ebook img

Generalized kinetic Maxwell type models of granular gases PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized kinetic Maxwell type models of granular gases

Generalized kinetic Maxwell type models of granular gases A.V.Bobylev,C.CercignaniandI.M.Gamba 9 0 0 2 n a J 4 Abstract 2 Key words: Statistical and kinetic transport models, Dissipative Boltzmann Equa- tions of Maxwell type interactions, Self-similar solutions and asymptotics, Non- ] h equilibriumstatisticalstationarystates,Powerlaws. p - h t a 1 Introduction m [ Ithasbeennoticedinrecentyearsthatasignificantnon-trivialphysicalphenomena 1 in granular gases can be described mathematically by dissipative Boltzmann type v equations, as can be seen in [17] for a review in the area. As motivated by this 4 particularphenomenaofenergydissipationatthekineticlevel,weconsiderinthis 6 8 chapter the Boltzmann equation for non-linear interactions of Maxwell type and 3 somegeneralizationsofsuchmodels. . The classical conservative(elastic) Boltzmannequationwith the Maxwell-type 1 0 interactions is well-studied in the literature (see [5,14] and references therein). 9 Roughlyspeaking,thisisamathematicalmodelofararefiedgaswithbinarycolli- 0 sionssuchthatthecollisionfrequencyisindependentofthevelocitiesofcolliding : v particles,andeventhoughtheintermolecularpotentialsarenotofthosecorrespond- i ing to hardsphereinteractions,still these modelsprovidea veryrichinside to the X understandingofkineticevolutionofgases. r a A.V.Bobylev Department of Mathematics, Karlstad University, Karlstad, SE-65188 Sweden., e-mail: [email protected] C.Cercignani PolitecnicodiMilano,Milano,Italye-mail:[email protected] I.M.Gamba DepartmentofMathematics,TheUniversityofTexasatAustin,Austin,TX78712-1082U.S.A., e-mail:[email protected] 1 2 A.V.Bobylev,C.CercignaniandI.M.Gamba Recently,BoltzmannequationsofMaxwelltypewereintroducedformodelsof granulargaseswereintroducedin[7]inthreedimensions,andabitearlierin[3]for in onedimensioncase. Soon after that, these modelsbecame verypopularamong the community studying granular gases (see, for example, the book [13] and ref- erences therein). There are two obvious reasons for such studies The first one is thattheinelasticMaxwell-Boltzmannequationcanbeessentiallysimplifiedbythe Fourier transform similarly as done for the elastic case, where its study becomes moretransparent[6,7].Thesecondreasonis motivatedbythe specialphenomena associated with homogeneous cooling behavior, i.e. solutions to the spatially ho- mogeneous inelastic Maxwell-Boltzmann equation have a non-trivial self-similar asymptotics, and in addition, the correspondingself-similar solution has a power- like tail for large velocities. The latter property was conjectured in [16] and later proved in [9,11]. This is a rather surprising fact, since the Boltzmannn equation forhardspheresinelasticinteractionshasbeenshowntohaveselfsimilarsolutions withallmomentsboundedandlargeenergytailsdecayingexponentially.Thecon- jectureofself-similar(orhomogeneouscooling)statesforsuchmodelofMaxwell typeinteractionswasinitiallybasedonanexact1dsolutionconstructedin[1].Itis remarkablethatsuchanasymptoticsisabsentintheelasticcase(astheelasticBoltz- mannequationhastoomanyconservationlaws).Later,theself-similarasymptotics was provedin the elastic case for initialdata with infinite energy[8] byusing an- othermathematicaltoolscomparedto[9]and[12]. Surprisingly,the recently published exact self-similar solutions [12] for elastic Maxwelltypemodelforaslowdownprocess,derivedasaformalasymptoticlimit of a mixture, also is shown to have power-like tails. This fact definitely suggests thatself-similarasymptoticsarerelatedtototalenergydissipationratherthanlocal dissipativeinteractions.Asanillustrationtothisfact,wementionsomerecentpub- lications[2,15],where1d Maxwell-typemodelswereintroducedfornon-standard applicationssuch asmodelsineconomicsandsocialinteractions,wherealso self- similarasymptoticsandpower-liketailasymptoticstateswerefound. Thus all the above discussed models describe qualitatively different processes in physics or even in economics, however their solutions have a lot in common frommathematicalpointof view. It is also clear thatsome furthergeneralizations arepossible:onecan,forexample,includeinthe modelmultiple(notjustbinary) interactions still assuming the constant (Maxwell-type) rate of interactions. Will themulti-linearmodelshavesimilarproperties?Theanswerisyes,asweshallsee below. Thus,itbecomesclearthattheremustbesomegeneralmathematicalproperties ofMaxwellmodels,which,inturn,canexplainpropertiesofanyparticularmodel. That is to say there must be just one maintheorem, from which one can deduce allabovediscussedfactsandtheirpossiblegeneralizations.Ourgoalistoconsider Maxwellmodelsfromverygeneralpointofviewandtoestablishtheirkeyproper- tiesthatleadtotheself-similarasymptotics. All the results presentedin this chapter are mathematicallyrigorous.Their full proofscanbefoundin[10]. Generalizedkineticmodelsofgranulargases 3 After this introduction,we introducein Section 2 three specific Maxwell mod- els ofthe Boltzmannequation:(A)classical (elastic)Boltzmannequation;(B) the model (A) in the presence of thermostat; (C) inelastic Boltzmann equation for Maxwell type interactions. Then, in Section 3, we perform the Fourier transform andintroducean equationthatincludesallthe three modelsas particularcases. A furthergeneralizationisdoneinSection4,wheretheconceptofgeneralizedmulti- linear Maxwell model(in the Fourier space) is introduced.Such modelsand their generalizationsarestudiedindetailinSections5and 6.Themostimportantforour approachconceptofL-LipschitznonlinearoperatorisexplainedinSection4.Itis shown(Theorem4.2)thatallmulti-linearMaxwellmodelssatisfy theL-Lipschitz condition.Thispropertyofthemodelsconstitutesabasisforthegeneraltheory. Theexistenceand uniquenessof solutionsto the initial valueproblemis stated inSubsection5.1(Theorem5.2).Then,inSubsection5.2,wepresentandstudythe large time asymptotics under very generalconditionsthat are fulfilled, in particu- lar, for all our models. It is shown that L-Lipschitz condition leads to self-similar asymptotics,providedthecorrespondingself-similarsolutiondoesexist.Theexis- tenceanduniquenessofsuchself-similarsolutionsisstatedinSubsection5.3(The- orem5.12).Thistheoremcan be considered,to some extent,as themaintheorem for general Maxwell-type models. Then, in Subsection 5.4, we go back to multi- linear modelsof Section 4 and study more specific propertiesof their self-similar solutions. We explain in Section 6 how to use our theory for applicationsto any specific model: it is shown that the results can be expressed in terms of just one function m (p),p>0,thatdependsonspectralpropertiesofthespecificmodel.Generalprop- erties(positivity,power-liketails,etc.)self-similarsolutionsarestudiedinSubsec- tions6.1and6.2.Itincludesalsothecaseof1dmodels,wheretheLaplace(instead ofFourier)transformisused.InSubsection6.3,weformulate,intheunifiedstate- ment (Theorem11.1), the main propertiesof Maxwell models(A),(B) and (C) of the Boltzmann equation. This result is, in particular, an essential improvementof earlierresultsof[7]forthemodel(A) andquitenewforthemodel(B). Applicationstoonedimensionalmodelsarealsobrieflydiscussedattheendof Subsection6.3. 2 Maxwellmodels ofthe Boltzmann equation We considera spatiallyhomogeneousrarefiedd-dimensionalgas(d =2,3,...) of particleshavingaunitmass.Let f(v,t),wherev∈Rdandt∈R denoterespectively + the velocity and time variables, be a one-particle distribution function with usual normalization dvf(v,t)=1. (1) ZRd Then f(v,t) has an obvious meaning of a time-dependent probability density in Rd. We assume thatthe collisionfrequencyis independentof thevelocitiesofthe 4 A.V.Bobylev,C.CercignaniandI.M.Gamba collidingparticles(Maxwell-typeinteractions).Wediscussthreedifferentphysical models(A),(B)and(C). (A) Classical Maxwell gas (elastic collisions). In this case f(v,t) satisfies the usualBoltzmannequation u·w f =Q(f,f)= dwdw g( )[f(v′)f(w′)−f(v)f(w)], (2) t ZRd×Sd−1 |u| wheretheexchangeofvelocitiesafteracollisionaregivenby 1 1 v′= (v+w+|u|w ), and w′= (v+w−|u|w ) 2 2 whereu=v−w is therelativevelocityandW ∈Sd−1. Forthe sake of brevitywe shallconsiderbelowthemodelnon-negativecollisionkernelsg(s)suchthatg(s)is integrableon[−1,1].Theargumenttof f(v,t)andsimilarfunctionsisoftenomitted below(asinEq.(2)). (B)ElasticmodelwithathermostatThiscasecorrespondstomodel(A) inthe presenceofathermostatthatconsistsofMaxwellparticleswithmassm>0having theMaxwelliandistribution 2p T m|v|2 M(v)=( )−d/2exp(− ) (3) m 2T withaconstanttemperatureT >0.Thentheevolutionequationfor f(x,t)becomes u·w f =Q(f,f)+q dwdw g( )[f(v′)M(w′)−f(v)M(w)], (4) t Z |u| whereq >0isacouplingconstant,andtheexchangeofvelocitiesisnow v+m(w+|u|w ) v+mw−|u|w v′= , and w′= , 1+m 1+m withu=v−wtherelativevelocityand,w ∈Sd−1. Equation(4)wasderivedin[12]asacertainlimitingcaseofabinarymixtureof weaklyinteractingMaxwellgases. (C)Maxwellmodelforinelasticparticles.Weconsiderthismodelintheform givenin[9].ThentheinelasticBoltzmannequationintheweakformreads ¶ |u·w | (f,y )= dvdwdw f(v)f(w) [y (v′)−y (v)], (5) ¶ t ZRd×Rd×Sd−1 |u| wherey (v)isaboundedandcontinuoustestfunction, 1+e (f,y )= dvf(v,t)y (v), u=v−w, w ∈Sd−1, v′=v− (u·w )w , (6) ZRd 2 Generalizedkineticmodelsofgranulargases 5 the constant parameter 0<e≤1 denotes the restitution coefficient. Note that the model(Cwithe=1isequivalenttothemodel(A)withsomekernelg(s). All three models can be simplified (in the mathematical sense) by taking the Fouriertransform. Wedenote fˆ(k,t)=F[f]=(f,e−ik·v), k∈Rd , (7) andobtain(byusingthesametrickasin[6]forthemodel(A))forallthreemodels thefollowingequations: k·w (A) fˆ =Q(fˆ,fˆ)= dw g( )[fˆ(k )fˆ(k )−fˆ(k)fˆ(0)], t + − ZSd−1 |k| b (8) wherek = 1(k±|k|w ),w ∈Sd−1, fˆ(0)=1. ± 2 k·w (B) fˆ =Q(fˆ,fˆ)+q dw g( )[fˆ(k )M(k )−fˆ(k)M(0)], t + − ZSd−1 |k| b b b (9) whereM(k)=e−T2|km|2,k+= k+1m+|mk|w ,k−=k−k+,w ∈Sd−1, fˆ(0)=1. b |k·w | (C) fˆ = dw [fˆ(k )fˆ(k )−fˆ(k)fˆ(0)], t + − ZSd−1 |k| (10) where fˆ(0)=1, k = 1+e(k·w )w , k =k−k , with w ∈Sd−1 is the direction + 2 − + containingthetwocentersoftheparticlesatthetimeoftheinteraction.Equivalently, onemayalternativewritek = 1+e(k−|k|nw˜),andk =k−k ,wherenoww˜ ∈ − 4 + − Sd−1isthedirectionofthepostcollisionalrelativevelocity,andtheterm |k·w |dwis |k| replacedbyafunctiong(k·w˜)dw˜. |k| Case(B)canbesimplifiedbythesubstitution T|k|2 fˆ(k,t)= f(k,t)exp[− ] , (11) 2 eb leading,omittingtildes,totheequation k·w k+m|k|w (B′) fˆ =Q(fˆ,fˆ)+q dw g( )[fˆ( )−fˆ(k)], t ZSd−1 |k| 1+m b (12) i.e.,themodelfor(B)withT =0,orequivalentlyalinearcollisionaltermtheback- groundsingulardistribution.Therefore,weshallconsiderbelowjustthecase(B′), assumingneverthelessthat fˆ(k,t)inEq.(12)istheFouriertransform(7)ofaprob- abilitydensity f(v,t). 6 A.V.Bobylev,C.CercignaniandI.M.Gamba 3 IsotropicMaxwellmodel inthe Fourierrepresentation Weshallseethatthesethreemodels(A),(B)and(C)admitaclassofisotropicso- lutionswithdistributionfunctions f = f(|v|,t).Indeed,accordingto(7)welookfor solutions fˆ= fˆ(|k|,t)tothecorrespondingisotropicFouriertransformedproblem, givenby x=|k|2 , j (x,t)= fˆ(|k|,t)=F[f(|v|,t)], (13) wherej (x,t)solvesthefollowinginitialvalueproblem 1 j = dsG(s){j [a(s)x]j [b(s)x]−j (x)}+ t Z0 1 (14) + dsH(s){j [c(s)x]−j (x)} , Z0 j =j (x), j (0,t)=1, t=0 0 wherea(s),b(s),c(s)arenon-negativecontinuousfunctionson[0,1],whereasG(s) andH(s)aregeneralizednon-negativefunctionssuchthat 1 1 dsG(s)<¥ , dsH(s)<¥ . (15) Z0 Z0 Thus,wedonotexcludesuchfunctionsasG=d (s−s ),0<s <1,etc.Weshall 0 0 seebelowthat,forisotropicsolutions(13),eachofthethreeequations(8),(10),(12) isaparticularcaseofEq.(14). LetusfirstconsiderEq.(8)with fˆ(k,t)=j (x,t)inthenotation(13).Inthatcase 1±(w ·w ) k |k |2=|k|2 0 , w = ∈Sd−1, d=2,..., ± 0 2 |k| andtheintegralinEq.(8)reads 1+w ·w 1−w ·w dw g(w ·w )j x 0 j x 0 . (16) 0 ZSd−1 (cid:20) 2 (cid:21) (cid:20) 2 (cid:21) Itiseasytoverifytheidentity 1 dw F(w ·w 0)=|Sd−2| dzF(z)(1−z2)d−23 , (17) ZSd−1 Z−1 where|Sd−2|denotesthe“area”oftheunitsphereinRd−1 ford≥3and|S0|=2. Theidentity(17)holdsforanyfunctionF(z)providedtheintegralasdefinedinthe righthandsideof(17)exists. Theintegral(16)nowreads Generalizedkineticmodelsofgranulargases 7 |Sd−2| 1 dzg(z)(1−z2)d−23j (x1+z)j (x1−z)= Z−1 2 2 1 = dsG(s)j (sx)j [(1−s)x], Z0 where G(s)=2d−2|Sd−2|g(1−2s)[s(1−s)]d−23 , d=2,3,... . (18) Hence,inthiscaseweobtainEq.(14),where (A) a(s)=s, b(s)=1−s, H(s)=0, (19) G(s)isgiveninEq.(18). Twoothermodels(B′)and(C),describedbyeqs.(12),(10)respectively,canbe consideredquitesimilarly.InbothcasesweobtainEq.(14),where 4m (B′) a(s)=s, b(s)=1−s, c(s)=1− s, (1+m)2 H(s)=q G(s), (20) G(s)isgiveninEq.(18): (1+e)2 (1+e)(3−e) (C) a(s)= s, b(s)=1− s, 4 4 H(s)=0, G(s)=|Sd−2|(1−s)d−23 . (21) Hence,allthreemodelsaredescribedbyEq.(14)where0<a(s),b(s),c(s)≤1 are non-negative linear functions. One can also find in recent publications some otherusefulequationsthatcanbereducedafterFourierorLaplacetransformations to Eq. (14) (see, for example,[2], [15] thatcorrespondto the case G=d (s−s ), 0 H=0). Theequation(14)withH(s)=0firstappearedinitsgeneralformin[9]incon- nectionwithmodels(A)and(C).Theconsiderationoftheproblemofself-similar asymptotics for Eq. (14) in that paper made it quite clear that the most important properties of “physical” solutions depend very weakly on the specific functions G(s),a(s)andb(s). 4 Models withmultipleinteractions We present now a general framework to study solutions to the type of problems introducedintheprevioussection. 8 A.V.Bobylev,C.CercignaniandI.M.Gamba We assume, without loss of generality, (scaling transformations t˜= a t, a = const.)that 1 ds[G(s)+H(s)]=1 (22) Z0 in Eq. (14). Then Eq. (14) can be consideredas a particular case of the following equationforafunctionu(x,t) u +u=G (u), x≥0, t≥0, (23) t where N N G (u)= (cid:229) a G (n)(u), (cid:229) a =1, a ≥0, n n n n=1 n=1 (24) ¥ ¥ n G (n)(u)= da ... da A (a ,...,a )(cid:213) u(a x), n=1,...,N . 1 n n 1 n k Z0 Z0 k=1 Weassumethat ¥ ¥ A (a)=A (a ,...,a )≥0, da ... da A(a ,...,a )=1, (25) n n 1 n 1 n 1 n Z0 Z0 where A (a)=A (a ,...,a ) is a generalized density of a probability measure in n n 1 n Rn foranyn=1,...,N.WealsoassumethatallA (a)haveacompactsupport,i.e., + n n A (a ,...,a )≡0 if (cid:229) a2>R2, n=1,...,N , (26) n 1 n k k=1 forsufficientlylarge0<R<¥ . Eq.(14)isaparticularcaseofEq.(23)with 1 1 N=2, a = dsH(s), a = dsG(s) 1 2 Z0 Z0 1 1 A (a )= dsH(s)d [a −c(s)] (27) 1 1 a 1Z0 1 1 1 A (a ,a )= dsG(s)d [a −a(s)]d [a −b(s)]. 2 1 2 a 2Z0 1 2 Itis clear that Eq.(23) can be consideredas a generalizedFouriertransformed isotropic Maxwell modelwith multiple interactionsprovidedu(0,t)=1, the case N=¥ inEqs.(24)canbetreatedinthesameway. Generalizedkineticmodelsofgranulargases 9 4.1 Statement ofthegeneral problem The general problem we consider below can be formulated in the following way. Westudytheinitialvalueproblem u +u=G (u), u =u (x), x≥0, t≥0, (28) t |t=0 0 intheBanachspaceB=C(R )ofcontinuousfunctionsu(x)withthenorm + kuk=sup|u(x)|. (29) x≥0 It is usually assumed that ku k≤1 and that the operator G is given by Eqs. 0 (24). On the other hand, there are just a few properties of G (u) that are essential for existence, uniqueness and large time asymptotics of the solution u(x,t) of the problem(28).Therefore,inmanycasestheresultscanbeappliedtomoregeneral classesofoperatorsG inEqs.(28)andmoregeneralfunctionalspace,forexample B=C(Rd)(anisotropicmodels).Thatiswhywestudybelowtheclass(24)ofoper- atorsG asthemostimportantexample,butsimultaneouslyindicatewhichproperties ofG are relevantin eachcase. In particular,mostof the resultsof Section 4–6do notuseaspecificform(24)ofG and,infact,arevalidforamoregeneralclassof operators. Followingthiswayofstudy,wefirstconsidertheproblem(28)withG givenby Eqs.(24)andpointoutthemostimportantpropertiesofG . Wesimplifynotationsandomitinmostofthecasesbelowtheargumentxofthe functionu(x,t).Thenotationu(t)(insteadofu(x,t))meansthenthefunctionofthe realvariablet≥0withvaluesinthespaceB=C(R ). + Remark1.We shallomitbelowthe argumentx∈R offunctionsu(x), v(x), etc., + inallcaseswhenthisdoesnotcauseamisunderstanding.Inparticular,inequalities ofthekind|u|≤|v|shouldbeunderstoodasapoint-wisecontrolinabsolutevalue, i.e.“|u(x)|≤|v(x)|foranyx≥0”andsoon. Wefirststartbygivingthefollowinggeneraldefinitionforoperatorsactingona unitballofaBanachspaceBdenotedby U ={u∈B:kuk≤1} (30) Definition1. TheoperatorG =G (u)iscalledanL-Lipschitzoperatorifthereexists alinearboundedoperatorL:B→Bsuchthattheinequality |G (u )−G (u )|≤L(|u −u |) (31) 1 2 1 2 holdsforanypairoffunctionsu inU. 1,2 Remark2.NotethattheL-Lipschitzcondition(31)holds,bydefinition,atanypoint x∈R (or x∈Rd if B=C(Rd)). Thus, condition(31) is much stronger than the + 10 A.V.Bobylev,C.CercignaniandI.M.Gamba classicalLipschitzcondition kG (u )−G (u )k<Cku −u k if u ∈U (32) 1 2 1 2 1,2 which obviously follows from (31) with the constantC=kLk , the norm of the B operator L in the space of boundedoperatorsacting in B. In other words, the ter- minology “L-Lipschitz condition” means the point-wise Lipschitz condition with respecttoanspecificlinearoperatorL. Weassume,withoutlossofgenerality,thatthekernelsA (a ,...,a )inEqs.(24) n 1 n are symmetric with respect to any permutation of the arguments(a ,...,a ), n= 1 n 2,3,...,N. ThenextlemmastatesthattheoperatorG (u)definedinEqs.(24), whichsatis- fiesG (1)=1 (mass conservation)and mapsU into itself, satisfies an L-Lipschitz condition,wherethelinearoperatorListheonegivenbythelinearizationofG near theunity.See[10]foritsproof. Theorem1.TheoperatorG (u)definedinEqs.(24)mapsU intoitselfandsatisfies theL-Lipschitzcondition(31),wherethelinearoperatorLisgivenby ¥ Lu= daK(a)u(ax), (33) Z0 with N K(a)= (cid:229) na K (a), n n n=1 (34) ¥ ¥ N where K (a)= da ... da A (a,a ,...,a ) and (cid:229) a =1. n 2 n n 2 n n Z0 Z0 n=1 forsymmetrickernelsA (a,a ,...,a ),n=2,...N . n 2 n Andthefollowingcorollaryholds. Corollary1.The Lipschitz condition (32) is fulfilled for G (u) given in Eqs. (24) withtheconstant N ¥ C=kLk= (cid:229) na , (cid:229) a =1, (35) n n n=1 n=1 wherekLkisthenormofLinB. ItcanalsobeshownthattheL-LipschitzconditionholdsinB=C(Rd)for“gain- operators”inFouriertransformedBoltzmannequations (8),(9)and(10).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.