ebook img

Generalizing MOND to explain the missing mass in galaxy clusters PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalizing MOND to explain the missing mass in galaxy clusters

Astronomy&Astrophysicsmanuscriptno.29358_Revised_19_Dec_2016 (cid:13)cESO2017 January13,2017 Generalizing MOND to explain the missing mass in galaxy clusters AlistairO.Hodson1 andHongshengZhao1 1SUPA,SchoolofPhysicsandAstronomy,UniversityofStAndrews,Scotland e-mail:[email protected] Received,;accepted, ABSTRACT Context. ModifiedNewtonianDynamics(MOND)isagravitationalframeworkdesignedtoexplaintheastronomicalobservations 7 intheUniversewithouttheinclusionofparticledarkmatter.ModifiedNewtonianDynamics,initscurrentform,cannotexplainthe 1 missingmassingalaxyclusterswithouttheinclusionofsomeextramass,beitintheformofneutrinosornon-luminousbaryonic 0 matter. We investigate whether the MOND framework can be generalized to account for the missing mass in galaxy clusters by 2 boostinggravityinhighgravitationalpotentialregions.WeexamineandreviewExtendedMOND(EMOND),whichwasdesignedto n increasetheMONDscaleaccelerationinhighpotentialregions,therebyboostingthegravityinclusters. a Aims.WeseektoinvestigategalaxyclustermassprofilesinthecontextofMONDwiththeprimaryaimatexplainingthemissing J massproblemfullywithouttheneedfordarkmatter. 2 Methods.Usingtheassumptionthattheclustersareinhydrostaticequilibrium,wecancomputethedynamicalmassofeachcluster 1 andcomparetheresulttothepredictedmassoftheEMONDformalism. Results.WefindthatEMONDhassomesuccessinfittingsomeclusters,butoverallhasissueswhentryingtoexplainthemassdeficit ] fully.Wealsoinvestigateanempiricalrelationtosolvetheclusterproblem,whichisfoundbyanalysingtheclusterdataandisbased O ontheMONDparadigm.Wediscussthelimitationsinthetext. C Keywords. Gravitation––Galaxies:clusters:general . h p -1. Introduction baryonic Tully-Fisher relation, which shows a correlation with o total enclosed baryonic mass and galactic outer rotation veloc- rToexplaindynamicsinastrophysicalsystemfully,asolutionto t ity (the flat part of the rotation curve) (McGaugh 2005). This sthe missing mass problem that plagues astrophysics to this day correlationisexplainednaturallyintheMONDparadigm.Also, a mustbeimposed.Commonly,themissingmassinourUniverse [ MOND is very successful in predicting galaxy rotation curve is explained away by the existence of some non-baryonic dark profiles;seeforexampleSanders&McGaugh(2002).Afurther 1matter. Although dark matter is thought by most to be the best predictionofMONDwasthenatureofdwarfgalaxies.MOND vsolutiontothemissingmassproblem,despiteourbesteffortsto predicts that in the low acceleration regime there should be a 9date,thelackofdirectdetectionhasledsometoexploreotherex- highmassdeficit(Milgrom1983c).Inotherwords,MONDpre- 6planations.Todothis,itispossibletothinkofNewtoniangravity dicts that if objects are low surface brightness, they should re- 3 asalimitofamoregeneralgravitylaw.Anexampleofamodi- quirealotofdarkmatter,whichisexactlywhatisfoundindwarf 3 fiedtheoryofgravity,designedwiththeabsenceofdarkmatter 0 galaxies.Tidaldwarfgalaxies(TDGs)arealsohardtoexplainin .in mind, is Modified Newtonian Dynamics, hereafter MOND. theΛCDMparadigmastheirformationprocessdoesnotpredict 1TheMONDparadigmworkswiththeprinciplethatNewtonian the dragging of large amounts of dark matter away from their 0gravitybreaksdowninthelowaccelerationlimit(a<<a where 0 host galaxy (see for example Section 6.5.4 of Famaey & Mc- 7a isanaccelerationconstant≈1.2×10−10ms−2). 1 0 Gaugh (2012) and references therein). The formation of TDGs : Originally, MOND was proposed and introduced as an em- ismoreeasilyexplainedinMOND(Combes&Tiret2010).For vpiricallawinthe1983Milgrom1983papers(Milgrom1983a), amoredetailedreviewofthesuccessesofMOND,wereferthe Xi(Milgrom1983b)and(Milgrom1983c)byanalysinggalaxyro- readertoFamaey&McGaugh(2012). tationcurves.OneissuewiththeoriginalMONDformulationby DespitethesuccessofMONDwithregardstogalaxydynam- r aMilgrom,whichwashighlightedinFelten(1983),wasitsinabil- ics,MONDisnotwithoutitsissues.Firstly,tobeaviablegravity itytoconservemomentum.ThiswasrectifiedintheBekenstein theorytheremustbearelativisticformulation,analogoustoEin- andMilgrompaper(Bekenstein&Milgrom1984)byintroduc- stein’s general relativity. There have been a few proposed rela- ingaLagrangianformulationofMOND,AQUAL(AQUAdratic tivistic theories that produce MOND as a non-relativistic limit Lagrangian).Recently,Milgromproposedanalternativeformu- including, for example, Tensor-Vector-Scalar gravity (TeVeS) lationtotheMONDparadigmcalledQuasi-LinearMOND(Mil- (Bekenstein 2004), the Dark Fluid model (Zhao 2007) and Bi- grom2010),hereafterQUMOND.Thisnewformulationismuch metricMOND(Milgrom2009).However,thesehavetheirlimi- moredesirableasthequasi-linearwayinwhichtheMONDgrav- tationsanddonotrivalthesuccessofgeneralrelativity. ityiscalculatedismuchsimplerthaninAQUAL. Another major problem for MOND, and the topic of this The MOND framework has enjoyed a vast amount of suc- paper, is the limited success when trying to describe the mass cess,providingreasonabledescriptionsofthedynamicsingalax- deficit in clusters of galaxies; see for example Sanders (1999) ies.ArguablythemostfamouspredictionofMONDisthatofthe and Sanders (2003). It has been well documented that the in- Articlenumber,page1of17 A&Aproofs:manuscriptno.29358_Revised_19_Dec_2016 ferredmassbyMONDingalaxyclustersisnotenoughtokeep namics,perhapsMONDinitscurrentformisnotuniversal,but the cluster in hydrostatic equilibrium. This result is enough for partofalargergravitationallaw.ThegeneralizationofMOND some to abandon MOND as a viable theory. It is therefore the shouldnotberuledouthastilygiventheinherentlyempiricalna- responsibility of those who study MOND to provide a suitable tureofitsformulation.MONDwasdevisedbystudyingrotation explanationastowhythismissingmassproblemarises.Thesuc- curves,asinformationofgalaxyclusterswaslimited.Anynew cessfulpredictionsthatweremadeusingMONDhaveledsome adaptationofMONDthatincreasesa inclusterswouldhaveto 0 tobelievethattheinabilitytoreproducethegalaxyclusterdata somehow shield galaxies, where MOND works well, from the isjustapredictionthatthereexistssomeadditionalmasscompo- effectsofthisvaryingaccelerationscale.Thisideawasformally nentthatweareyettodetect.OnepossibilityisthatMONDand outlined by Zhao & Famaey (2012) in the form of Extended dark matter of some kind are not mutually exclusive and there ModifiedNewtonianDynamicsorEMOND. existbothabreakdownofNewtoniandynamicsinthesmallac- AnotherissueinMONDisthenewlydiscoveredultradiffuse celeration regime and some kind of elusive particle, increasing galaxies(UDGs)(Mihosetal.2015),(Kodaetal.2015).Ultra- theavailablemassbudgetinclusters.Thismattercouldbeinthe diffuse galaxies are extremely low density galaxies, residing in formof2eVneutrinos,whichwassuggestedinSanders(2003). thepotentialwellsofgalaxyclusters,whichrequirealotofdark However,analysisofasampleofgalaxyclustersbyAngusetal. matter.ThisrequireddarkmattercouldbeexplainedinMOND (2008)foundthatthe2eVneutrinowasabletoexplainthemass ifitwerenotforthehighexternalfieldexhibitedontheUDGs deficitintheouterregionsoftheclusterwithmissingmassstill bythegalaxycluster.Theexternalfieldoftheclusterraisesthe remaining in the central regions. This would warrant the exis- accelerationintheUDG,makingtheMONDpredictioncloserto tence of a different type of neutrino. An 11 eV sterile neutrino Newtonian.Thiscouldbecounteractedifthevalueofa werein 0 was investigated by Angus (2009), which was found to be suf- factlargerintheseenvironmentsasdeviationsfromNewtonian ficient to explain the galaxy cluster issue. Further investigation gravitycouldoccurathigheraccelerations.Thefactthatahigher into solving galaxy clusters in MOND with the aid of neutri- value of a in galaxy clusters could simultaneously explain the 0 noswasconductedinAngus&Diaferio(2011)andAngusetal. massdeficitproblemandtheobservationsoftheseUDGsisin- (2013). Cosmological simulations showed that it was possible terestingandshouldthusbeexploredinmoredetail. to form clusters using hot dark matter (sterile neutrinos). How- This paper is outlined as follows. Section 2 outlines the ever,theresultsshowedanunderabundanceoflowmassclusters MOND formalism and briefly reviews the missing mass prob- (attributedtotheresolutionofthesimulation)andanoverabun- lem in clusters with MOND. This is followed by a review of dance of high mass clusters. They go on to explain how the 11 the EMOND formalism. Section 3 discuses the galaxy cluster eVneutrinowasruledoutasaneutrinomassof30-300eVwas sample that we have used throughout the paper. Section 4 dis- requiredtoproduceenoughlowmassclusters. cusseshowwellEMONDworksinexplainingthemissingmass Neutrinos have not been the only attempt to reconcile clus- problem. We find that EMOND has partial success in tackling ters with MOND. Zhao and Li investigated a family of gravity this problem and thus in Section 5 we try to find an empirical modelscontrolledbyavectorfield(seeforexampleLi&Zhao relation,basedontheMONDparadigm,whichcanaccountfor (2009) and Zhao & Li (2010). This family of solutions can re- theclustermassdeficit.Wefindapotentialrelation,withsome produce different types of behaviour depending on the model successaswell,whichwecomparetotheNavarro-Frenk-White parameter choices. This is based on the assumption that there (hereaferNFW)fitsdescribedin(Vikhlininetal.2006)inSec- existssomedarkfluid,describedbythevectorfield,whichisthe tion 6. In Section 7 we discuss the limitations of this empirical sourceofdeviationfromNewtonianphysics.Anotherattemptto relationandweconcludeinSection8. solvetheclusterproblemproposedbyKhoury(2015)alsopos- tulates there exists a dark fluid that permeates space. This idea ismotivatedbythesuccessofMONDonthegalacticscale,but 2. SummarizingtheMOND-clusterproblem the success of ΛCDM in cosmological and cluster scales. This darkfluidformalismaimstorecovergalaxyscaledynamicsviaa 2.1. TheMONDparadigmanditslimitations MOND-likephononmediatedforceresultingfromthedarkmat- WebeginbybrieflyreviewingtheMONDparadigmanditsgov- ter in its superfluid phase. Clusters, in this scenario, would be erningequations.ThegeneralmotivationforMONDtherecog- dominated by the normal phase of the superfluid, which would nition that the Newtonian prediction of gravity only seemed to behave like particle dark matter. This aims for a best of both failinlowaccelerationenvironments.Ifthereisnonon-baryonic worldsscenariowithregardstodarkmatterandMOND.There dark matter to explain this discrepancy, the gravitational law has also been a theory proposed by Blanchet (2007), which in- governing the Universe would have to deviate from Newtonian cludes a substance called dipolar dark matter. This mechanism intheselowaccelerationenvironments. worksontheprinciplethatwedonotactuallyseeabreakdown InNewtonianphysics,thegravitationalfieldΦisdetermined ofagravitylawwhenweempiricallyseeMOND,butwhatwe fromthematterdistributionρviaPoisson’sequation, are witnessing is an enhancement of gravity due to dipole mo- ments of this exotic dark matter aligning with the gravitational field. All these theories have pros and cons, but are not studied inthiswork. ∇2Φ=4πGρ. (1) Although the aforementioned solutions may hold the keys totheclustersuccessinMOND,theneedfordarkmatterofany Determining the gravitational field predicted by MOND re- kindhasleftsomeunsettled,astheeleganceofMOND,ingalax- quires an alternate Poisson equation (Bekenstein & Milgrom ies,istheabilitytoaccountforallobservationsfromvisiblemat- 1984), ter only. Therefore aside from these dark fluid-like theories, it hasalsobeennotedthatifthevalueofa weretobeincreasedin clusters, the mass discrepancy could be0alleviated. In the same (cid:34) (cid:32)|∇Φ|(cid:33) (cid:35) ∇· µ ∇Φ =4πGρ, (2) manner that MOND is a more general form of Newtonian dy- a 0 Articlenumber,page2of17 AlistairO.HodsonandHongshengZhao:GeneralizingMONDtoexplainthemissingmassingalaxyclusters wherea isauniversalscaleaccelerationandµ(x)istheMOND 0 interpolationfunctionthatbehavessuchthat, (cid:40) 1 forx(cid:29)1 µ(x)= . (3) x forx(cid:28)1 The first case of Equation 3 is the Newtonian regime and thesecondisknownasthedeep-MONDregime.TheNewtonian Poisson equation is recovered in the x >> 1 case of Equation 3.Oneshouldnoteherethatthecentresofgalaxyclustershave stronggravity,meaningtheyhaveanx>1MONDvalue. There are many possible functional forms for µ(x) that sat- isfy the criteria of Equation 3. We opted to choose the simple Fig.1.Plotshowinghowthedynamical(ortotal)gravitationalacceler- ationoftheclustercomparestothegravitationalaccelerationpredicted interpolationfunction(Famaey&Binney2005), byMONDwitha1:1lineoverplottedforillustrativepurposes.Eachline isadifferentcluster.Weuse12clustersfromVikhlininetal.(2006).As x theclusterslieabovethe1:1line(blacksolidlineonplot),therequired µ(x)= , (4) 1+x gravityismorethanthe‘MONDpredicted’gravity. forouranalysis. The MOND paradigm has always struggled with rectifying 6.×10-10 themassdiscrepancyingalaxyclusterswithoutincludinganex- 5.×10-10 tramasscomponentsuchasneutrinosornon-luminousbaryonic matter. In its usual form MOND is unable to boost the grav- 2-s) 4.×10-10 itational acceleration in clusters sufficiently whilst this frame- m 3.×10-10 ( workisstillabletomatchobservationalconstraintsprovidedby yn aD2.×10-10 galaxy dynamics. The reason for MOND’s inability to accom- plishthisisthatthegravitationalaccelerationingalaxyclusters 1.×10-10 isrelativelyhigh,ingeneralx>1,sotheMONDboosttogravity 0 is weak. However, there is an observed mass deficit in galaxy 12.0 12.2 12.4 12.6 12.8 13.0 clustersthatwouldrequiretheclustertobeinthedeep-MOND regime(x << 1)torectifywithMONDalone.Wedemonstrate Log10(|ΦNFW|)(m2s-2) this issue briefly by applying MOND to the cluster sample de- Fig.2.Plotshowinghowthedynamicalgravitationalaccelerationvaries scribedinSection3.Wecanplotthedynamicalacceleration(See withNFWpotentialforeachclusterinoursample.NFWprofileswere Section 3 for details on how the dynamical acceleration is cal- takenfromVikhlininetal.(2006).Notetheregulartrendbetweenthe culated)foreachclusteragainstthecorrespondingMONDcom- clusters,whichsuggestsamodifiedgravitylawdependentongravita- puted acceleration from Equation 2; see (Figure 1). If MOND tionalpotential. wereauniversallawthatappliedtogalaxyclusters,Fig1should show1:1correlation(withinobservationalerrors),bywhichwe meanthatthegravitationalaccelerationpredictedbytheMOND potential of the cluster is equal to the contribution of the dark formulashouldmatchthegravitationalaccelerationpredictedby matter,describedbyaNFWprofile(Navarroetal.1997),(Zhao the dynamics of the X-ray gas. In Figure 1, we see that the re- 1996).TheNFWprofileforeachclusterwasgiveninVikhlinin quired gravitational acceleration, derived from the dynamics of et al. (2006). We made this approximation as the dark matter the X-ray gas, exceeds the gravitational acceleration predicted NFWprofileisanalyticalandwelldefined,whereascomputing by the MOND formula. Thus MOND is under-predicting the the gravitational potential from the dynamical data requires us gravitational acceleration of each cluster. As mentioned previ- to know where the edge of the cluster lies in order to truncate ously,thisoffsetisoftenreconciledintheMONDparadigmby the mass. Furthermore, we would have to perform an unneces- the presence of some form of non-luminous baryonic matter or saryadditionalstepofnumericallyintegratingthedynamicalac- neutrinos,whichhasyettobedetected. celeration to find the potential. This integration would involve a boundary value that is dependent on the truncation radius of the cluster. As we are only interested in getting an intuition of 2.2. CanMONDbegeneralizedtoaccountforclusters? howthepropertiesofthegalaxyclusterscorrelatewithgravita- AsthesimpleMONDformulationdoesnotholdtrueforgalaxy tionalpotential,theNFWapproximationseemstobereasonable clusters,effortsweremadetotryandgeneralizeMOND.Inorder comparedtoperformingtheintegrationofthedynamicalaccel- todothis,onemustidentifywhat,ifany,arethecriticaldiffer- eration. encesbetweengalaxiesandgalaxyclusters.Onesuchdifference This trend with potential was the main motivation of the is that the gravitational potential is much larger in galaxy clus- Zhao and Famaey Extended MOND (EMOND) formalism tersthaningalaxies.Initscurrentform,MONDhasafunctional (Zhao&Famaey2012).InEMOND,thecorrespondingPoisson dependencesolelyongravitationalacceleration.Perhapsamore equationiswrittenas universalgravitylawrequiresgravitationalpotentialasamedia- toroftotalgravity.Again,usingtheclustersampledescribedin Section 3, we can see how the gravitational acceleration of the clustervariesasafunctionofgravitationalpotential(seeFigure (cid:34) (cid:32) |∇Φ| (cid:33) (cid:35) 4πGρ=∇· µ ∇Φ −T , (5) 2).InFigure2,wemadetheapproximationthatthegravitational A (Φ) 2 0 Articlenumber,page3of17 A&Aproofs:manuscriptno.29358_Revised_19_Dec_2016 where the dynamics inside UDGs closer to Newtonian (µ(x) → 1). However, if this external potential effect was present, the fact (cid:12) (cid:12) that the UDGs are within the deep potential well of the galaxy T = 1 (cid:12)(cid:12)(cid:12)d(A0(Φ))2(cid:12)(cid:12)(cid:12)(cid:2)yF(cid:48)(y)−F(y)(cid:3), (6) clusterscouldcauseUDGstoshowMOND-likebehaviourorat 2 8πG (cid:12)(cid:12) dΦ (cid:12)(cid:12) leastexhibitstrongergravitythanthatexpectedfromNewtonian physics.Theexternalpotentialeffectcouldbeanaturalexplana- where A (Φ) is a functional alternative to the MOND constant 0 tionastowhyobjectsexistwithinclustersthatbehavesimilarto a withunitsofacceleration,andµisthesameMONDinterpo- 0 √ UDGs.However,recentestimatesofdarkmatterhaloesinthese lation function, dF(y)/dy = µ( y) and y = |∇Φ|2/A (Φ)2. It is 0 objectsshowanextremelyhighdarktobaryonicmassratio(van immediatelyapparentthatEquation5ismuchmorecomplicated Dokkum et al. 2016). One would need to check that the exter- than the regular MOND Poisson equation owing to the second nalpotentialeffectrequiredtoreconcilethattheUDGsdoesnot term.Ithashoweverbeenarguedthatincertainsituations,such conflictwiththehostgalaxycluster. asgalaxyclusters,thistermissmallcomparedtothefirst(Zhao &Famaey2012),givinganapproximateexpression, 3. Analysingagalaxyclustersample 4πGρ≈∇·(cid:34)µ(cid:32) |∇Φ| (cid:33)∇Φ(cid:35), (7) To begin, we first need to select a galaxy cluster sample. We A (Φ) useaChandragalaxyclustersample(Vikhlininetal.2006)that 0 providesanalyticalfitstothetemperatureanddensityprofilesof fortheEMONDgravitationalpotential.InSection4weexplic- theX-raygas.Weuse12clustersfromthesample.Theclusters itlyshowthatwearejustinmakingthisapproximation.Equation arenearby(z<1)andareinthemassrange≈1014−1015M .For (cid:12) 7, the approximate EMOND Poisson equation, is equivalent to athoroughanalysis,wealsoneedtomodelthebrightestcluster Equation2withamodifiedscaleacceleration.Theideabehind galaxy (BCG) component. The BCG modelling is outlined in Equation 7 is to increase the MOND acceleration scale in high Section3.1.1. potentialenvironments.ThisdecreasesthevalueoftheMOND interpolation function, µ, thus increasing the total gravitational accelerationthatispredictedbyMOND(a ≈ a /µ).In 3.1. Clustermodel MOND Newt ordertosolvetheEMONDPoissonequation,wemustdefinethe TomodeltheX-raygasdensityVikhlininetal.(2006)chooses behaviourofA (Φ),whichwediscussinSection4.Althoughwe 0 an analytical expression to which the data is fit. This model is determinetheexactbehaviourofA inSection4,weshouldpro- 0 composed of three parts. The first part models the cuspy core vide some understanding of the general desired behaviour that usuallyfoundinrelaxedclustersandisachievedbyapowerlaw wehopetoemulate.Fromourunderstandingofgalaxyrotation densityprofile.Theythenincludeanadditionaltermthatmodels curvesinMOND,weknowthatingeneralgalaxiesarewellde- thesteepeningbrightnessprofileatr>0.3r ,wherer isthe scribedbyaconstanta ≈ 1.2×10−10 ms−2.Wethereforewant 200 200 0 radius at which the average density of the cluster falls to 200 topreservethisbehaviour.Thereforethestandarda shouldbea 0 times that of the critical density of the Universe. They finally limitofA inthelowpotentialregimesuchthatA (Φ) → a as 0 0 0 add another power law component to allow the density profile Φ→0. to be very general for fitting freedom. Combining these three componentsleadstotheiroverallemissionprofilefortheX-ray 2.3. Theexternalpotentialeffect gas, As the modification to the MOND formula we discuss here re- lies on the gravitational potential, even a constant gravitational (r/r )−α 1 n2 pnoamtenictsia.lTahcirsosfesaatusryestceamnfbreomthoanugehxtteorfnaalssaonurecxetearffneacltpsothteendtiya-l nenp(r)=n20(cid:16)1+(r/rcc)2(cid:17)3β−α/2(1+(r/rs)γ)(cid:15)/γ+(cid:16)1+(r/r0c2)2(cid:17)3β2. effect (Zhao & Famaey 2012), which is analogous to the ex- (8) ternal field effect (EFE) that arises in regular MOND; see for example Derakhshani & Haghi (2014) for work on the EFE in whererc,rc2,andrs areallscaleradiiandα,β,γ,(cid:15),andβ2 are globularclusters;Blanchet&Novak(2011),whichlooksatthe alldimensionlessparameters.ne andnp areelectronandproton EFEinthesolarsystem;andHaghietal.(2016),forworkwith numberdensities,andn isaparameterthattakesthemeaningof 0 theEFEanddecliningrotationcurvesinMOND.Thetreatment acentralnumberdensity.Theemissionprofileisconvertedinto of the external potential effect should be fully examined in fu- themassdensitybyρ (r) ≈ 1.252m (cid:16)n n (cid:17)1/2,wherem isthe g p p e p ture work. The original EMOND work assumes that the main massofaproton.Theparameterfitsforeachgalaxyclusterare contribution to the external potential of the Milky Way can be giveninTable1,whichweretakenfromVikhlininetal.(2006). attributedtotheVirgocluster.Workontheescapevelocityofthe Wealsorequirethetemperatureprofileofthegasasweare MilkyWay(Famaeyetal.2007)calculatestheexternalpotential choosingtorelaxthecommonassumptionthatthegalaxyclus- for the Milky Way to be approximately Φ ≈ −10−6c2. How- ext ters are isothermal. Again, we follow the profile provided by ever,thetypicalgravitationalpotentialsofourgalaxyclustersare Vikhlininetal.(2006), muchlargerthanthissoweareabletoexcludethiseffectfrom ourcalculations.Theimportanceoftheexternalpotentialeffect ismostprominentingalaxiesandobjectsthatliewithinclusters (r/r +T /T ) (r/r)−a T(r)=T cool min 0 t , (9) ornearobjectswithlargegravitationalpotentials.Forexample, 0 (r/rcool)acool +1 (cid:0)(r/rt)b+1(cid:1)c/b we mentioned earlier that there has recently been a discovery of many so-called ultra diffuse galaxies (UDGs) inside galaxy which accounts for the cooling of the X-ray gas in the central clusters. The existence of these objects could pose some threat regionsofthecluster,whichaccordingtoVikhlininetal.(2006) to MOND as the external field from the clusters should make maybetheresultofradiativecooling.TheparameterT isthe min Articlenumber,page4of17 AlistairO.HodsonandHongshengZhao:GeneralizingMONDtoexplainthemissingmassingalaxyclusters Table1.TableofparametersasgiveninVikhlininetal.(2006)fortheX-raygasemissionprofiledescribedbyEquation8.Weomittedonecluster from our analysis as Vikhlinin et al. (2006) do not provide NFW fits for dark matter, so we cannot compare our result to that in a consistent manner.γforeachclusterwaschosentobe3.0.ValuesintablelabelledN/Arefertotheclustersforwhich(Vikhlininetal.2006)didnotprovide parameters,makingthoseclustersatwo-componentdensitymodelratherthanthree(seeEquation8). Cluster n r r α β (cid:15) n r β 0 c s 02 c2 2 (10−3cm−3) (kpc) (kpc) (10−1cm−3) (kpc) A133 4.705 94.6 1239.9 0.916 0.526 4.943 0.247 75.83 3.607 A262 2.278 70.7 365.6 1.712 0.345 1.760 N/A N/A N/A A478 10.170 155.5 2928.9 1.254 0.704 5.000 0.762 23.84 1.00 A1413 5.239 195.0 2153.7 1.247 0.661 5.000 N/A N/A N/A A1795 31.175 38.2 682.5 0.195 0.491 2.606 5.695 3.00 1.00 A1991 6.405 59.9 1064.7 1.735 0.515 5.000 0.007 5.00 0.517 A2029 15.721 84.2 908.9 1.164 0.545 1.669 3.510 5.00 1.00 RXJ1159+5531 0.191 591.9 640.7 1.891 0.838 4.869 0.457 11.99 1.00 MKW4 0.196 578.5 595.1 1.895 1.119 1.602 0.108 30.11 1.971 A383 7.226 112.1 408.7 2.013 0.577 0.767 0.002 11.54 1.00 A907 6.252 136.9 1887.1 1.556 0.594 4.998 N/A N/A N/A A2390 3.605 308.2 1200.0 1.891 0.658 0.563 N/A N/A N/A central temperature, T0 is a scale temperature, rcool and rt are Table3.r500valuesforeachclusterasgivenin(Vikhlininetal.2006); r valuescanbecalculatedapproximatelyviar ≈1.5r . scale radii, and a , a b and c are dimensionless parameters. 200 200 500 cool Outsidethecentral,coolerregionoftheclusterthetemperature Cluster r (kpc) r (kpc) is described by a broken power law. The parameter fits for the 500 min A133 1007 40 temperaturecanbefoundinTable2,againtakenfromVikhlinin A262 650 10 etal.(2006). A478 1337 30 A1413 1299 20 3.1.1. BCGmodel A1795 1235 40 A1991 732 10 Wealsomodelthebrightestclustergalaxy(BCG)foreachclus- A2029 1362 20 ter, which affects the central parts of the cluster. This is an im- RXJ1159+5331 700 10 portant aspect of the model as it is in the central regions of the MKW4 634 5 clusterswherethemassdeficitisgreatest.TomodeltheBCG,it A383 944 25 isreasonabletomaketheapproximationthatitisspherical,with A907 1096 40 adensityfollowingthewell-knownHernquistprofile, A2390 1416 80 Mh ρBCG(r)= 2πr(r+h)3, (10) (2006). For our plots throughout this paper, we choose not to showanydatabelowthisradius. Fortheouterradiuswechoosetoextrapolatepastthemaxi- where M is the BCG mass and h is the BCG scale length. We mumradiusofeachcluster.Weextrapolatetotheradiusr for assignaBCGmassproportionaltotheoverallmassoftheclus- 200 tersuchthatMBCG =5.3×1011(cid:16)3×1M051040M(cid:12)(cid:17)0.42M(cid:12),whichfollows (eVacikhhclilnuisntere,twahl.ic2h0c0a6n).bTehcerurd5e0l0yvcaalluceuslaftreodmviVairk2h00lin≈in1.e5tr5a0l0. theworkofSchmidt&Allen(2007).Here,M500istheenclosed (2006)arealsoshowninTable3. mass at r , which is the radius at which the average density 500 is500timesthecriticaldensityoftheUniverse.Wealsoassign eachclusteraHernquistscalelengthof30kpc.Althoughthese 3.2. Dynamicalmassoftheclusters estimates may be crude, the BCG should only affect the inner In the following sections we show the results of dynamical partsoftheclusterandthusshouldnotaffectouroverallconclu- masses, potentials, and accelerations so we therefore must de- sionstoomuch. finethesequantities.Whenwediscuss‘dynamical’quantitiesin thiswork,werefertothevaluecalculatedbyassumingtheclus- 3.1.2. Radialrangeofthedata tergasisinhydrostaticequilibrium.Thisisacommonassump- tionindeterminingclustermasses.Theequationforhydrostatic The radial range of the X-ray data is limited by two factors: equilibriumiswrittenas an inner boundary or cut-off radius and an upper bound ra- diuswheretheX-raybrightnessisnotdetected.Vikhlininetal. dΦ GM (r) 1 d (cid:34)ρ kT(r)(cid:35) (2006) choose an inner radial boundary such that they exclude dyn = dyn =− g , (11) dr r2 ρ (r)dr wm thecentraltemperaturebinandanouterradialboundarywhere g p theX-raybrightnessisnolongerdetectedabove3σorthelimit of the Chandra field of view was reached. Therefore the model whereΦdyn isthedynamicalpotential,mp isthemassofapro- isfittoasectionoftheradialextentofthecluster,betweenthese ton (≈ 1.67 × 10−27 kg), and w is the mean molecular weight two limits, and then extrapolated to lower and higher radii. In (≈0.609).Thevalueρ (r)isthegasdensity,T(r)isthegastem- g Table3,weshowtheinnermostradiiasgiveninVikhlininetal. perature, and M (r) is the enclosed dynamical mass at radius dyn Articlenumber,page5of17 A&Aproofs:manuscriptno.29358_Revised_19_Dec_2016 Table2.Tableofgastemperatureparametersasgivenin(Vikhlininetal.2006)forEquation9. Cluster T r a b c T /T r a 0 t min 0 cool cool kev Mpc kpc A133 3.61 1.42 0.12 5 10 0.27 57 3.88 A262 2.42 0.35 -0.02 5 1.1 0.64 19 5.25 A478 11.06 0.27 0.02 5 0.4 0.38 129 1.6 A1413 7.58 1.84 0.08 4.68 10 0.23 30 0.75 A1795 9.68 0.55 0 1.63 0.9 0.1 77 1.03 A1991 2.83 0.86 0.04 2.87 4.7 0.48 42 2.12 A2029 16.19 3.04 -0.03 1.57 5.9 0.1 93 0.48 RXJ1159+5531 3.74 0.1 0.09 0.77 0.4 0.13 22 1.68 MKW4 2.26 0.1 -0.07 5.00 0.5 0.85 16 9.62 A383 8.78 3.03 -0.14 1.44 8.0 0.75 81 6.17 A907 10.19 0.24 0.16 5.00 0.4 0.32 208 1.48 A2390 19.34 2.46 -0.10 5.00 10.0 0.12 214 0.08 r.Usingsomemathematicalprowess,Equation11canbetrans- 3.3. Newtonianmassoftheclusters formedinto We can find the Newtonian predicted mass from the cluster by integrating the gas density profile along with the BCG density kT(r)r (cid:34)dlnρ (r) dlnT(r)(cid:35) profile, M (r)=− g + . (12) dyn Gwm dlnr dlnr p (cid:90) r InΛCDMlanguage, M wouldbethemassofthebaryons MN(r)= 4πr˜2(ρg(r˜)+ρBCG(r˜))dr˜. (16) dyn 0 anddarkmatterrequiredtokeeptheclusterinhydrostaticequi- librium,whichwerefertoasthedynamicalmass.Fromthis,we Weassumeinthisworkthattheonlysignificantstellarmass cancalculatethedynamicalacceleration, istheBCGmassandthatotherstellarmassissmallcomparedto thegasmass.TheNewtonianaccelerationandpotentialcanthen byfoundbyanalogousexpressionofEquation13and14. GM (r) a (r)=∇Φ (r)= dyn , (13) dyn dyn r2 4. ApplyingEMONDtothesampleofclusters and thus the dynamical potential can be found by integrating The initial EMOND theory was qualitatively outlined in Zhao Equation13, &Famaey(2012)buthasuntilnowundergonenoquantification with regards to applying the formalism to a sample of galaxy (cid:90) r clusters.Toaccomplishthis,wefirsttaketheapproximatespher- Φdyn(r)= adyn(r˜)dr˜. (14) icallysymmetricversionofEquation7, ∞ In Equation 14 the limits are chosen such that the gravita- (cid:32) |∇Φ| (cid:33) tional potential is negative. Because of the choice of gas den- ∇ΦN ≈µ A (Φ) ∇Φ. (17) sityandgastemperatureprofileusedtodeterminethedynamical 0 mass,itisverydifficulttodeterminethedynamicalpotentialof WecantheninvertEquation17tofindanexpressionforA (Φ), 0 each cluster from Equation 14. This is because the dynamical gravitational potential would be sensitive to a choice of cut-off −|∇Φ ||∇Φ|+|∇Φ|2 radius, i.e. where we truncate the gas density to zero. The rea- A (Φ)= N , (18) sonforthissensitivityisduetotheintegralfrom∞inEquation 0 |∇Φ | N 14. We would have to make some assumption about how the assumingµtakestheformofEquation4.Therefore,wecanem- clustermassbehavesoutsider .Inordertocircumventthisis- 200 pirically find out if the data favours the EMOND formalism or sue, we take note of the fact that the NFW dark matter profile whetherEMONDcannotexplainthemissingmassinclustersby providesgoodfitstothedynamicalmass.TheNFWprofilehas determiningifthereisasinglefunctionofA (Φ)thatcanexplain a well-defined analytical expression for gravitational potential. 0 Therefore we make the assumption that Φ ≈ Φ for each themassdiscrepancyinalltheclustersinoursample.InFigure dyn NFW 3weplottherequiredA ,givenbyEquation18,asafunctionof cluster, 0 theNFWgravitationalpotential.Toaccomplishthis,weassume that the total gravitational acceleration is approximated by the 4πGr3ln(cid:104)r+rs(cid:105)ρ dark matter NFW profile for each cluster. We find that there is ΦNFW ≈Φdyn =− s r rs s (15) apogteennetiraall,twrehnidchofsetehmesretqouifroeldlowA0ainncerxepasoinnegntwiailthcugrrvaveit(aFtiigounrael 3),forexample, wherer andρ arethescaleradiusanddensity,respectively.We s s should stress at this point that the NFW profile is not an exact solutionoftheMONDequationsandwethereforeexpectsome (cid:32) Φ (cid:33) A (Φ)=a exp , (19) discrepanciesinourourplots.Weusethisassumptionasaguide. 0 0 Φ 0 Articlenumber,page6of17 AlistairO.HodsonandHongshengZhao:GeneralizingMONDtoexplainthemissingmassingalaxyclusters whereΦ0 isthescalepotentialthatwehaveempiricallychosen 1.×10-8 to be |Φ | ≈ 15000002m2s−2. One can see that in low potential 0 environments, such as galaxies, that A ≈ a and thus MOND 8.×10-9 0 0 dynamicsarepreserved.WeplottedEquation19inFigure3(red ) line).Thisfunctionalformhastheissuethatitrisesveryquickly s2- 6.×10-9 m icnluhsitgehrsp.oTtheenrteiafolrreegwioentse.sTtehdisacsoeuclodncdafuusnecitsiosune.sinhighermass A(04.×10-9 2.×10-9 A0(Φ)=a0+(A0max−a0)21tanhlog(cid:32)ΦΦ (cid:33)2+ 21, (20) 0 11.8 12.0 12.2 12.4 12.6 12.8 13.0 0 where the acceleration scale, A (Φ), grows like a step func- Log10(ΦNFW)(m2s-2) 0 tionwithminimumvaluea0 inlowpotentialregionsandmaxi- Fig.3.PlotshowingtherequiredvalueofA0accordingtotheEMOND mumvalue A inhighpotentialregions.Forthisapproach, formalism(Equation18)suchthatpredictedgravitationalacceleration 0max we are inspired by an alternate modification to gravity that fromEMONDmatchesthedynamicallycalculatedacceleration(Equa- uses a density dependent modification to gravity to try and tion12)foreachclusterinthesample(thinlines).Weplottedthisre- explain galaxies and galaxy clusters without the need for quiredA0againsttheNFWgravitationalpotentialasaestimationofthe dark matter (Matsakos & Diaferio 2016). In this formu- behaviourwithinthecluster.Theshapetakestheformofanexponential functionoverplottedinredanddescribedbyEquation19.Alsoplotted lation, gravitational dynamics are described by a modified inblueisthemorecomplicatedA functiondescribedbyEquation20 Poisson equation, ∇ · ((cid:15)(ρ)∇Φ) = 4πGρ, where (cid:15) is a di- with a parameter choice, Φ = −027000002 m2s−2 and A = 80a . mensionless function of density. In their work, the func- 0 0max 0 NotetheapparentturnoverofA atthedeepestpotentialisanartefact 0 tional choice of (cid:15)(ρ) is a smooth step function such that, becausethetotalgravitationalpotentialisnotjustthatofanNFWpro- (cid:15)(ρ) = (cid:15) +(1−(cid:15) )1(cid:104)tanh(cid:104)log(cid:16)ρ(cid:17)q(cid:105)+1(cid:105),where(cid:15) andqare fileasassumedhere. 0 0 2 ρc 0 freeparametersandρ isadensityscale,whichisanalogous c toourpotentialscaleΦ .WeoverplotthisfunctioninFigure3 0 (blueline)alongwiththesimpleexponential. InFigure4weplotthecalculatedA asafunctionofradius 0 fortwoclusters,A133andA2390.WechoosethesetwoasA133 isalessmassiveclusterandA2390isthemostmassivecluster. WecanseethatinA2390thevalueofA ismostlyatthemaxi- 0 mumvaluethatEquation20allowsasithasalargegravitational potential, whereas A133 has a much lower A which increases 0 towardsthecentre. Usingthisrecipe,itisthereforepossibletocalculatetheef- fectiveenclosedmasspredictedbyEMONDforeachclusterby whichwemeanNewtonianmassplusphantommass, r2|∇Φ | M (r)= EMOND , (21) EMOND G where∇Φ isthegravitationalaccelerationgivenbyEqua- EMOND Fig.4.PlotshowingthecalculatedA for2clusters,A133andA2390, 0 tion 17. To accomplish this, we need to solve a first order dif- using Equation 20. Note that unlike A133, the massive A2390 has a ferential equation for the potential Φ. This requires a bound- potentialmostlyabovethestepfunction,henceshowslittledependence ary condition of the potential. For this we picked three values onthechangingoftheboundarypotential(cf.Figure16). for the boundary, which we set at r = 2r for each clus- bound 200 ter.ThethreevalueswereΦ(r ) = Φ (r ),Φ(r ) = 0.5Φ (r ), and Φ(r b)ou=nd1.5Φ NFW(r bound). Webdoiudndthis wherey=|∇Φ|2/A0(Φ)2.Therefore, NFW bound bound NFW bound fortworeasons.First,wewouldexpectthatthepotentialcanbe √ approximated by the NFW profile and also we wanted to show 2 y+y √ howmuchthecalculatedmassisaffectedbythechoiceofbound- yF(cid:48)(y)−F(y)= 1+ √y −2log(1+ y). (23) arypotential.InFigures17to22,whereweshowtheresultsfor eachcluster usingtheEMONDrecipe, theshadedregion high- AssumingthesimplercasewhereA (Φ)=a exp(Φ/Φ ), 0 0 0 lightsthedependenceoftheboundarypotential. ThefinalaspectoftheEMONDanalysisthatweshouldpro- d(A (Φ))2 2a2 (cid:32)2Φ(cid:33) videforcompletenessisprovingthattheEMONDT2 termisin 0 = 0 exp . (24) fact negligible. To do this, we can solve the right-hand side of dΦ Φ0 Φ0 Equation 5 by again using the NFW profile as an estimation of We now have all the ingredients to numerically plot the T thetotalgravityintheclusters.Wecanthencomparethisresult 2 tothesimplifiedPoissonequation,Equation7,toseetheeffect term. To accomplish this, we show, for conciseness, the result for one cluster, A133, as an example but all clusters show sim- thattheT termhasontheresult.Assumingthesimpleµfunc- tion(Equa2tion4),asF(cid:48)(y)=µ(√y),F(y)takestheform, ilar results. In Figure 5 we plot the full right-hand side (RHS) ofEquation5andtheRHSof7.Thisisessentiallyaplotofthe predicted Newtonian density profile from the EMOND formu- √ √ F(y)=−2 y+y+2log(1+ y). (22) lationwiththeT termincludedandneglected.Weseethatthe 2 Articlenumber,page7of17 A&Aproofs:manuscriptno.29358_Revised_19_Dec_2016 0.0 -0.2 -0.4 B -0.6 -0.8 -1.0 12.0 12.2 12.4 12.6 12.8 13.0 13.2 Log10(ΦNFW)(m2s-2) Fig.6.PlotshowingthequantityB(Equation6)vs.NFWgravitational potentialforeachcluster.Byapproximatingthetotalclustergravityas that of the NFW halo, we illustrate that any correction term B to the regularMONDformula,whilehavingatrendwiththepotentialofeach cluster,cannotdescribeallclusterssimultaneously. Fig.5. Plotshowingthecalculateddensity,predictedbyEMONDfor clusterA133.Bluedashedlineshowsthedensitywiththeinclusionof theT term(Equation5)andredlineshowsthedensitycalculatedfrom 2 inoursample,assumingthatthetotalgravitationalacceleration approximatePoissonequation(Equation7).Thelinesarealmostiden- isapproximatedbythebest-fitNFWprofileasafunctionoftotal tical showing the T term was indeed justifiably neglected. Note that thesmalldifferences2intheouterregionsoftheclusterisanartifactbe- gravitationalpotentialofeachcluster;thisgravitationalpotential is also approximated by the gravitational potential of the NFW cause the asymptotic potential of NFW is compatible mathematically withEMONDonlyifthelatteralsoallowsthedensitydippingintoneg- profile. With this approach, we attempt to determine whether ativeatlargeradii. there is an additive component to the original MOND formula thatcanboostthegravityinsideclusters,whilstpreservingreg- ularMONDingalaxies.WeplotthisresultinFigure6. plotshowsthattheresultsarealmostidenticalandthuswewere One may notice that although there is not a single function justifiedinneglectingtheT2 terminourpreviousanalysis.The thatcouldfitalltheseclusters,thereseemstobesomeregularity values deviate from each other in the outer radii of the cluster. to the plot. To determine whether the result in Figure 6 can be ThisisbecausetheNFWprofileisnotaperfectsolutionofthe improved,wetriedmodifyingourEquationforB(Equation25) EMONDequationandthepredictedNewtoniandensityfallsto slightlysuchthat, zero and eventually negative. The difference in the two lines is justaresultofthesmalldelaybetweenthetwotermsdrivingthe |∇Φ | (cid:32)|∇Φ| Φ (cid:33) densitytothiszeropoint. B = N −µ + . (26) WeconcludefromthisanalysisthatEMONDhashadmixed 2 |∇Φ| a0 Φ0 successasaMONDgeneralizationtoexplainthemissingmass The result of plotting B against gravitational potential is 2 in galaxy clusters. We therefore look for an alternative in the shown in Figure 7. This yielded a very tight function of gravi- followingsection. tational potential for each cluster. Also, one should notice that the absolute value of B runs between 0 and 1, which is iden- 2 tical to the behaviour of the MOND interpolating function. Al- 5. Anempiricalalternateformulationexplainingthe though the trend is very tight, there are some offsets. This may massdiscrepancy bebecauseweapproximatedthegravitationalpotentialtobethe DespitethemixedsuccessofEMONDinansweringthequestion NFWpotential.Thisassumptionmaynothold. of missing mass in galaxy clusters, the trend of missing mass versus gravitational potential seems to linger. Also the idea of 5.1. Summarizingandrefiningtheformulae having a as a non-constant function may not sit comfortably 0 withtheMONDcommunity.Thispromptedustolookforadif- Analysingthedataseemstoshowapossiblealternativeformu- ferent formalism that could unify galaxies and galaxy clusters lationofMONDthatcouldaccountforthemassdiscrepancyin withonelaw.Wethoughtitwouldbeagoodideatodetermine this sample of clusters. The modified empirical relation in this theresidualintheMONDformula,whichwewillcallB,tode- casewouldbe termineifthereissomecommonthemethroughouttheclusters. TheMONDresidualisfoundbyrearrangingtheMONDformula |∇Φ | (cid:32)|∇Φ| Φ (cid:33) suchthat, N −µ + = B (Φ), (27) |∇Φ| a Φ 2 0 0 |∇Φ | (cid:32)|∇Φ|(cid:33) wherethegravitationalpotential,Φ,andscalepotential,Φ0, B= N −µ , (25) are negative quantities. As we have seen in Figure 7, B looks |∇Φ| a0 likeaMONDinterpolationfunction, B (Φ) = µ(Φ/Φ (Φ2)).Im- 2 0 plementing this, our new modified MOND function is written which is just moving everything in Equation 2 to one side, as- as suming spherical symmetry. The hope here was that we could find a function for B that is 0 in galaxies, thus preserving reg- ularMOND,butnon-zeroingalaxyclusters.Wecandetermine (cid:34) (cid:32)|∇Φ| Φ (cid:33) (cid:32) Φ (cid:33)(cid:35) ∇Φ = µ + −µ ∇Φ, (28) whetherthereisatrendifweplotthevalueofBforeachcluster N a Φ Φ 0 0 0 Articlenumber,page8of17 AlistairO.HodsonandHongshengZhao:GeneralizingMONDtoexplainthemissingmassingalaxyclusters 0.0 0.970 0.965 -0.2 0.960 -0.4 μNew B2 μ 0.955 -0.6 MOND 0.950 -0.8 0.945 0.940 -1.0 12.0 12.2 12.4 12.6 12.8 13.0 13.2 0.01 0.10 1 10 100 Log10(ΦNFW)(m2s-2) ∇Φ/a0 Fig.7.PlotshowingthevalueB (Equation26)asafunctionofNFW 2 gravitationalpotentialforeachcluster(thinlines).Weoverplotathin Fig.8.PlotshowinghowtheMONDinterpolationfunctionandthein- blue line that shows µ(Φ/Φ ) for Φ = −17000002 m2s−2. Note all terpolationfunctionofourrelation(Equations29and30)comparefor clustersliefairlyclosetothi0sline, w0ithsomediscrepancyduetoour a low potential object (Φ = Φext) for different values of acceleration. adoptedNFWprofilenotrepresentingthetotalpotential.This B cor- Wecanseelittlevariation,whichisidealforpreservinggalaxyphysics 2 rectiontoMONDallowstheMONDinterpolationfunctiontorunwith withthisnewrelation. thepotentialaswellastheacceleration. becorrect.Ideallyonewouldmakealargerscalesimulationen- whereΦ isourscalepotentialanalogoustotheMONDacceler- compassingalargeareaofspaceandworkouttheexternalpo- 0 ationscalea . tential(andfield)foreachgalaxy.Thiswasmentionedin(Haghi 0 Equation 28 is a relation based on the MOND paradigm, etal.2016)whousedtheexternalfieldtoexplaindecliningro- which in the future can hopefully lead to a gravity theory that tation curves. They also mentioned that this was now possible canexplainawaythemassdiscrepancyingalaxyclusterswhilst thankstotheMONDpatchinRAMSES,PhantomofRAMSES preservingthedynamicsofgalaxies. (Teyssier2002)and(Lüghausenetal.2015).Thiswouldrequire We have yet to mention the value for the scale poten- more work to incorporate for example EMOND as the gravity tial Φ0. For our results, we chose a scale potential of |Φ0| = solverwouldneedtobealteredtoallowvaryinga0values. 17000002m2s−2.WedonotattempttoperformarigorousMonte Carlo search over the parameter space in this work as we feel 6. ComparingthenewrelationtotheNFWfits thattodothisproperlywouldrequiresomeindependenttestsof theequationssuchasgravitationallensingandMilkyWaydata Inthissection,weprovideplotsofthedynamicalmass,themass toensureourparameterdoesnotcausecontentionwithlocalob- predicted by invoking the new relation and ΛCDM predictions servations.Thisisbestleftforfurtherwork. for the 12 clusters outlined in Section 3. The dynamical mass is calculated via Equation 12, the mass predicted from the new relation, 5.2. ComparisontoMOND Wedohowevershowaplotshowinghowtheinterpolationfunc- r2∇Φ tionofourrelationcompareswiththatofregularMOND(Figure M (r)= New (31) 8).Here, New G where∇Φ iscalculatedviaEquation28andtheΛCDMmass New (cid:34) (cid:32)|∇Φ| Φ (cid:33) (cid:32) Φ (cid:33)(cid:35) from, µ = µ + −µ (29) New a Φ Φ 0 0 0 and MΛCDM(r)= Mgas(r)+MBCG+MNFW(r). (32) The NFW parameters used in Equation 32 are taken from (cid:32)|∇Φ|(cid:33) (Vikhlininetal.2006)andaredisplayedhereinTable4inwhich µ =µ . (30) MOND a theNFWmassisdefinedas 0 thepWoetecnotimalpΦare=EΦquexattaiosndse2fi9neadndin3S0eicntiFoing2u.r3ef8o,radssiffumerienngtvthaal-t M (r)=4πρ r3(cid:34)ln(cid:32)1+ r (cid:33)−(cid:18)1+ rs(cid:19)−1(cid:35), (33) uesofaccelerationarangingfrom0.01a0−100a0.Wealsoshow NFW s s rs r rotationcurvesfortwogalaxies,M33andNGC4157,usingthe where ρ and r are the scale potential, and radius of the NFW new relation and EMOND (Figures 9 and 10). These rotation s s profile r is defined as r = r /c , where the values for r curves have been used in Sanders (1996) for M33 and Sanders s s 500 500 500 andc (theNFWconcentrationparameter)canbefoundinTa- &Verheijen(1998)forNGC4157.WeoverplottheMONDpre- 500 bles 3 and 4, respectively. The value ρ is calculated from the dictionforcomparison.ThereislittledeviationfromMONDfor s equation, thesetwoexamples.Theremaybesomedegeneracybetweenfit- tingthescalepotentialforagalaxyandthestellarmasstolight. We do not discuss this point here, but mention it as a possible 500(cid:32)r (cid:33)3 ρ avenue for future work. We have used a fixed background po- ρ = 500 crit , (34) tential for both galaxy cases whereas in practice, this may not s 3 rs log(cid:104)1+ r500(cid:105)−(cid:104)1+ rs (cid:105)−1 rs r500 Articlenumber,page9of17 A&Aproofs:manuscriptno.29358_Revised_19_Dec_2016 M33 NGC4157 120 200 100 180 1-) 1-) s s m 80 m 160 k k ( ( city 60 city 140 o o el el 120 V V 40 100 20 80 1-s) 1.5 1-s) 4 m m k k ( ( e e dul 1. dul 3 si si e e R R city 0.5 city 2. o o el el V V 0 1 0 2 4 6 8 5 10 15 20 25 Radius(kpc) Radius(kpc) Fig.9.TopplotshowingtherotationcurveofM33.Bluepointsarethe Fig.10.SameasFigure9forgalaxyNGC4157.Weuseastellarmass datawitherrorbars,theblackdashedlineistheregularMONDfit,the tolightof1.69foreachcase. redlineisthenewrelation,andthebluelineisEMOND.Inthebottom plotwealsoshowtheresidualbetweenMOND,thenewrelation,and EMOND.Notethedifferencebetweentheserotationcurvesareactually tionalenvironments(seeSection7).Perhapsarefinementofthe tiny(∼1km/s).Hereweadoptedabackgroundpotentialof10−6c2given formalisminthesehighpotentialregionsmaysolvetheproblem inZhao&Famaey(2012)),andastellarmasstolightof0.722. of A2390. We also acknowledge that a rigorous error analysis has not been performed and thus it is hard to gauge how well Table 4. NFW concentration parameters at radius r . NFW profiles thisnewrelationhasfairedinpredictingclustermasses. 500 canbedeterminedbycombiningthesewithther500parametersgivenin Also, we do not truncate the gas density in our calculation. Table3,thevaluesforrsandthevalueforρsgiveninEquation34. Itisunrealisticthatthegasdensityextendstor200.Aswedonot havethenecessarydatatoconstrainthis,wealsoleavethisasan Cluster c 500 openissue. A133 3.18 A262 3.54 A478 3.57 7. Limitationsofthenewrelationandrequired A1413 2.93 testingoftheformalism A1795 3.21 A1991 4.32 Althoughthenewrelationcanrecoverthemassoftheclusterto A2029 4.04 reasonableprecision,thereisasevereflawintheempiricallaw. RXJ1159 1.7 Both the gravitational potential and acceleration are large near MKW4 2.54 stars and black holes. Therefore we have |∇Φ| + Φ >> 1 and A383 4.32 Φ >>1.Thisresultsin a0 Φ0 Φ A907 3.48 0 A2390 1.66 (cid:34) (cid:32)|∇Φ| Φ (cid:33) (cid:32) Φ (cid:33)(cid:35) µ + −µ →1−1→0. (35) a Φ Φ 0 0 0 whereρ isthecriticaldensity. crit andthusEquation28becomes, We can see from the dynamical mass plots (Figures 11-16) for each cluster that on average the new relation can provide a reasonableboost,oratleastareasonablematchtotheNFWpro- ∇Φ=∇Φ /0→∞. (36) N file, for the sample. The most noticeable outlier from our new relationisA2390,whichhasaverypoorfit.A2390isthelargest Therefore, although this new formula can cover cluster and clusterandthushasthelargestgravitationalpotential.Thisnew galaxy scales, it inevitably fails on the stellar scale as the pre- relation,inthiscurrentfrom,hasaprobleminveryhighgravita- dicted gravity tends towards infinity. This problem is inherent Articlenumber,page10of17

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.