SpringerSeriesin optical sciences 146 foundedbyH.K.V.Lotsch Editor-in-Chief: W.T.Rhodes,Atlanta EditorialBoard: A.Adibi,Atlanta T.Asakura,Sapporo T.W.Ha¨nsch,Garching T.Kamiya,Tokyo F.Krausz,Garching B.Monemar,Linko¨ping H.Venghaus,Berlin H.Weber,Berlin H.Weinfurter,Mu¨nchen SpringerSeriesin optical sciences TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes,Georgia InstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinallmajorareasof optics:lasersandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques,optoelectronics, quantuminformation,informationoptics,appliedlasertechnology,industrialapplications,andother topicsofcontemporaryinterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingamanu- script.SubmissionofmanuscriptsshouldbemadetotheEditor-in-ChieforoneoftheEditors.Seealso www.springer.com/series/624 Editor-in-Chief WilliamT.Rhodes GeorgiaInstituteofTechnology SchoolofElectricalandComputerEngineering Atlanta,GA30332-0250,USA E-mail:[email protected] EditorialBoard AliAdibi BoMonemar GeorgiaInstituteofTechnology DepartmentofPhysics SchoolofElectricalandComputerEngineering andMeasurementTechnology Atlanta,GA30332-0250,USA MaterialsScienceDivision E-mail:[email protected] Linko¨pingUniversity ToshimitsuAsakura 58183Linko¨ping,Sweden E-mail:[email protected] Hokkai-GakuenUniversity FacultyofEngineering HerbertVenghaus 1-1,Minami-26,Nishi11,Chuo-ku FraunhoferInstitutfu¨rNachrichtentechnik Sapporo,Hokkaido064-0926,Japan Heinrich-Hertz-Institut E-mail:[email protected] Einsteinufer37 TheodorW.Ha¨nsch 10587Berlin,Germany Max-Planck-Institutfu¨rQuantenoptik E-mail:[email protected] Hans-Kopfermann-Straße1 HorstWeber 85748Garching,Germany E-mail:[email protected] TechnischeUniversita¨tBerlin TakeshiKamiya OptischesInstitut Straßedes17.Juni135 MinistryofEducation,Culture,Sports 10623Berlin,Germany ScienceandTechnology E-mail:[email protected] NationalInstitutionforAcademicDegrees 3-29-1Otsuka,Bunkyo-ku HaraldWeinfurter Tokyo112-0012,Japan Ludwig-Maximilians-Universita¨tMu¨nchen E-mail:[email protected] SektionPhysik FerencKrausz Schellingstraße4/III Ludwig-Maximilians-Universita¨tMu¨nchen 80799Mu¨nchen,Germany Lehrstuhlfu¨rExperimentellePhysik E-mail:[email protected] AmCoulombwall1 85748Garching,Germany and Max-Planck-Institutfu¨rQuantenoptik Hans-Kopfermann-Straße1 85748Garching,Germany E-mail:[email protected] PleaseviewavailabletitlesinSpringerSeriesinOpticalSciences onserieshomepagehttp://www.springer.com/series/624 Jesper Glückstad Darwin Palima (cid:71)(cid:71)(cid:101)(cid:110)(cid:101)(cid:114)(cid:97)(cid:108)(cid:105)(cid:122)(cid:101)(cid:100)(cid:32)(cid:80)(cid:104)(cid:97)(cid:115)(cid:101) (cid:67)(cid:111)(cid:110)(cid:116)(cid:114)(cid:97)(cid:115)(cid:116) (cid:65)(cid:112)(cid:112)(cid:108)(cid:105)(cid:99)(cid:97)(cid:116)(cid:105)(cid:111)(cid:110)(cid:115)(cid:32)(cid:105)(cid:110)(cid:32)(cid:79)(cid:112)(cid:116)(cid:105)(cid:99)(cid:115)(cid:32)(cid:97)(cid:110)(cid:100)(cid:32)(cid:80)(cid:104)(cid:111)(cid:116)(cid:111)(cid:110)(cid:105)(cid:99)(cid:115) 123 ProfessorJesper Glückstad, PhD, DSc DTU Foto nik, Department of Photonics Engineering TechnicalUniversity of Denmark DK-2800 Kgs. Lyngby, Denmark Darwin Palima, Assistant Professor, PhD DTU Fotonik, Department of Photonics Engineering Technical University of Denmark DK-2800 Kgs. Lyngby, Denmark Programmable Phase Optics: www.ppo.dk Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands In association with Canopus Academic Publishing Limited, 15 Nelson Parade, Bedminster, Bristol, BS3 4HY, UK SpringerSeriesinOpticalSciences ISSN0342-4111 e-ISSN1556-1534 ISBN978-90-481-2838-9 e-ISBN978-90-481-2839-6 DOI10.1007/978-90-481-2839-6 Springer Dordrecht Heidelberg London New York LibraryofCongressControlNumber: 2009931245 © 2009 Canopus Academic Publishing Limited No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written per- mission from the Publisher, with the exception of any material supplied specifically forthe purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper 987654321 Springer is part of Springer Science+Business Media (www.springer.com) Preface This book is based on the authors’ work for more than a decade, initiated by a generic patent application for the generalized phase contrast (GPC) method in the mid- nineties. In short, the GPC invention propounds a generalization of Nobel Laureate Fritz Zernike’s original phase contrast method not only in terms of a wider domain of theoretical operation but, in particular, also opening up new and exciting applications beyond optical microscopy. After the issuing of this key patent for GPC, a number of associated application patents have been filed, in addition to more than 150 papers and conference presentations on the theoretical and experimental aspects of GPC and its applications. A culmination came in early 2005 when one of the authors (J. Glückstad) defended his dissertation on the GPC method, for which he obtained a higher doctorate degree (Doctor of Science) from the Technical University of Denmark. It was at this point that the idea was originally fostered to write a monograph and explain to a wider audience about GPC and its applications in contemporary optics and photonics. The present book is strongly supported by a rich portfolio of research work, both of theoreti- cal and experimental nature, which have been undertaken in collaboration with a number of scientists around the world whom we would like to explicitly acknowledge for their key contributions: L. Lading, H. Toyoda, T. Hara, Y. Suzuki, N. Yoshida, P. C. Mogensen, R. L. Eriksen, V. R. Daria, S. Sinzinger, P. J. Rodrigo, C. A. Alonzo, N. Arneborg, I. Perch-Nielsen, P. Bøggild, J. Jahns, P. Ormos and L. Kelemen. Copenhagen, Denmark, 1 July 2009 Jesper Glückstad Darwin Palima “With the phase-contrast method still in the first somewhat primitive stage, I went in to the Zeiss Works in Jena to demonstrate. It was not received with such enthusiasm as I had expected. Worst of all was one of the oldest scientific associates, who said: ‘If this had any practical value, we would ourselves have invented it long ago’. Long ago, indeed!” Fritz Zernike Contents 1111 IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn............................................................................................................................1 1.1 The Generalized Phase Contrast Method.............................................................2 1.2 From Phase Visualization to Wavefront Engineering........................................3 1.3 GPC – an Enabling Technology..............................................................................4 1.4 GPC as Information Processor.................................................................................5 References..................................................................................................................................5 2222 GGGGeeeennnneeeerrrraaaalllliiiizzzzeeeedddd PPPPhhhhaaaasssseeee CCCCoooonnnnttttrrrraaaasssstttt...............................................................................................7 2.1 Zernike Phase Contrast..............................................................................................8 2.2 Towards a Generalized Phase Contrast Method.................................................9 References................................................................................................................................11 3333 FFFFoooouuuunnnnddddaaaattttiiiioooonnnn ooooffff GGGGeeeennnneeeerrrraaaalllliiiizzzzeeeedddd PPPPhhhhaaaasssseeee CCCCoooonnnnttttrrrraaaasssstttt:::: MMMMaaaatttthhhheeeemmmmaaaattttiiiiccccaaaallll AAAAnnnnaaaallllyyyyssssiiiissss ooooffff CCCCoooommmmmmmmoooonnnn----PPPPaaaatttthhhh IIIInnnntttteeeerrrrffffeeeerrrroooommmmeeeetttteeeerrrrssss................................................................................13 3.1 Common-Path Interferometer: a Generic Phase Contrast Optical System............................................................................................................13 3.2 Field Distribution at the Image Plane of a CPI..................................................15 3.2.1 Assumption on the Phase Object’s Spatial Frequency Components..............................................................................................16 3.2.2 The SRW Generating Function...........................................................18 3.2.3 The Combined Filter Parameter..........................................................21 3.3 Summary and Links...................................................................................................24 References................................................................................................................................25 4444 PPPPhhhhaaaassssoooorrrr CCCChhhhaaaarrrrtttt ffffoooorrrr CCCCPPPPIIII----AAAAnnnnaaaallllyyyyssssiiiissss.......................................................................................27 4.1 Input Phase to Output Intensity Mapping.........................................................27 4.2 Modified Phasor Chart Based on Complex Filter Parameter........................30 viii Contents 4.3 Summary and Links...................................................................................................32 References................................................................................................................................33 5555 WWWWaaaavvvveeeeffffrrrroooonnnntttt SSSSeeeennnnssssiiiinnnngggg aaaannnndddd AAAAnnnnaaaallllyyyyssssiiiissss UUUUssssiiiinnnngggg GGGGPPPPCCCC...........................................................35 5.1 GPC Mapping for Wavefront Measurement.....................................................36 5.2 Optimal Unambiguous Intensity-to-Phase Mapping.......................................39 5.3 Optimising the Linearity of the Intensity-to-Phase Mapping.......................41 5.4 Generalising Henning´s Phase Contrast Method.............................................43 5.5 Linear Phase-to-Intensity Mapping over the Entire Phase Unity Circle.................................................................................................................46 5.6 Accurate Quantitative Phase Imaging Using Generalized Phase Contrast............................................................................................................49 5.6.1 The Synthetic Reference Wave in Quantitative Phase Microscopy.................................................................................................50 5.6.2 Limitations of the Plane Wave Model of the SRW........................51 5.6.3 GPC-Based Phase-Shifting Interferometry.......................................53 5.6.4 Robustness of the GPC Model of the SRW......................................55 5.6.5 GPC-Based Quantitative Phase Imaging...........................................55 5.7 Summary and Links...................................................................................................58 References................................................................................................................................59 6666 GGGGPPPPCCCC----BBBBaaaasssseeeedddd WWWWaaaavvvveeeeffffrrrroooonnnntttt EEEEnnnnggggiiiinnnneeeeeeeerrrriiiinnnngggg............................................................................61 6.1 GPC Framework for Light Synthesis....................................................................62 6.2 Optimizing Light Efficiency...................................................................................64 6.2.1 Dark Background Condition for a Lossless Filter...........................65 6.2.2 Optimal Filter Phase Shift.....................................................................66 6.2.3 Optimal Input Phase Encoding............................................................66 6.3 Phase Encoding for Binary Output Intensity Patterns....................................68 6.3.1 Ternary Input Phase Encoding.............................................................68 6.3.2 Binary Input Phase Encoding................................................................69 6.4 Generalized Optimization for Light Synthesis..................................................71 6.5 Dealing with SRW Inhomogeneity.......................................................................74 6.5.1 Filter Aperture Correction....................................................................74 6.5.2 Input Phase Encoding Compensation................................................76 6.5.3 Input Amplitude Profile Compensation............................................77 6.6 Generalized Phase Contrast with Rectangular Apertures...............................80 6.6.1 Phase-to-Intensity Mapping..................................................................81 6.6.2 Approximating the Reference Wave...................................................83 6.6.3 Projection Design Illustration...............................................................84 6.7 Comparison of Generalized Phase Contrast and Computer- Generated Holography for Laser Image Projection..........................................85 6.7.1 Pattern Projection and Information Theory....................................86 6.7.2 Performance Benchmarks......................................................................88 Contents ix 6.7.3 Practical SLM Devices: Performance Constraints..........................92 6.7.4 Final Remarks............................................................................................95 6.8 Wavelength Dependence of GPC-Based Pattern Projection.........................95 6.9 Summary and Links................................................................................................100 References.............................................................................................................................101 7777 SSSShhhhaaaappppiiiinnnngggg LLLLiiiigggghhhhtttt bbbbyyyy GGGGeeeennnneeeerrrraaaalllliiiizzzzeeeedddd PPPPhhhhaaaasssseeee CCCCoooonnnnttttrrrraaaasssstttt......................................................103 7.1 Binary Phase Modulation for Efficient Binary Projection...........................104 7.1.1 Experimental Demonstration............................................................105 7.2 Ternary-Phase Modulation for Binary Array Illumination.........................107 7.2.1 Ternary-Phase Encoding.....................................................................108 7.2.2 Experimental Results............................................................................109 7.3 Dynamically Reconfigurable Optical Lattices.................................................115 7.3.1 Dynamic Optical Lattice Generation..............................................115 7.3.2 Dynamic Optical Obstacle Arrays....................................................117 7.4 Photon-Efficient Grey-Level Image Projection...............................................119 7.4.1 Matching the Phase-to-Intensity Mapping Scheme to Device Constraints................................................................................120 7.4.2 Efficient Experimental Image Projection Using Practical Device Constraints................................................................................122 7.4.3 Photon-Efficient Grey-Level Image Projection with Next- Generation Devices...............................................................................124 7.5 Reshaping Gaussian Laser Beams........................................................................130 7.5.1 Patterning Gaussian Beams with GPC as Phase-Only Aperture...................................................................................................132 7.5.2 Homogenizing the Output Intensity...............................................134 7.5.3 Gaussian-to-Flattop Conversion.......................................................137 7.6 Achromatic Spatial Light Shaping and Image Projection............................140 7.7 Summary and Links................................................................................................144 References.............................................................................................................................144 8888 GGGGPPPPCCCC----BBBBaaaasssseeeedddd PPPPrrrrooooggggrrrraaaammmmmmmmaaaabbbblllleeee OOOOppppttttiiiiccccaaaallll MMMMiiiiccccrrrroooommmmaaaannnniiiippppuuuullllaaaattttiiiioooonnnn..................................151 8.1 Multiple-Beam GPC-Trapping for Two-Dimensional Manipulation of Particles with Various Properties...................................................................152 8.2 Probing Growth Dynamics in Microbial Cultures of Mixed Yeast Species Using GPC-Based Optical Micromanipulation...............................164 8.3 Three-Dimensional Trapping and Manipulation in a GPC System.........167 8.4 Real-Time Autonomous 3D Control of Multiple Particles with Enhanced GPC Optical Micromanipulation System....................................172 8.5 GPC-Based Optical Micromanipulation of Particles in Three Dimensions with Simultaneous Imaging in Two Orthogonal Planes.......176 x Contents 8.6 All-GPC Scheme for Three-Dimensional Multi-Particle Manipulation Using a Single Spatial Light Modulator.................................180 8.6.1 GPC system with Two Parallel Input Beams.................................181 8.6.2 Single-SLM Full-GPC Optical Trapping System.........................184 8.7 GPC-Based Optical Actuation of Microfabricated Tools...........................186 8.7.1 Design and Fabrication of Micromachine Elements....................187 8.7.2 Actuation of Microtools by Multiple Counterpropagating- Beam Traps.............................................................................................188 8.8 Autonomous Cell Handling by GPC in a Microfluidic Flow.....................191 8.8.1 Experimental Setup...............................................................................192 8.8.2 Experimental Demonstration............................................................193 8.9 Autonomous Assembly of Micropuzzles Using GPC...................................197 8.9.1 Design and Fabrication of Micropuzzle Pieces..............................198 8.9.2 Optical Assembly of Micropuzzle Pieces........................................200 8.10 Optical Forces in Three-Dimensional GPC-Trapping.................................203 8.10.1 Optical Forces on a Particle Illuminated by Counterpropagating Beams................................................................203 8.10.2 Top-Hat Field Distribution and Propagation...............................206 8.10.3 Numerical Calculation of Force Curves..........................................207 8.11 Summary and Links................................................................................................212 References.............................................................................................................................213 9999 AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee GGGGPPPPCCCC SSSScccchhhheeeemmmmeeeessss.............................................................................................217 9.1 GPC Using a Light-Induced Spatial Phase Filter...........................................218 9.1.1 Self-Induced PCF on a Kerr Medium..............................................219 9.1.2 Kerr Medium with Saturable Nonlinearity....................................221 9.1.3 Experimental Demonstration............................................................224 9.2 GPC Using a Variable Liquid-Crystal Filter...................................................226 9.2.1 Experimental Demonstration............................................................228 9.3 Multibeam-Illuminated GPC With a Plurality of Phase Filtering Regions......................................................................................................229 9.4 Miniaturized GPC Implementation via Planar Integrated Micro-Optics............................................................................................................231 9.4.1 Experimental Demonstration............................................................234 9.5 GPC in Combination with Matched Filtering...............................................236 9.5.1 The mGPC Method: Incorporating Optical Correlation into a GPC Filter...................................................................................237 9.5.2 Optimizing the mGPC Method........................................................239 9.6 Summary and Links................................................................................................244 References.............................................................................................................................245 Contents xi 11110000 RRRReeeevvvveeeerrrrssssaaaallll ooooffff tttthhhheeee GGGGPPPPCCCC MMMMeeeetttthhhhoooodddd.......................................................................................247 10.1 Amplitude Modulated Input in a Common-Path Interferometer............248 10.2 CPI Optimization for the Reverse Phase Contrast Method.......................250 10.3 Experimental Demonstration of Reverse Phase Contrast............................255 10.3.1 Experimental Setup...............................................................................256 10.3.2 Matching the Filter Size to the Input Aperture............................257 10.3.3 RPC-Based Phase Modulation Using a Fixed Amplitude Mask....................................................................................258 10.3.4 RPC-Based Phase Modulation Using an SLM as Dynamic Amplitude Mask....................................................................................262 10.4 Reverse Phase Contrast Implemented on a High-Speed DMD.................263 10.4.1 Setup.........................................................................................................264 10.4.2 Results and Discussion.........................................................................266 10.5 Summary and Links................................................................................................268 References.............................................................................................................................270 11111111 OOOOppppttttiiiiccccaaaallll EEEEnnnnccccrrrryyyyppppttttiiiioooonnnn aaaannnndddd DDDDeeeeccccrrrryyyyppppttttiiiioooonnnn.........................................................................273 11.1 Phase-Only Optical Cryptography.....................................................................274 11.2 Miniaturization of the GPC Method via Planar Integrated Micro-Optics............................................................................................................276 11.3 Miniaturized GPC Method for Phase-Only Optical Decryption..............278 11.4 Phase Decryption in a Macro-Optical GPC....................................................280 11.5 Envisioning a Fully Integrated Miniaturized System.....................................281 11.6 Decrypting Binary Phase Patterns by Amplitude...........................................283 11.6.1 Principles and Experimental Considerations.................................284 11.6.2 Numerical simulations.........................................................................291 11.7 Summary and Links................................................................................................296 References.............................................................................................................................297 11112222 CCCCoooonnnncccclllluuuuddddiiiinnnngggg RRRReeeemmmmaaaarrrrkkkkssss aaaannnndddd OOOOuuuuttttllllooooooookkkk............................................................................299 12.1 Formulating Generalized Phase Contrast in a Common-Path Interferometer..........................................................................................................299 12.2 Sensing and Visualization of Unknown Optical Phase.................................300 12.3 Synthesizing Customized Intensity Landscapes.............................................301 12.4 Projecting Dynamic Light for Programmable Optical Trapping and Micromanipulation........................................................................................301 12.5 Exploring Alternative Implementations...........................................................302 12.6 Creating Customized Phase Landscapes: Reversed Phase Contrast Effect.........................................................................................................303 12.7 Utilizing GPC and RPC in Optical Cryptography.......................................303 12.8 Gazing at the Horizon Through a Wider Window.......................................304