ebook img

Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I PDF

316 Pages·2017·2.393 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I

Carlo Garoni · Stefano Serra-Capizzano Generalized Locally Toeplitz Sequences: Theory and Applications Volume I Generalized Locally Toeplitz Sequences: Theory and Applications Carlo Garoni Stefano Serra-Capizzano (cid:129) Generalized Locally Toeplitz Sequences: Theory and Applications Volume I 123 CarloGaroni StefanoSerra-Capizzano Department ofScience Department ofScience andHighTechnology andHighTechnology University of Insubria University of Insubria Como Como Italy Italy ISBN978-3-319-53678-1 ISBN978-3-319-53679-8 (eBook) DOI 10.1007/978-3-319-53679-8 ThepresentbookhasbeenrealizedwiththefinancialsupportoftheItalianINdAM(Istituto NazionalediAltaMatematica)andtheEuropean“Marie-CurieActions”Programmethrough the GrantPCOFUND-GA-2012-600198. LibraryofCongressControlNumber:2017932016 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Sequences of matrices with increasing size naturally arise in several contexts and especially in the discretization of continuous problems, such as integral and dif- ferentialequations.ThetheoryofgeneralizedlocallyToeplitz(GLT)sequenceswas developedinordertocompute/analyzetheasymptoticspectraldistributionofthese sequences of matrices, which in many cases turn out to be GLT sequences. In this book we present the theory of GLT sequences together with some of its main applications. We will also refer the reader to the available literature for further applications that are not included herein. It normally happens in mathematics that ideas are better conveyed in the uni- variate setting and then transferred to the multivariate setting by successive gen- eralizations. This is the case with mathematical analysis, for example. Any first course inmathematical analysisfocuseson the theory of continuous/differentiable/ integrable functions of one variable, while concepts like multivariate continuous functions, partial derivatives, multiple integrals, etc., are introduced only later (usuallyinasecondcourse,notinthefirstone).Somethingsimilaroccurshere.The presentvolumeistheanalogofafirstcourseinmathematicalanalysis;itaddresses the theory of what we may call univariate GLT sequences (or unilevel GLT sequencesaccordingtoamoretraditionalterminology).Asweshallsee,univariate GLTsequencesariseinthediscretizationofunidimensionalintegralanddifferential equations. The analog of a second course in mathematical analysis is [62], which deals with multivariate/multilevel GLTsequences, akindof sequencearising from the discretization of multidimensional integral and differential equations. The generalization to the multivariate setting offered by [62] is certainly fundamental, especiallyfortheapplications,butitisessentiallyatechnicalmatterwhosepurpose is to implement appropriately the ideas we are already informed of by the present volume. In short, this volume already contains all the ideas of the theory of GLT sequences, just as a first course in mathematical analysis contains all the ideas of integro-differential calculus. v vi Preface Thebookisconceptuallydividedintotwoparts.Thefirstpart(Chaps.1–8)covers thetheoryofGLT sequences,whichisfinallysummarizedinChap.9.The second part (Chap. 10) is devoted to the applications, corroborated by several numerical illustrations.Someexercisesarescatteredinthetextandtheirsolutionsarecollected inChap.12.Eachexerciseisplacedataparticularspotwiththeideathatthereaderat thatstagepossessesalltheelementstosolveit. The book is intended for use as a text for graduate or advanced undergraduate courses.Itshouldalsobeusefulasareferenceforresearchersworkinginthefields oflinearalgebra,numericalanalysis,andmatrixanalysis.Givenitsanalyticspirit,it could also be of interest for analysts, primarily those working in the fields of measure and operator theory. Thereaderisexpectedtobefamiliarwithbasiclinearalgebraandmatrixanalysis. Any standard university course on linear algebra covers all that is needed here. Concerning matrix analysis, an adequate preparation is provided by, e.g., [16] or [67];wereferinparticularto[16,Chaps.1–3,Sects.1–3ofChap.6,andSects.1–8 of Chap. 7] and [67, Chap. 2, Sects. 5.5, 7.1–7.2, and 8.1]. In addition, the reader whoknowsChaps.1–4ofBhatia’sbook[12]willcertainlytakeadvantageofthis. Somefamiliaritywithrealandcomplexanalysis(especially,measureandintegration theory)isalsonecessary.Forourpurposes,Rudin’sbook[95]ismorethanenough; actually,Chaps.1–5of[95]coveralmosteverythingoneneedstoknow.Finally,a basicknowledgeofgeneraltopology,functionalanalysis,andFourieranalysiswill be ofhelp. Assuming the reader possesses the above prerequisites, most of which will be addressedinChap.2,thereexistsawayofreadingthisbookthatallowsonetoomit essentiallyallthemathematicaldetails/technicalitieswithoutlosingthecore.Thisis probably “the best way of reading” for those who love practice more than theory, butitisalsoadvisablefortheorists,whocanrecoverthemissingdetailsafterwards. It consists in reading carefully the introduction in Chap. 1 (this is not really nec- essary but it is recommended), the summary in Chap. 9, and the applications in Chap. 10. Toconclude,wewishtoexpressourgratitudetoBrunoIannazzo,CarlaManni, and Hendrik Speleers, who awakened our interest in the theory of GLT sequences and ultimately inspired the writing of this book. We also wish to thank all of our colleagueswhoworkedinthefieldof“Toeplitzmatricesandspectraldistributions”, and contributed with their work to lay the foundations of the theory of GLT sequences. We mention in particular Bernhard Beckermann, Albrecht Böttcher, Fabio Di Benedetto, Marco Donatelli, Leonid Golinskii, Sergei Grudsky, Arno Kuijlaars,MayaNeytcheva,DeboraSesana,BerndSilbermann,PaoloTilli,Eugene Tyrtyshnikov, and Nickolai Zamarashkin. Finally, special thanks go to Giovanni BarbarinoandDarioBini,whoagreedtoreadthisbookandprovidedusefuladvice on how to improve the presentation. Preface vii Basedontheirresearchexperience,theauthorsproposeareferencetextbookin two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. Como, Italy Carlo Garoni December 2016 Stefano Serra-Capizzano Contents 1 Introduction .... .... .... ..... .... .... .... .... .... ..... .. 1 1.1 Main Application of the Theory of GLT Sequences... ..... .. 1 1.2 Overview of the Theory of GLT Sequences. .... .... ..... .. 4 2 Mathematical Background. ..... .... .... .... .... .... ..... .. 7 2.1 Notation and Terminology.. .... .... .... .... .... ..... .. 7 2.2 Preliminaries on Measure and Integration Theory .... ..... .. 10 2.2.1 Essential Range.... .... .... .... .... .... ..... .. 10 2.2.2 Lp Spaces ... ..... .... .... .... .... .... ..... .. 12 2.2.3 Convergence in Measure, a.e., in Lp.... .... ..... .. 14 2.2.4 Riemann-Integrable Functions. .... .... .... ..... .. 19 2.3 Preliminaries on General Topology ... .... .... .... ..... .. 20 2.3.1 Pseudometric Spaces.... .... .... .... .... ..... .. 20 2.3.2 The Topology s of Convergence in Measure.. .. 22 measure 2.4 Preliminaries on Matrix Analysis. .... .... .... .... ..... .. 27 2.4.1 p-norms. .... ..... .... .... .... .... .... ..... .. 27 2.4.2 Singular Value Decomposition .... .... .... ..... .. 29 2.4.3 Schatten p-norms .. .... .... .... .... .... ..... .. 31 2.4.4 Singular Value and Eigenvalue Inequalities .. ..... .. 34 2.4.5 Tensor Products and Direct Sums.. .... .... ..... .. 40 2.4.6 Matrix Functions... .... .... .... .... .... ..... .. 41 3 Singular Value and Eigenvalue Distribution of a Matrix-Sequence . .... ..... .... .... .... .... .... ..... .. 45 3.1 The Notion of Singular Value and Eigenvalue Distribution.. .. 45 3.2 Rearrangement.. .... ..... .... .... .... .... .... ..... .. 47 3.3 Clustering and Attraction... .... .... .... .... .... ..... .. 49 3.4 Zero-Distributed Sequences . .... .... .... .... .... ..... .. 52 ix x Contents 4 Spectral Distribution of Sequences of Perturbed Hermitian Matrices.... .... .... .... ..... .... .... .... .... .... ..... .. 57 4.1 Preliminary Results .. ..... .... .... .... .... .... ..... .. 57 4.2 Main Results ... .... ..... .... .... .... .... .... ..... .. 62 5 Approximating Classes of Sequences.. .... .... .... .... ..... .. 65 5.1 The a.c.s. Notion .... ..... .... .... .... .... .... ..... .. 65 5.2 The a.c.s. Topology sa:c:s:... .... .... .... .... .... ..... .. 66 5.2.1 Construction of sa:c:s:.... .... .... .... .... ..... .. 67 5.2.2 Expression of da:c:s: in Terms of Singular Values ... .. 71 5.2.3 Connection Between sa:c:s: and smeasure .. .... ..... .. 72 5.3 The a.c.s. Tools for Computing Singular Value and Eigenvalue Distributions .... .... .... .... .... ..... .. 74 5.4 The a.c.s. Algebra ... ..... .... .... .... .... .... ..... .. 83 5.5 Some Criteria to Identify a.c.s.... .... .... .... .... ..... .. 88 5.6 An Extension of the Concept of a.c.s. . .... .... .... ..... .. 92 6 Toeplitz Sequences ... .... ..... .... .... .... .... .... ..... .. 95 6.1 Toeplitz Matrices and Toeplitz Sequences .. .... .... ..... .. 95 6.2 Basic Properties of Toeplitz Matrices.. .... .... .... ..... .. 97 6.3 Schatten p-norms of Toeplitz Matrices. .... .... .... ..... .. 100 6.4 Circulant Matrices ... ..... .... .... .... .... .... ..... .. 106 6.5 Singular Value and Spectral Distribution of Toeplitz Sequences: An a.c.s.-Based Proof .... .... .... .... ..... .. 108 6.6 Extreme Eigenvalues of Hermitian Toeplitz Matrices.. ..... .. 111 7 Locally Toeplitz Sequences. ..... .... .... .... .... .... ..... .. 115 7.1 The Notion of LT Sequences.... .... .... .... .... ..... .. 115 7.2 Properties of the LT Operator ... .... .... .... .... ..... .. 121 7.3 Fundamental Examples of LT Sequences... .... .... ..... .. 125 7.3.1 Zero-Distributed Sequences... .... .... .... ..... .. 125 7.3.2 Sequences of Diagonal Sampling Matrices... ..... .. 126 7.3.3 Toeplitz Sequences. .... .... .... .... .... ..... .. 130 7.4 Singular Value and Spectral Distribution of a Finite Sum of LT Sequences .... ..... .... .... .... .... .... ..... .. 133 7.5 Algebraic Properties of LT Sequences. .... .... .... ..... .. 135 7.6 Characterizations of LT Sequences.... .... .... .... ..... .. 136 8 Generalized Locally Toeplitz Sequences ... .... .... .... ..... .. 143 8.1 Equivalent Definitions of GLT Sequences .. .... .... ..... .. 143 8.2 Singular Value and Spectral Distribution of GLT Sequences. .. 144 8.3 Approximation Results for GLT Sequences. .... .... ..... .. 146 8.3.1 Characterizations of GLT Sequences.... .... ..... .. 151 8.3.2 Sequences of Diagonal Sampling Matrices... ..... .. 152 Contents xi 8.4 The GLT Algebra.... ..... .... .... .... .... .... ..... .. 154 8.5 Algebraic-Topological Definitions of GLT Sequences . ..... .. 163 9 Summary of the Theory... ..... .... .... .... .... .... ..... .. 165 10 Applications. .... .... .... ..... .... .... .... .... .... ..... .. 173 10.1 The Algebra Generated by Toeplitz Sequences .. .... ..... .. 173 10.2 Variable-Coefficient Toeplitz Sequences.... .... .... ..... .. 175 10.3 Geometric Means of Matrices ... .... .... .... .... ..... .. 183 10.4 Discretization of Integral Equations... .... .... .... ..... .. 185 10.5 Finite Difference Discretization of Differential Equations.... .. 189 10.5.1 FD Discretization of Diffusion Equations .... ..... .. 191 10.5.2 FD Discretization of Convection-Diffusion-Reaction Equations ... ..... .... .... .... .... .... ..... .. 198 10.5.3 FD Discretization of Higher-Order Equations. ..... .. 210 10.5.4 Non-uniform FD Discretizations... .... .... ..... .. 212 10.6 Finite Element Discretization of Differential Equations ..... .. 218 10.6.1 FE Discretization of Convection-Diffusion-Reaction Equations ... ..... .... .... .... .... .... ..... .. 218 10.6.2 FE Discretization of a System of Equations .. ..... .. 225 10.7 Isogeometric Analysis Discretization of Differential Equations.. .... .... ..... .... .... .... .... .... ..... .. 229 10.7.1 B-Spline IgA Collocation Discretization of Convection-Diffusion-Reaction Equations.. ..... .. 229 10.7.2 Galerkin B-Spline IgA Discretization of Convection-Diffusion-Reaction Equations.. ..... .. 244 10.7.3 Galerkin B-Spline IgA Discretization of Second-Order Eigenvalue Problems .. .... ..... .. 254 11 Future Developments . .... ..... .... .... .... .... .... ..... .. 261 12 Solutions to the Exercises.. ..... .... .... .... .... .... ..... .. 265 References.. .... .... .... .... ..... .... .... .... .... .... ..... .. 299 Index.. .... .... .... .... .... ..... .... .... .... .... .... ..... .. 305

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.