ebook img

generatingfunctionology: Third Edition PDF

254 Pages·2005·1.354 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview generatingfunctionology: Third Edition

W i l generatingfunctionology f Third EdiTion g herbert S. Wilf e n This is the third edition of the highly successful e generatingfunctionology introduction to the use of generating functions and r a series in combinatorial mathematics. This new edi- T h i r d E d i T i o n t tion provides a clear, unified introduction to the basic i enumerative applications of generating functions. n g herbert S. Wilf Special features: f • Provides applications to the cycle index of the u symmetric group, permutations and square n roots, counting polyominoes, and exact covering c sequences t i • Features an appendix on using Maple® and o Mathematica® to work with generating functions n • includes new exercises with complete solutions o at the end of each chapter l o g y T h i r d E d i T i o n A K PETErs (cid:1) (cid:1) (cid:1) (cid:1) generatingfunctionology (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) generatingfunctionology Third Edition Herbert S. Wilf AKPeters,Ltd. Wellesley,Massachusetts (cid:1) (cid:1) (cid:1) (cid:1) CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2005 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150311 International Standard Book Number-13: 978-1-4398-6439-5 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com (cid:1) (cid:1) (cid:1) (cid:1) Contents Preface ix 1 IntroductoryIdeasandExamples 1 1.1 An Easy Two Term Recurrence . . . . . . . . . . . . . . . . 4 1.2 A Slightly Harder Two Term Recurrence . . . . . . . . . . . 5 1.3 A Three Term Recurrence . . . . . . . . . . . . . . . . . . . 9 1.4 A Three Term Boundary Value Problem . . . . . . . . . . . 11 1.5 Two Independent Variables . . . . . . . . . . . . . . . . . . 15 1.6 Another 2-Variable Case . . . . . . . . . . . . . . . . . . . . 18 1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Series 31 2.1 Formal Power Series . . . . . . . . . . . . . . . . . . . . . . 31 2.2 The Calculus of Formal Ordinary Power Series Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 The Calculus of Formal Exponential Generating Functions . 41 2.4 Power Series, Analytic Theory. . . . . . . . . . . . . . . . . 48 2.5 Some Useful Power Series . . . . . . . . . . . . . . . . . . . 55 2.6 Dirichlet Series, Formal theory . . . . . . . . . . . . . . . . 59 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 Cards,Decks,andHands: TheExponentialFormula 77 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2 Definitions and a Question. . . . . . . . . . . . . . . . . . . 79 3.3 Examples of Exponential Families. . . . . . . . . . . . . . . 80 3.4 The Main Counting Theorems. . . . . . . . . . . . . . . . . 83 3.5 Permutations and Their Cycles . . . . . . . . . . . . . . . . 87 3.6 Set Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.7 A Subclass of Permutations . . . . . . . . . . . . . . . . . . 89 3.8 Involutions, etc. . . . . . . . . . . . . . . . . . . . . . . . . . 90 v (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) vi Contents 3.9 2-Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . . 91 3.10 Counting Connected Graphs. . . . . . . . . . . . . . . . . . 92 3.11 Counting Labeled Bipartite Graphs . . . . . . . . . . . . . . 93 3.12 Counting Labeled Trees . . . . . . . . . . . . . . . . . . . . 95 3.13 Exponential Families and Polynomials of ‘Binomial Type.’ . 97 3.14 Unlabeled Cards and Hands . . . . . . . . . . . . . . . . . . 98 3.15 The Money Changing Problem . . . . . . . . . . . . . . . . 102 3.16 Partitions of Integers . . . . . . . . . . . . . . . . . . . . . . 107 3.17 Rooted Trees and Forests . . . . . . . . . . . . . . . . . . . 109 3.18 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4 ApplicationsofGeneratingFunctions 115 4.1 Generating Functions Find Averages, etc. . . . . . . . . . . 115 4.2 A Generatingfunctionological View of the Sieve Method . . 117 4.3 The ‘Snake Oil’ Method for Easier Combinatorial Identities 126 4.4 WZ Pairs Prove Harder Identities . . . . . . . . . . . . . . . 138 4.5 Generating Functions and Unimodality, Convexity, etc. . . . 145 4.6 Generating Functions Prove Congruences . . . . . . . . . . 148 4.7 The Cycle Index of the Symmetric Group . . . . . . . . . . 150 4.8 How Many Permutations Have Square Roots? . . . . . . . . 155 4.9 Counting Polyominoes . . . . . . . . . . . . . . . . . . . . . 159 4.10 Exact Covering Sequences . . . . . . . . . . . . . . . . . . . 163 4.11 Waiting for a String . . . . . . . . . . . . . . . . . . . . . . 166 4.12 Blocks of 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5 AnalyticandAsymptoticMethods 181 5.1 The Lagrange Inversion Formula . . . . . . . . . . . . . . . 181 5.2 Analyticity and Asymptotics (I): Poles . . . . . . . . . . . . 185 5.3 Analyticity and Asymptotics (II): Algebraic Singularities. . 192 5.4 Analyticity and Asymptotics (III): Hayman’s Method . . . 196 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 A UsingMapleandMathematica 207 A.1 Series Manipulation . . . . . . . . . . . . . . . . . . . . . . 208 A.2 The RSolve.m Routine . . . . . . . . . . . . . . . . . . . . . 209 A.3 Asymptotics in Maple . . . . . . . . . . . . . . . . . . . . . 211 Solutions 213 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Contents vii References 239 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Preface This book is about generating functions and some of their uses in discrete mathematics. The subject is so vast that I have not attempted to give a comprehensive discussion. Instead I have tried only to communicate some of the main ideas. Generatingfunctionsareabridgebetweendiscretemathematics,onthe one hand, and continuous analysis (particularly complex variable theory) ontheother. Itispossibletostudythemsolelyastoolsforsolvingdiscrete problems. As such there is much that is powerful and magical in the way generatingfunctionsgiveunifiedmethodsforhandlingsuchproblems. The reader who wished to omit the analytical parts of the subject would skip chapter 5 and portions of the earlier material. To omit those parts of the subject, however, is like listening to a stereo broadcast of, say, Beethoven’s Ninth Symphony, using only the left audio channel. Thefullbeautyofthesubjectofgeneratingfunctionsemergesonlyfrom tuning in on both channels: the discrete and the continuous. See how they makethesolutionofdifferenceequationsintochild’splay. Thenseehowthe theoryoffunctionsofacomplexvariablegives,virtuallybyinspection, the approximate size of the solution. The interplay between the two channels is vitally important for the appreciation of the music. Inrecentyearstherehasbeenavigoroustrendinthedirectionoffinding bijective proofs of combinatorial theorems. That is, if we want to prove that two sets have the same cardinality then we should be able to do it by exhibiting an explicit bijection between the sets. In many cases the fact thatthetwosetshavethesamecardinalitywasdiscoveredinthefirstplace by generating function arguments. Also, even though bijective arguments may be known, the generating function proofs may be shorter or more elegant. Thebijectiveproofsgiveoneacertainsatisfyingfeelingthatone‘really’ understands why the theorem is true. The generating function arguments ix (cid:1) (cid:1) (cid:1) (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.