ebook img

Generating green to red light with semiconductor lasers PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generating green to red light with semiconductor lasers

Generating green to red light with semiconductor lasers GabrieleFerrari EuropeanLaboratoryforNonlinearSpectroscopy,IstitutoNazionaleFisicaNucleare, 7 INFM-CNR,PoloScientifico-Universita` diFirenze,50019SestoFiorentino,Italy 0 [email protected]fi.it 0 2 n Abstract: Diode lasers enable one to continuously cover the 730 to a J 1100nmrangeaswellasthe370to550nmrangebyfrequencydoubling, 4 but a large part of the electro-magnetic spectrum spanning from green to red remains accessible only through expensive and unpractical optically ] pumped dye lasers. Here we devise a method to multiply the frequency s c of optical waves by a factor 3/2 with a conversion that is phase-coherent i and highly efficient. Together with harmonic generation, it will enable t p one to cover the visible spectrum with semiconductorlasers, openingnew o avenuesinimportantfieldssuchaslaserspectroscopyandopticalmetrology. . s c © 2008 OpticalSocietyofAmerica i s OCIScodes:(190.0190)Nonlinearoptics;(230.4320)Nonlinearopticaldevices;(190.2620) y Frequencyconversion;(120.3940)Metrology. h p [ Referencesandlinks 1 1. M.H.Dunn&M.Ebrahimzadeh “Parametricgenerationoftunablelightfromcontinuous-wavetofemtosecond v pulses,”Science286,1513(1999). 5 2. C.Zimmermann,T.W.Haensch,R.Byer,S.O’Brien&D.Welch“Secondharmonicgenerationat972nmusing 4 adistributedbraggreflectionsemiconductorlaser,” Appl.Phys.Lett.61,2741(1992). 0 3. O.Pfister,M.Muertz,J.S.Wells,L.Hollberg&J.T.Murray “Divisionby3ofopticalfrequenciesbyuseof 1 difference-frequencygenerationinnoncriticallyphase-matchedRbTiOAsO4,”Opt.Lett.21,1387(1996). 0 4. J.-J.Zondy,D.Kolker&N.C.Wong “Dynamicalsignaturesofself-phase-lockinginatriplyresonantoptical 7 parametricoscillator,” Phys.Rev.Lett.93,43902(2004). 0 5. C.D.Nabors,S.T.Yang,T.Day&R.L.Byer “Coherencepropertiesofadoublyresonantmonolithicoptical / parametricoscillator,” J.Opt.Soc.AmB7,815(1990). s 6. E.J.Mason&N.C.Wong“Observationoftwodistinctphasestatesinaself-phase-lockedtypeiiphase-matched c opticalparametricoscillator,” Opt.Lett.23,1733(1998). i s 7. S.Feng&O.Pfister “Quantuminterference ofultrastable twinopticalbeams,” Phys.Rev.Lett.92,203601 y (2004). h 8. W.R.Bosenberg,A.Drobshoff,J.I.Alexander,L.E.Myers&R.L.Byer “Continuous-wavesinglyresonant p opticalparametricoscillatorbasedonperiodicallypoledLiNbO3,”Opt.Lett.21,713(1996). : 9. G.M.Gibson,M.Ebrahimzadeh,M.J.Padgett,&M.H.Dunn “Continuous-waveopticalparametricoscillator v basedonperiodicallypoledKTiOPO4anditsapplicationtospectroscopy,” Opt.Lett.24,397(1999). Xi 10. M.Martinelli,K.S.Zhang,T.Coudreau,A.Maitre&C.Fabre“Ultra-lowthresoldcwtriplyresonantopointhe nearinfraredusingperiodicallypoledlithiumniobate,” J.Opt.A:PureAppl.Opt.3,1(2001). r 11. C.E.Wieman&L.Hollberg “Usingdiodelasersforatomicphysics,”Rev.Sci.Instrum.62,1(1991). a 12. L.Riccietal. “Acompactgrating-stabilized diodelasersystemforatomicphysics,” Opt.Commun.117,541 (1995). 13. R.A.Nymanetal. “Tapered-amplifiedantireflection-coated laserdiodesforpotassiumandrubidiumatomic- physicsexperiments,” Rev.Sci.Instrum.77,033105(2006). 14. Thereflectivityat1006.5nmand2013nmishigherthan99.98%,whilethetransmissionat671nmis90%.The concavemirrorshavea100mmradiusofcurvature,theirdistanceis130mm,andthetwononlinearcrystalare alignedalongthisarmclosetothesmallerwaistofthecavity.Thepathbetweenthetwoconcavemirrorspassing throughtheplanemirrorsis400mmlong. 15. T.W.Haensch&B.Couillaud “Laserfrequencystabilizationbypolarizationspectroscopyonareflectingrefer- encecavity,” Opt.Commun.35,441(1980). 16. G.Imeshev,M.Proctor&M.M.Fejer “Phasecorrectionindouble-passquasi-phase-matchedsecond-harmonic generationwithawedgedcrystal,” Opt.Lett.23,165(1998). 17. H.Karlsson&F.Laurell “ElectricfieldpolingoffluxgrownKTiOPO4,”Appl.Phys.Lett.71,3474(1997). 18. ThelambdameterisaCoherentWaveMasterTM with0.005nmaccuracyand0.001nmresolution.TheFabry- Perotspectrometerhasaconfocalgeometrywith1.5GHzfreespectralrange,afinesseof200at671nmandit isnotsensitiveto1m mradiation. 19. Theasymetricintensityofthetwofrequencymodesisduetotheunbalancedconversioninthefrequencysum- mingcrystal. 20. Inaconfocalresonatorthefamiliarformulaforthemodespacing(thefreespectralrange,FSR=c/4Lwithcthe speedoflight,andLthelengthofthecavity)resultsfromthespacingofc/2Lamongboththeevenandtheodd transversemodes,andarelativedispacementofc/4Lbetweenthetwoclasses.SeealsoA.E.Siegman,Lasers (UniversityScienceBooks,MillValley,California,1986),pp.763. 21. J.Stenger,H.Schnatz,C.Tamm&H.R.Telle “Ultraprecisemeasurementofopticalfrequencyratios,” Phys. Rev.Lett.88,073601(2002). 22. Themeasureofthepumppowercoupledintothecavityisimmunetospuriouseffectsassociatedwiththenon optimizedcouplingofthepumpbeamintotheopticalresonator,likegeometricandimpedencematching. 23. L.E.Myers,R.C.Eckardt,M.M.Fejer,R.L.Byer&W.R.Bosenberg “Multigrating quasi-phase-matched opticalparametricoscillatorinperiodicallypoledLiNbO3,”Opt.Lett.21,591(1995). 24. T. M. Ramond, S. A. Diddams, L. Hollberg & A. Bartels “Phase-coherent link from optical to microwave frequenciesbymeansofthebroadbandcontinuumfroma1-GhzTi:Sapphirefemtosecondoscillator,” Opt.Lett. 20,1842(2002). 1. Introduction Nonlinearopticsiscommonlyusedtoextendthespectrumcoveredbylasersoverunaccessible regions[1].Forinstance,secondharmonicgenerationnowisawellestablishedprocessapplied in frequency conversion, and with continuous wave diode lasers typically it is implemented insideresonantenhancementopticalcavities[2].Third-anduptofifth-harmonicgenerationis nowobtainedwithpulsedlaserseasilyaccessingtheUVspectralregionwithfamiliarinfrared diode-pumpedsolid-statelasers.Theproductionofsub-harmonics,ontheotherhand,hasim- portant applications in metrology and quantum optics. Division in 3:1 ratio is achieved with activephasestabilization[3]and,morerecently,dynamicalsignaturesofself-phase-lockingfor thesameprocesswereobserved[4].Concerningthe2:1ratio,bothpassiveandactivemethods for the phase stabilization were applied [5, 6, 7]. More generally,frequencydownconversion withOPO’soffersaratherflexiblewaytoaccesswideregionsoftheinfraredandnear-infrared spectrum,buttogeneratecontinuous-waveandsingle-frequencyradiationoneemployssingle resonantOPO’s,whichrequiremultiWattspumplasers[8],ordoubleresonantOPO’swhich, withamodestelectronicstabilizationofthecomposingelements,showaconsiderablyreduced threshold[5,9]. We report on the first demonstration of optical frequency multiplication by a factor 3/2. We show that our frequency multiplier, based on a multi-resonant OPO, is inherently phase coherent,preservingthesinglelongitudinalcharacteroftheincidentfieldwithoutactivephase stabilization,efficient,witha 30%slopeefficiencyandfewtensofmilliWatts threshold,and stableontimescalesoftheorderofseveralminutes. 2. The3/2frequencymultiplier The converter is based on an OPO where the pump, the signal, and the idler fields are all resonant in the cavity and which is operated at frequency degeneracymaking the signal and idlerfrequenciestocoincide.TheOPOgeneratedfieldhasthenhalfthefrequencyofthepump, and by inserting in the cavity a nonlinearcrystal for summingthe pump and the OPO fields, we are able to generate radiation at 3/2 the pump frequency. Exact degeneracy operation is Fig. 1. 3/2 frequency multiplier experimental setup. A continuous wave and single fre- quencypumplaserdelivering400mWof1006.5nmisconvertedinto40mWradiationat 671nm.Thepumplaserisresonantlycoupledintoacavitywhere20mmlongperiodically poledKTP[17]nonlinearcrystalsaresetsotosatisfyquasiphase-matchingfordegenerate frequencydown-conversion(OPO),andsumfrequencygenerationbetweenthepumpand down-converted light at 2013 nm (SFG). The wedged surfaces of the crystals are cut at anangleof100mradwithrespecttothecrystalaxis.Theinput(output)facetoftheOPO (SFG)crystalisatnormalincidence.Thetwoinclinedsurfacesfacingeachotherareparal- lel.Thetransversedisplacementofthenonlinearcrystalsprovidesanindependentcontrol overthecavitydispersion,insuringsimultaneousresonanceofthetwoinfraredfields. obtainedowingtothedoublegainoftheindistinguishablesplittingprocesswithrespecttoall theotherprocessesoriginatingsignalandidlerphotons[5]. Thetripleresonanceconditionhastheadvantageofreducingthethresholdofoscillationon thepumpintensitydowntothemilliWattslevel[10]andallowsactivestabilizationofthecavity length with respect to the pumpfrequency.On the other hand,the dispersive behaviorof the opticalelementsofthecavity,i.e.mirrorsandnonlinearcrystals,preventsonefromcontrolling thefrequenciesoftheOPOgeneratedfieldsindependently,whichhassofarmadesinglemode operationintriplyresonantOPO’shardtoachieve.Inoursystemthetriplyresonantcondition allows to actively stabilize the cavity length against the pumping laser, strongly relaxing the requirements on the passive stabilization. We observed an oscillation threshold as low as 40 mW.ByintroducinganindependentcontrolontheOPOfrequencymodesviaafinetuningof the relative phase accumulated between the pump and OPO-generated fields over one cavity roundtrip we achieve the simultaneous resonance of the pump and OPO fields at frequency degeneracy. Wedemonstratethe3/2frequencymultiplierproducingradiationat671nmstartingfroma lasersourceat1006.5nm,asschematicallyreportedinFig.1.Thepumplaseriscomposedbya semiconductorMaster-OscillatorPower-Amplifiersystem.Themasterlaserisanantireflection coateddiodelaserstabilizedonanextendedcavityintheLittrowconfiguration[11,12]deliver- ing30mWat1006.5nmonasinglelongitudinalmodewithlessthan500kHzlinewidth.This laser is then amplifiedto 400mW preservingits spectralpropertiesthrougha semiconductor taperedamplifier[13].Thepumpradiationiscoupledintoanopticalcavitycomposedbyhighly reflectivemirrorsat1006.5nmand2013nm,andhighlytransmittingat671nm[14].Theinput mirrorhasa 10%transmissionat1006.5nmin orderto maximizethe couplingof thepump fieldintothecavityunderresonance.Oneofthefoldingmirrorsismountedonapiezoelectric transducer (PZT) to actively stabilize the cavity length to the pump field resonance. To this purposetheerrorsignalisprovidedbythepolarizationanalysisofthereflectedpump[15],and byinsertingintothecavityaverticalpolarizer. (cid:13) 4.0(cid:13) 3.5(cid:13) )(cid:13) 3.0(cid:13) n. u b. 2.5(cid:13) r a y ( 2.0(cid:13) (cid:13) sit 1.5(cid:13) c(cid:13) n e int 1.0(cid:13) b(cid:13) 0.5(cid:13) a(cid:13) 0.0(cid:13) Fabry-Perot cavity length (arb. un.)(cid:13) Fig. 2.Transmission spectra of thefrequency multipliedlight through aconfocal Fabry- Perot(FP)spectrumanalyzer.Displacingthenonlinear crystalstransversallywetunethe cavitydispersioninordertoimposesinglefrequencyemission(b),ormultimodeemission (a). c) The Gaussian beam profile of the 3/2 frequency multiplied output is verified by coupling the single frequency radiation mainly into the fundamental transverse mode of theFPcavity,whichresultsindoublingthespacingamongtheresonancepeaks[20]. TheindependentcontrolontheOPOcavityfrequencymodesunderpumpresonancecondi- tionsisobtainedbycuttingthecrystalswithawedgedshape[16](seeFig.1).Displacingthe crystalsalongthedirectionofthewedgeenablesonetochangetheopticalpathinthecrystal and,duetothedispersion,itallowsafinetuningoftheOPOresonancemodeswhilekeeping thecavityresonantwiththepumpfield.Thetwononlinearcrystalsare20mmlong,2×1mm2 cross section, periodically poled KTP [17] that insure quasi-phase-matchingfor linearly and identicallypolarizedfields.TheOPOandSFGcrystalshaveapolingperiodofL =38and OPO L =19.5m mrespectively,andtheyareidenticallycutinanasymmetricwaysuchthatone SFG surfaceisatnormalincidence,whiletheotherhasananglef of100mradwithrespecttothe crystalaxis.Intheresonatorthecrystalshavethewedgedsidefacingandparallelsuchthatthe opticalaxiscoincide.Thisconfiguration,whileitallowstocontroltherelativephasebetween the pumpand OPO fields, it insuresa negligibledeviationof the beam propagationat differ- ent wavelengths, and hence simultaneousresonance of the pump and degenerateOPO fields. Toreachthedoubleresonanceandfrequencydegeneratecondition,weobservea400m mpe- riodicity on the crystal transverse position. This is consistent with the calculated periodicity L /f =380m m.Thecrystalsurfacesareallanti-reflectioncoatedsuchthatthereflectivity OPO persurfaceis0.1%at1006.5nmand2013nm,and0.3%at671nm. 3. Spectralpropertiesandconversionefficiency Thespectralpropertiesofthegeneratedredlightareanalyzedbothwithalambda-meterforthe rough wavelength determination, and a confocal Fabry-Perot spectrometer (FP) to check the singlelongitudinalmodeoperation[18].Asexpected,thespectrumofthegeneratedredlight dependson cavity dispersion. When we change the transverse position of the crystal by tens ofmicronsweareabletoswitchbetweensinglefrequencyemissionattheexpectedvalueand multifrequencyemissionwithcentralwavelengthdisplacedasmuchas0.08nmfrom671nm, withasimultaneousreductionintheoutputpower.Figure2reportsthetypicalspectrafromthe Fabry-PerotanalyzerwhentheOPOoperatesclosetothedegeneratepoint.Dependingonthe transverseposition of the crystals, the system emitssingle (spectrum2b) or multi(2a) longi- tudinalmoderadiationwithastabilityoftheorderofminutes.Inthemulti-longitudinalmode operation,energy conservationresults in the symmetric positioningof the frequencycompo- nentswithrespecttothedegeneratemode[19].Thespatialmodeoftheredlighthasanearly Gaussianprofile.AsacheckwecarefullyalignedtheFPanalyzerinordertodiscerntheeven and oddstransversemodesof the cavity [20]. As reportedin Fig. 2c, we can couple97 %of thepowerintotheeventransversemodes,indicatingthatatleast94%ofthegeneratedpower is in the fundamentaltransverse mode. While multi-longitudinalmode operationis stable on hours,whentheconverteremitssinglefrequencyradiationitprovestobestableontimescale oforderofseveralminutes.Suchastabilityrequiresnoactivestabilizationofthecrystalspo- sition.Figure3depictstheamplitudeofthegeneratedredlightwhenthefrequencymultiplier worksinsinglelongitudinalmode.Themeasuredamplitudenoiseis1.4%RMSona50kHz bandwidth. The single longitudinalmode emission proves that the OPO works at frequency degeneracy, anditisknownthatfortype-Iphasematching(asprovidedbytheperiodicallypoledcrystals) infrequencydegenerateOPO’sthepumpanddownconvertedfieldsarephaselockedandthat theymayexhibitp phasejumps[5].Ontheotherhandthephaseofthefundamentalfieldinthe cavityislockedtothatoftheincidentbeambecauseofthepump-cavityresonancecondition. Sincethefrequencysumprocessshouldnotaddanyrelevantphasenoise,wehaveanevidence thatthe3/2multiplicationprocessisphasecoherent.Acomparisonwithindependentlygener- ated phase coherentfields will allow a thoroughcharacterizationof the stability of the phase transfer[21]. Wedeterminetheconversionefficiencybyvaryingthepumppowerandmeasuringthegen- eratedpowerintheredasafunctionoftheIRpowercoupledintothecavity[22].Weobserve athresholdforOPOoscillationsmallerthan50mWandobtaina30%incrementalefficiency above150mWpumppowercoupledintothecavity(seeFig.4).Reducingtheintensityofthe pumpbelow2/3ofthefullpowerraisestheamplitudenoiseintheoutput,andmakesthesys- temmorecriticaltooperateonasinglelongitudinalmode.Suchadegradingcanbeovercome by using a different geometry optimized for lower pump levels, with better focussing of the cavity mode on the nonlinear crystals, and choosing different crystals with higher nonlinear polarizability[10]. Thewavelengthtunabilityofthesourcecanbelimitedeitherbythetunabilityofthefunda- mentallaser,orbythatofthe3/2frequencymultiplier.Typicallyanti-reflectioncoatedinfrared semiconductorlasershaveatunabilityoffewpercentinwavelength,andinourcasethelaser canemitfrom990nmto1040nm.Concerningthemultiplier,thenonlinearcrystalscanbetem- peraturetunedto satisfy quasi-phase-matchingatdifferentwavelengths.With our crystals, to generateradiationat670nm,onenmshorterwavelength,wehavetotunemasterlaserto1005 nm,cooltheOPOcrystalby5Celsius,andcooltheSFGcrystalby20.Withagivenchoiceof grating periods,a reasonabletemperaturetunabilityof the multiplier is 0.5 % in wavelength. Thiscanbeextended,withoutlossofefficiency,tothefull5%tunabilityofthepumpbyusing multichannelperiodicallypoledcrystals[23],whichincludethe10gratingperiodsnecessaryto accesstherelevantwavelengthintervals.Themirrorsofthecavityhaveaflatresponsebeyond thewindowaccessiblethroughthemasterlaser. (cid:13) 102(cid:13) 100(cid:13) )(cid:13) n. u 98(cid:13) (cid:13) rb. 102(cid:13) a y ( 96(cid:13) 100(cid:13) (cid:13) sit 98(cid:13) n e (cid:13) 96(cid:13) (cid:13) int 94(cid:13) 94(cid:13) time (ms)(cid:13) 92(cid:13) 1(cid:13) 3(cid:13) 5(cid:13) 7(cid:13) 9(cid:13) 92(cid:13) (cid:13) 0(cid:13) 30(cid:13) 60(cid:13) 90(cid:13) 120(cid:13) 150(cid:13) 180(cid:13) time (s)(cid:13) Fig. 3. Frequency multiplier amplitude stability on 3 minutes and 10 ms (inset) time timescaleunder singlelongitudinal modeemission.ThemeasuredRMSamplitudenoise atfullpoweris1.4%on50kHzbandwidth.Undermultilongitudinalmodeoperationthe amplitudestabilitydoesnotnot changequalitativelywhenmeasuringonthesameband- width. 4. Conclusion Tosummarize,wedemonstratedforthefirsttimea schemetomultiplythefrequencyofcon- tinuous wave optical radiation by a factor 3/2 and preserving its single frequency character. Thefrequencymultiplierisphasecoherent,hasahighconversionefficiency,isverystable,and itsstabilityonhourstimescalecouldeasilybeachievedbyoptimizingthedesignoftheopto- mechanicalapparatus.Employingexistingtechnology,theschemewilleasilyfindapplications in many disciplines requiring laser in the green to red spectral interval, such a spectroscopy. Together with integer harmonicgeneration,3/2 frequencymultiplication will allow to access thecompletevisiblespectrumviaharmonicgenerationofsemiconductorlasers.Itmakespos- sibletoestablishphasecoherentlinksamongspectralregionsdistant2/3ofanoctave[24],and itmayconsiderablysimplifytherealizationofRGBlasersystems. Itisworthnotingthatthefrequencymultiplieralsoactsasaparitydiscriminatoronthepump resonant mode. In fact, neglecting cavity dispersion, the frequency degenerate and resonant down conversion can take place only when the pump is resonant in the cavity with an even numberofmodes.Thisisconfirmedbythesinglefrequencyemissionoftheconverterwitha twofoldperiodicitywhensteppingthecavitylengthbetweenadjacentpumpresonances. Acknowledgment WethankM.Artoni,G.OppoandN.Poliforacriticalreadingofthemanuscript,R.Ballerini, M.DePas,M.GiuntiniandA.Hajebfortechnicalassistance.WeareindebtedwithG.M.Tino, R.Grimm,F.SchreckandLaser&Electro-OpticSolutionsforthegeneralsupportandtheloan (cid:13) 40(cid:13) )(cid:13) W m r ( 30(cid:13) e w o d p 20(cid:13) (cid:13) e rt e v n o 10(cid:13) c stable operation(cid:13) 0(cid:13) 50(cid:13) 100(cid:13) 150(cid:13) 200(cid:13) coupled power (mW)(cid:13) Fig.4.Extractedpowerat671nmasfunctionofthepumppowercoupledintothecavity. Theverticalgraylineindicatesthethresholdvalueforastablesinglefrequencyoperation oftheconverter.TheerrorbarscorrespondtotheRMSamplitudenoise. ofpartsoftheapparatus.WealsoacknowledgestimulatingdiscussionswithC.Salomon.This workwassupportedbyEUundercontractRII3-CT-2003-506350,andEnteCassadiRisparmio diFirenze.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.