ebook img

Generating Anatomical Substructures for Physically-Based Facial Animation PDF

206 Pages·2011·28.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generating Anatomical Substructures for Physically-Based Facial Animation

Generating Anatomical Substructures for Physically-Based Facial Animation OLUSOLA OLUMIDE AINA A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy 2011 November Bournemouth University COPYRIGHT Thiscopyofthethesishasbeensuppliedonconditionthatanyonewhoconsultsitisun- derstoodtorecognizethatitscopyrightrestswiththeauthoranddueacknowledgement mustalwaysbemadeoftheuseofanymaterialcontainedin,orderivedfrom,thisthesis. ABSTRACT Physically-based facial animation techniques are capable of producing realistic facial deformations,buthavefailedtofindmeaningfuluseoutsidetheacademiccommunity because they are notoriously difficult to create, reuse, and art-direct, in comparison to other methods of facial animation. This thesis addresses these shortcomings and presents a series of methods for automatically generating a skull, the superficial mus- culoaponeuroticsystem(SMAS–alayeroffasciainvestingandinterlinkingthemimic musclesystem),andmimicmusclesforanygiven3Dfacemodel. Thisisdonetoward (the goal of) a production-viable framework or rig-builder for physically-based facial animation. Thisworkflowconsistsofthreemajorsteps. First,agenericskullisfittedtoagivenhead modelusingthin-platesplinescomputedfromthecorrespondencebetweenlandmarks placedonbothmodels. Second,theSMASisconstructedasavariationalimplicitorradial basis function surface in the interface between the head model and the generic skull fittedtoit. Lastly,musclefibresaregeneratedasboundary-valuestraightestgeodesics, connectingmuscleattachmentregionsdefinedonthesurfaceoftheSMAS.Eachstepof thisworkflowisdevelopedwithspeed,realismandreusabilityinmind. CONTENTS 1 Introduction 1 1.1 Motivation 1 1.2 Thesisobjectivesandcontributions 2 1.3 Outline 4 2 FacialAnimation: TechniquesandApplications 7 2.1 FacialAnimationtechniques 7 2.1.1 BlendShapeInterpolation 7 2.1.2 Parametrization 8 2.1.3 Performance-drivenFacialAnimation 9 2.1.4 Physically-basedfacialanimation 11 2.2 FacialAnimationReuse 15 2.2.1 Expressioncloning 15 2.2.2 Rigtransfer 15 2.2.3 Rigbuilding 17 2.3 TheUncannyValley 20 2.4 Applications 22 2.4.1 Film 23 2.4.2 Videogames 23 2.4.3 Medicineandsurgery 24 2.4.4 Human-computerinteraction(HCI) 24 2.5 Summary 25 3 AnatomyoftheHumanFace 27 3.1 SkeletalAnatomy 27 3.1.1 Craniofaciallandmarks 29 3.1.2 FacialTissueDepth(FTD)Measurements 30 3.2 MuscularAnatomy 30 3.2.1 Musclesoftheupperface 31 3.2.2 Musclesofthemidface 32 3.2.3 Musclesofthelowerfaceandneck 34 3.2.4 Masticatorymuscles 37 3.3 Variationsinmuscularanatomy 37 3.3.1 Variationoffacialmusclesattheangleofthemouth 40 3.4 SoftTissueAnatomy 42 3.4.1 Layer1-skin 42 3.4.2 Layer2-subcutaneous 43 4 3.4.3 Layer3-musculoaponeurotic 43 3.4.4 Layer4-sub-SMASordeepplane 45 3.4.5 Layer5-deepfascia 46 3.5 Nasolabialfold 46 3.6 Anatomyoftheagingface 47 3.7 Facialaestheticunits 48 3.8 Summary 49 4 Theoryandapplicationsofthin-platesplines 51 4.1 Thinplatesplines 51 4.1.1 Vectorspaces 51 4.1.2 Normedvectorspaces 52 4.1.3 HilbertSpaces 55 4.1.4 ReproducingKernelHilbertSpaces(RKHS) 55 4.1.5 RadialBasisFunctions 57 4.1.6 RegularizationinReproducingKernelHilbertspaces 59 4.1.7 Regularizationwithderivativeinformation 63 4.2 BasicApplications 65 4.2.1 Height-fieldinterpolation 65 4.2.2 Patch-baseddifferentialgeometry 70 4.2.3 Implicitsurfaceconstruction 74 4.2.4 Landmark-baseddeformation 75 4.2.5 Semilandmark-baseddeformation 78 4.3 Summary 85 5 Boundary-ValueStraightestGeodesics 87 5.1 Previouswork: reviewandapplications 89 5.2 PathTracingbyVectorProjection 91 5.3 PathStraighteningbyBridging 91 5.3.1 Numberofstraightlengthsinapolygonpath 95 5.4 Pathcorrectionaroundvertices 98 5.4.1 Straightestpossiblegeodesics 101 5.5 Summary 104 5.5.1 Futurework 105 6 Alandmarkbasedmethodforskullfitting 107 6.1 Skullfittingprocess 107 6.1.1 Modelpreparation 107 6.1.2 Basicskullfittingprocess,usingsofttissuedepthdata 109 6.1.3 Incorporatingsemilandmarksandderivativeinformation 113 6.2 Summary 118 6.2.1 Futurework 118 5 7 Constructing facial muscles and the superficial musculoaponeurotic system (SMAS) 123 7.1 SMASConstruction 124 7.1.1 FastdiscretizationoftheSMASbyacceleratingthemarchingtrian- glesalgorithm 125 7.2 MuscleConstruction 128 7.2.1 Definingmuscleattachment(originandinsertion)regionsonthe SMAS 128 7.2.2 Computingtheconvexhullsofmuscleattachmentregions,onthe SMAS 135 7.2.3 Computingmutualtangents 138 7.2.4 Generatingmusclefibres 141 7.3 Summaryandrecommendationforfurtherwork 142 7.3.1 Futurework 142 8 Conclusion: summary,futurework,possibilitiesandperspectives 147 8.1 Relationshipwithcomputerizedforensicfacialreconstruction 148 a Appendix 151 a.1 FourierAnalysis 151 a.1.1 Shifttheorem 152 a.1.2 Convolutiontheorem 152 a.1.3 Fouriertransformofdifferentialoperators 153 a.1.4 Planchereltheorem 153 a.1.5 Beppo-Levisemi-norminthreedimensions 154 a.1.6 Derivativereproducingproperty 154 a.1.7 SundryrelationshipsinvolvingtermsoftheBeppo-Levisemi-norm oforder2 154 NOTATION - Boldfaceletters,e.g. p,indicatemulti-componentormultidimensionalquantities. Normalletters,e.g. p,indicatesingle-componentorscalarquantities. - squarebraces,e.g. p[i],indicateonecomponentofamulti-componentormultidi- mensionalquantity. - subscripts, e.g. pi or pi, indicate a single element in a collection of single or multi-componentquantities. 7 LIST OF TABLES Table1.1 Facialanimationtechniques: easeofuseversusreusability 2 Table2.1 Comparison of the physically-based facial animation techniques reviewedinSection2.1.4. 16 Table7.1 Runtimestatisticsformusclegenerationonalaptopcomputerwith a 1.6GHz (single core) processor and 512Mb main memory. (SG: straightestgeodesic) 146 Table7.2 Runtime statistics for muscle generation on a PC with a 3.2GHz processor (single core) and 2Gb main memory. (SG: straightest geodesic) 146 8 LIST OF FIGURES Figure1.1 (a)Genericskullpackage(b)typicalheadmodel(c)genericskull fittedtoheadmodel(d)SMAS-planeshowingandmutualtangents andconvexhullsofmuscleattachmentregions(e)musclefibresas boundary-valuestraightestgeodesics. 3 Figure2.1 Hypotheticalplotofthehumanemotionalresponsetoincreasing degrees of human likeness of an entity. The plot shows a dip in thelevelofhumancomforttriggeredbytheexcessiveadditionof human-likefeatures. (Source: theWikimediaCommons.) 21 Figure3.1 Ninemajorbonesofthehumanskull. 28 Figure3.2 Thefrontalis,corrugatorSupercilli,ProcerusandOrbicularisOculi muscles 33 Figure3.3 TheLevatorlabiisuperiorisalaequenasi,Levatorlabiisuperioris, LevatoranguliorisandZygomaticusminormuscles. 35 Figure3.4 The Zygomaticus major, Incisivus labii superioris, Incisivus labii inferiorisandOrbicularisorismuscles 36 Figure3.5 TheDepressorlabiiinferioris,DepressoranguliorisandMentalis muscles. 38 Figure3.6 TheRisorius,Temporalis,BuccinatorandMassetermuscles. 39 Figure3.7 ThePlatysmamuscle. 40 Figure3.8 Types of smiles, identified by Rubin (1974). (a) Mona Lisa smile. (b)Caninesmile. (c)Fulldenturesmile. 41 Figure3.9 Thefivelayersofthehumanface. (FromMendelson(2009),used withpermissionofthecopyrightholder.) 42 Figure3.10 (a) Tree-like structure of retaining ligaments (From Mendelson (2009)–usedwithpermissionofthecopyrightholder.) (b)Subcu- taneousfatcompartmentsofthehumanface. (FromRohrichand Pessa(2007)–usedwithpermissionofWoltersKluwerHealth.) 44 Figure3.11 RelativestrengthofattachmentsoftheSMAStothedermisatvari- ouspartsoftheface. Darkerstipplesindicatestrongerattachments while lighter stipples indicate weaker attachments. (From Keller (1997).) 45 Figure3.12 Facial aesthetic units and subunits (based on Figures 1 and 2 of Fattahi(2003)). 49 Figure4.1 A set of nine points, a = (0.5,0.5,0.0) , b = (5.0,0.5,1.5) , c = (9.5,0.5,0.0), d=(0.5,5.0,−1.5), e=(5.0,5.0,0.0), f=(9.5,5.0,−1.5), g= (0.5,9.5,0.0), h=(5.0,9.5,1.5), i=(9.5,9.5,0.0). 66 9 Figure4.2 Height field interpolating the set of nine points shown in Fig- ure4.1. 67 Figure4.3 HeightfieldinterpolatingthesetofninepointsshowninFigure4.1, with the gradient at point e constrained to 1.0 in the direction (1,1). 69 Figure4.4 HeightfieldinterpolatingthesetofninepointsshowninFigure4.1, with the gradients at point e constrained to 1.0 and 0.25 in the directions(1,1)and(−1,1)respectively. 70 Figure4.5 (a) Two and (b) three ring neighborhood vertices around a point of interest. (c) Projecting a point of interest p on a polygonal meshtothepointp(cid:48) onthin-platespline,byinflatinganosculating sphere. 71 Figure4.6 Fittingmongepatches(bluemini-grids)tothen-ringneighborhood verticesofseveralpointsofinterest(redpins). 72 Figure4.7 Reconstructing the scalar field generated by (the equation of) a circle,giveneightsurfacepointshavingzerofieldvalues(hollow dots), using the (a) variational implicit surface technique. Offset points (solid dots) are assigned field values of -1. (b) Hermite formulation, showing the gradient vector and field values at the surfacepoints. 75 Figure4.8 Cuttingplanethroughareconstructionofthescalarfieldgenerated by the surface points and normals of a polyhedral torus using the (a) variational implicit surface, and (b) Hermite method. The smoothsurfaces(c)and(d),obtainedbyraycasting,arethezero levelsetsoftherespectivescalarfields. 76 Figure4.9 Deformationofthecircleshownininsetanditsembeddinggrid, duetotherelocationofthelandmarksaandb. 77 Figure4.10 Gradientandnormals(red)atfourlandmarks,alongthecircum- ferenceofacircularstructure. 78 Figure4.11 Deformationproducedbythe45degreerotationofgradientsand normalsatthefourstationarylandmarksinFigure4.10,usingthe parameter values (a) above: m = 1.75 (b) below: m = 2, where d=2(seeEquation4.9). 79 Figure4.12 Deformations based on three-dimensional thin-plate splines. (a) undeformed,sphereofunitradius,havingsixlandmarks. (b)de- formationofspherebasedondownwarddisplacementoflandmark at the upper pole by 0.5 units. (c) deformation due to -45 degree rotationoftriadofvectorsatlandmarksaroundthe“equator”of the sphere. (d) deformation due to additional twist of one of the triadofvectors(showninblue). 80 10

Description:
Physically-based facial animation techniques are capable of producing realistic facial 2.1.3 Performance-driven Facial Animation. 9 3.1 Skeletal Anatomy. 27 .. red, and cephalometric landmarks in blue. (b) Interactively sketching .. Also, a separate body motion capture session may be required.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.