalmetriccombinationaknowledge-intensivetask. 1Loss-of-LoadExpectation(LOLE),ExpectedEnergyNotServed(EENS) 2EffectiveLoadCarryingCapabilities(ELCC),EquivalentFirmCapacity(EFC),EquivalentConventionalCapac- ity(ECC) iii Sammendrag Variable fornybare energikilder som vindkraft er i eksponentiell global vekst. En av de største utfordringenemedstoreandelervindkraftikraftsystemeterredusertleveringspålitelighet,som skyldesdetilfeldigeogperiodiskeegenskapenetilvind. Dagensdeterministiskemetoderforåsikretilstrekkeligleveringspålitelighetikraftsystemethåndterer dårlig stokastisk kraftgenerasjon. Dette har ført til at det i litteraturen er utviklet flere pålite- lighetskonseptermedprobabilistiskgrunnlag.Probabilistiskemetoderforåevaluereleveringspålite- ligheterfundamentaleforåsikrefremtidigsystemdriftogintegreringavfornybarenergi. Som del av et prosjekt for å utvikle en databasert beregningsramme for leveringspålitelighet i kraftsystemer, fokusererdenneoppgavenpåevalueringavtilstrekkeliggenerasjonikraftsyste- mermedvindkraft.Anvendtekonsepterinkludererflereberegningsmetoderforleveringspålite- lighet(LOLEogEENS)3ogkapasitetsbidrag(ELCC,EFCogECC)4.Foråevaluereleveringspålite- ligheten i relevante testsystemer (Roy Billinton Test System and IEEE-Reliability Test System), harenMATLABkodesomberegnerleveringspålitelighetogkapasitetsbidragetblittutvikletog anvendt. For å evaluere kapasitetsbidraget til vindkraft har en vindfarm blitt modellert og in- tegrert i testsystemene. Evalueringer som anvender flere ulike metoder for å beregne lever- ingspålitelighet og kapasitetsbidrag ble utført for test systemene, i tillegg ble det gjennomført flererelevantesensitivitetsanalyser. Arbeidet med oppgaven har gjort det klart at mangfoldet av metoder for beregning av lever- ingspålitelighet,kapasitetsbidragogdereskombinasjonerbidrarmedgodefremgangsmåterfor åevaluereulikeaspektermedkraftsystempålitelighet. Deovernevntemetodenekanogsåbidra tilintegreringenavfornybarenergi. Derimotvilmangfoldetavmuligheter,sammenmedman- gelen på en etablert fremgangsmåte, gjøre prosessen med å identifisere de optimale kombi- nasjoneneavmetoderforberegningavleveringspålitelighetogkapasitetsbidragsværtkrevende. 3Loss-of-LoadExpectation(LOLE),ExpectedEnergyNotServed(EENS) 4EffectiveLoadCarryingCapabilities(ELCC),EquivalentFirmCapacity(EFC),EquivalentConventionalCapac- ity(ECC) v Preface This Master’s Thesis is the conclusion of my Master of Science degree in Energy and Environ- mentalEngineeringwiththeDepartmentofElectricPowerEngineeringattheNorwegianUni- versityofScienceandTechnology(NTNU).ThethesisdealswithconceptsfromPowerSystem Reliability (PSR) and statistical approaches to wind modelling. The work was performed un- derthesupervisionbyAssociateProfessorVijayVenuVadlamudiattheDepartmentofElectric PowerEngineering,NTNU. This work builds on a literature review part of a specialisation project undertaken during Autumn2017. Overthecourseofthefivemonthsthisworkhasbeenconducted,Ihavegaineda insightsintotheknowledgeofPSRstudiesingeneralandgenerationadequacyinparticular.My sincerestgratitudegoestomysupervisor,VijayVenuVadlamudiwithoutwhomthisworkwould neverhavecometofruition. Hehasalwaysbeenavailable,willingtoanswermyquestionsand encouragedmeinmyendeavours. AlsototheseveralprofessorsatNTNUwhohaveanswered my inquiries, and to my fellow students at the office who have provided an excellent working environment,Iowemygratitude. Lastbutnotleast,IwouldliketothankMariLaugloandEs- penAronsveenforhelpingmewiththemonumentaltaskofproofreading. Trondheim,1.2.2018 MadsBjørkeland Contents Abstract i Sammendrag iii Preface v Abbreviations ix Nomenclature xii ListofFigures xiv ListofTables xv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 ThesisStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Overview:WindPowerandGenerationAdequacy 5 2.1 IncreaseinWindPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 GlobalWindPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 WindEnergyinNorway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 GenerationAdequacyintheNordicPowerMarket. . . . . . . . . . . . . . . . . . . . 10 vii CONTENTS viii 3 PowerSystemReliability 13 3.1 HierarchicalLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 GenerationAdequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 GenerationAdequacyConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Loss-of-LoadBasedIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 LoadModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 GenerationModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 GenerationAdequacyIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 CapacityCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 ELCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.2 EFCandECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 WindGenerationModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 WindModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.2 GeneratorModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.3 WindFarmModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 MethodologicalApproach 44 4.1 ELCCUsingLOLEMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.1 SimpleExampleForELCCCalculationUsingLOLE . . . . . . . . . . . . . . . 45 4.2 ELCCUsingEENSMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1 SimpleExampleForELCCCalculationUsingEENS . . . . . . . . . . . . . . . 49 4.3 EFCandECCUsingLOLEMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 SimpleExampleforECCCalculationUsingtheLOLEMetric . . . . . . . . . 52 5 CaseStudy:ApplicationofELCCandECC 54 5.1 WindSpeedData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 RBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 GenerationData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.2 LoadData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 IEEE-RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.1 GenerationData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Description: