ebook img

Generalized Locally Toeplitz Sequences: Theory and Applications: Volume II PDF

199 Pages·2018·2.948 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized Locally Toeplitz Sequences: Theory and Applications: Volume II

Carlo Garoni · Stefano Serra-Capizzano Generalized Locally Toeplitz Sequences: Theory and Applications Volume II Generalized Locally Toeplitz Sequences: Theory and Applications Carlo Garoni Stefano Serra-Capizzano (cid:129) Generalized Locally Toeplitz Sequences: Theory and Applications Volume II 123 CarloGaroni StefanoSerra-Capizzano Department ofScience Department ofScience andHighTechnology andHighTechnology University of Insubria University of Insubria Como, Italy Como, Italy ISBN978-3-030-02232-7 ISBN978-3-030-02233-4 (eBook) https://doi.org/10.1007/978-3-030-02233-4 ThisbookhasbeenrealizedwiththefinancialsupportoftheItalianINdAM(IstitutoNazionalediAlta Matematica)andtheEuropean“Marie-CurieActions”ProgrammethroughtheGrantPCOFUND-GA- 2012-600198. LibraryofCongressControlNumber:2018958367 Mathematics Subject Classification (2010): 15B05, 65N06, 65N25, 65N30, 65N35, 47B06, 35P20, 15A18,15A60,15A69 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Sequences of matrices with increasing size naturally arise in several contexts and especially in the discretization of continuous problems, such as integral and dif- ferentialequations.ThetheoryofgeneralizedlocallyToeplitz(GLT)sequenceswas developedinordertocompute/analyzetheasymptoticspectraldistributionofthese sequences of matrices, which in many cases turn out to be GLT sequences. In the first volume [22], we presented the theory of univariate/unilevel GLT sequences, which arise in the discretization of unidimensional integral and differ- ential equations; this is the reason why the first volume addressed only unidi- mensional applications. In this second volume, we present the theory of multivariate/multilevel GLT sequences, which arise in the discretization of multi- dimensional integral and differential equations. The focus here is accordingly on multidimensional applications, especially partial differential equations (PDEs). Itisimportanttoemphasizethattheextensionfromtheunivariatecaseaddressed in [22] to the multivariate case addressed here, despite being fundamental for the applicationsasitallowsonetofaceconcretePDEs,isessentiallyatechnicalmatter whose purpose is to illustrate the appropriate generalization of ideas already pre- sented in [22]. The fact that all the main “GLT ideas” have been covered in [22] makes it an essential prerequisite to this book. In particular, apart from (almost) obvious adaptations, several “multivariate proofs” are the same as their corre- sponding“univariateversions”from[22].Wehavethereforebeentemptedtoomit themhere soastoshortenthebook,butultimatelywedidnotoptforthissolution in order to help the reader gain familiarity with the multivariate language (espe- cially the multi-index notation). The book is conceptually divided into two parts. The first part (Chaps. 1–5) covers the theory of multilevel GLT sequences, which is finally summarized in Chap. 6. The second part (Chap. 7) is devoted to PDE applications. The book is intended for use as a text for graduate or advanced undergraduate courses.Itshouldalsobeusefulasareferenceforresearchersworkinginthefields oflinearandmultilinearalgebra,numericalanalysis,andmatrixanalysis.Givenits analyticspirit, it could also be of interest toanalysts, particularly those working in the fields of measure and operator theory. v vi Preface As already pointed out, the first volume [22] is an essential prerequisite to this second volume. It also provides detailed motivations to the theory of GLT sequences[22,pp.1–3]whichwillnotberepeatedhereforthesakeofconciseness. In addition to [22], a basic knowledge of multidimensional integro-differential calculus (partial derivatives, multiple integrals, etc.) is required. Assumingthereaderpossessesthenecessaryprerequisites,mostofwhich,ifnot alreadyaddressedin[22], willbe tackled inChap.2,there exists away ofreading this book that allows one to omit essentially all the mathematical details/ technicalitieswithoutlosingthecore.Thisisprobably“thebestwayofreading”for thosewholovepracticemorethantheory,butitisalsoadvisablefortheorists,who can recover the missing details afterward. It consists in reading carefully the summary of the theory in Chap. 6 and the applications in Chap. 7. Toconclude,wewishtoexpressourgratitudetoBrunoIannazzo,CarlaManni, and Hendrik Speleers, who awakened the interest in the theory of GLT sequences and ultimately inspired the writing of this book. We also wish to thank all of our colleagues who have worked in the field of “Toeplitz matrices and spectral distributions” and contributed to laying the foundations of the theory of GLT sequences. We mention in particular Bernhard Beckermann, Albrecht Böttcher, Fabio Di Benedetto, Marco Donatelli, Leonid Golinskii, Sergei Grudsky, Arno Kuijlaars, Maya Neytcheva, Debora Sesana, Bernd Silbermann, Paolo Tilli, Eugene Tyrtyshnikov, and Nickolai Zamarashkin. Finally, special thanks go to those researchers who, possibly attracted by the first volume [22], decided to enter the research field of GLT sequences. We mention in particular Giovanni Barbarino from Scuola Normale Superiore (Pisa, Italy), Davide Bianchi and Isabella Furci from University of Insubria (Como, Italy), Ali Dorostkar and Sven-ErikEkströmfromUppsalaUniversity(Uppsala,Sweden),MariarosaMazza and Ahmed Ratnani from the Max Planck Institute for Plasma Physics (Munich, Germany). Several oftheir contributions will certainly appear in a future edition of both volumes I and II. Basedontheirresearchexperience,theauthorsproposeareferencetextbookin two volumes on the theory of generalized locally Toeplitz sequences and their applications. The first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while this second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. Como, Italy Carlo Garoni August 2018 Stefano Serra-Capizzano Contents 1 Notes to the Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 General Notation and Terminology. . . . . . . . . . . . . . . . . . 3 2.1.2 Multi-index Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Multilevel Matrix-Sequences . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Multivariate Trigonometric Polynomials. . . . . . . . . . . . . . . . . . . . 12 2.3 Multivariate Riemann-Integrable Functions. . . . . . . . . . . . . . . . . . 16 2.4 Matrix Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Tensor Products and Direct Sums . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Singular Value and Eigenvalue Distribution of a Sequence of Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.1 The Notion of Singular Value and Eigenvalue Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.2 Clustering and Attraction . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.3 Zero-Distributed Sequences . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.4 Sparsely Unbounded and Sparsely Vanishing Sequences of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.5 Spectral Distribution of Sequences of Perturbed Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Approximating Classes of Sequences. . . . . . . . . . . . . . . . . . . . . . 31 2.7.1 Definition of a.c.s. and a.c.s. Topology. . . . . . . . . . . . . . . 31 2.7.2 The a.c.s. Tools for Computing Singular Value and Spectral Distributions . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.3 The a.c.s. Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7.4 Some Criteria to Identify a.c.s.. . . . . . . . . . . . . . . . . . . . . 35 2.7.5 An Extension of the Concept of a.c.s.. . . . . . . . . . . . . . . . 36 vii viii Contents 3 Multilevel Toeplitz Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Multilevel Toeplitz Matrices and Multilevel Toeplitz Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Basic Properties of Multilevel Toeplitz Matrices. . . . . . . . . . . . . . 42 3.3 Schatten p-Norms of Multilevel Toeplitz Matrices . . . . . . . . . . . . 46 3.4 Multilevel Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Singular Value and Spectral Distribution of Multilevel Toeplitz Sequences: An a.c.s.-Based Proof. . . . . . . . . . . . . . . . . . 55 3.6 Extreme Eigenvalues of Hermitian Multilevel Toeplitz Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Multilevel Locally Toeplitz Sequences. . . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Multilevel LT Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 Definition of Multilevel LT Operator . . . . . . . . . . . . . . . . 62 4.1.2 Properties of the Multilevel LT Operator. . . . . . . . . . . . . . 67 4.2 Definition of Multilevel LT and sLT Sequences. . . . . . . . . . . . . . 72 4.3 Fundamental Examples of Multilevel LT Sequences. . . . . . . . . . . 72 4.3.1 Zero-Distributed Sequences . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.2 Sequences of Multilevel Diagonal Sampling Matrices . . . . 73 4.3.3 Multilevel Toeplitz Sequences . . . . . . . . . . . . . . . . . . . . . 79 4.4 Singular Value and Spectral Distribution of a Finite Sum of Multilevel LT Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Algebraic Properties of Multilevel LT Sequences . . . . . . . . . . . . . 85 4.6 Characterizations of Multilevel LT Sequences . . . . . . . . . . . . . . . 86 5 Multilevel Generalized Locally Toeplitz Sequences. . . . . . . . . . . . . . 91 5.1 Equivalent Definitions of Multilevel GLT Sequences . . . . . . . . . . 91 5.2 Singular Value and Spectral Distribution of Multilevel GLT Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3 Approximation Results for Multilevel GLT Sequences . . . . . . . . . 95 5.3.1 Characterizations of Multilevel GLT Sequences. . . . . . . . . 99 5.3.2 Sequences of Multilevel Diagonal Sampling Matrices . . . . 100 5.4 The Multilevel GLT Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5 Algebraic-Topological Definitions of Multilevel GLT Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Summary of the Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1.1 Multilevel GLT Preconditioning . . . . . . . . . . . . . . . . . . . . 121 7.1.2 Multilevel Arrow-Shaped Sampling Matrices. . . . . . . . . . . 122 7.2 Applications to PDE Discretizations: An Introduction. . . . . . . . . . 124 7.3 FD Discretization of Convection-Diffusion-Reaction PDEs . . . . . . 127 7.4 FE Discretization of Convection-Diffusion-Reaction PDEs . . . . . . 136 Contents ix 7.5 B-Spline IgA Collocation Discretization of Convection-Diffusion-Reaction PDEs. . . . . . . . . . . . . . . . . . . . 146 7.6 Galerkin B-Spline IgA Discretization of Convection-Diffusion-Reaction PDEs. . . . . . . . . . . . . . . . . . . . 160 7.7 Galerkin B-Spline IgA Discretization of Second-Order Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 References.... .... .... .... ..... .... .... .... .... .... ..... .... 183 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 187 About the Authors Dr.CarloGaroni graduatedinMathematicsattheUniversityofInsubria(Italy)in 2011andreceivedhisPh.D.inMathematicsatthesameuniversityin2015.Hehas pursued research at the Universities of Insubria and Rome “Tor Vergata,” and he now has a Marie-Curie postdoctoral position at the USI University of Lugano (Switzerland). He has published about 25 research papers in different areas of Mathematics, most of which are connected with the theory of GLT sequences and its applications. Prof.StefanoSerra-Capizzano isaFullProfessorofNumericalAnalysis,Deputy Rector of the University of Insubria (Italy), and a long-term Visiting Professor at UppsalaUniversity(Sweden).Hehasauthoredover200researchpapersindifferent areas of Mathematics, with more than 90 collaborators all over the world, and he has recently won a Prodi Chair Professorship in Nonlinear Analysis at Würzburg University (Germany). He is the founder of the Ph.D. program “Mathematics of Computation” at the University of Insubria’s Department of Science and High Technology. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.