ebook img

Generalized Concavity in Fuzzy Optimization and Decision Analysis [electronic resource] PDF

299 Pages·2002·36.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized Concavity in Fuzzy Optimization and Decision Analysis [electronic resource]

Generalized Concavity in Fuzzy Optimization and Decision Analysis INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE FrederickS. Hillier, SeriesEditor StanfordUniversity Saigal,R. / LINEARPROGRAMMING:AModernIntegratedAnalysis Nagumey,A. & Zhang,D. / PROJECTEDDYNAMICALSYSTEMSAND VARIATIONALINEQUALITIESWITH APPLICATIONS Padberg,M.& Rijal, M. / LOCATION,SCHEDULING, DESIGN AND INTEGERPROGRAMMING Vanderbei, R. / LINEARPROGRAMMING:FoundationsandExtensions Jaiswal,N.K. I MILITARYOPERATIONSRESEARCH:QuantitativeDecisionMaking Gal,T. & Greenberg, H.IADVANCESINSENSITIVITYANALYSISAND PARAMETRICPROGRAMMING Prabhu,N.U. I FOUNDATIONSOFQUEUEINGTHEORY Fang, S.-e.,Rajasekera,J.R.& Tsao,H.-SJ. / ENTROPYOPTIMIZATION ANDMATHEMATICALPROGRAMMING Yu,G. IOPERATIONSRESEARCHINTHEAIRLINEINDUSTRY Ho,T.-H. & Tang,e. S. IPRODUCTVARIETYMANAGEMENT El-Taha,M. & Stidham, S. ISAMPLE-PATHANALYSISOFQUEUEINGSYSTEMS Miettinen,K. M.I NONLINEARMULTIOBJECTIVEOPTIMIZATION Chao,H. & Huntington,H.G. IDESIGNINGCOMPETITIVEELECTRICITYMARKETS Weglarz, J. IPROJECTSCHEDULING: RecentModels, Algorithms&Applications Sahin,l.& Polatoglu,H. IQUALITY, WARRANTYANDPREVENTIVEMAINTENANCE Tavares,L. V. IADVANCEDMODELSFORPROJECTMANAGEMENT Tayur, S.,Ganeshan, R. & Magazine,M.IQUANTITATIVEMODELINGFORSUPPLY CHAINMANAGEMENT Weyant, J./ENERGYANDENVIRONMENTALPOLICYMODELING Shanthikumar,J.G. & Sumita,U.lAPPLIEDPROBABILITYANDSTOCHASTICPROCESSES Liu,B.& Esogbue,A.O. IDECISIONCRITERIAANDOPTIMALINVENTORYPROCESSES Gal,T., Stewart,TJ.,Hanne,T./MULTICRITERIA DECISIONMAKiNG:AdvancesinMCDM Models, Algorithms, Theory, andApplications Fox,B. L.ISTRATEGIESFORQUASI-MONTECARLO Hall,R.W. I HANDBOOKOFTRANSPORTATIONSCIENCE Grassman,W.K.!COMPUTATIONALPROBABILITY Pomerol,J-e. &Barba-Romero, S./MULTICRITERIONDECISIONINMANAGEMENT AxsiUer,S./INVENTORYCONTROL Wolkowicz,H.,Saigal,R., Vandenberghe,L./HANDBOOKOFSEMI-DEFINITE PROGRAMMING: Theory, Algorithms,andApplications Hobbs, B. F.& Meier, P. IENERGYDECISIONSANDTHEENVIRONMENT:AGuide totheUseofMulticriteriaMethods Dar-EI,E./HUMANLEARNING:FromLearningCurvestoLearningOrganizations Armstrong, J. S./PRINCIPLESOFFORECASTING:AHandbookforResearchersand Practitioners Balsamo,S.,Persone,V.,Onvural,R./ANALYSISOFQUEUEINGNETWORKSWITHBLOCKiNG Bouyssou,D. etallEVALUATIONANDDECISIONMODELS'ACriticalPerspective Hanne,T./ INTELLIGENTSTRATEGIESFORMETA MULTIPLECRITERIADECISIONMAKiNG Saaty,T. & Vargas,L.IMODELS,METHODS,CONCEPTS&APPLICATIONSOFTHEANALYTIC HIERARCHYPROCESS Chatterjee,K. &Samuelson,W./GAMETHEORYANDBUSINESSAPPLICATIONS Hobbs,B.etallTHENEXTGENERATIONOFELECTRICPOWERUNITCOMMITMENTMODELS Vanderbei,RJ./LINEARPROGRAMMING:FoundationsandExtensions, 2ndEd. Kimms, A. IMATHEMATICALPROGRAMMINGANDFINANCIALOBJECTIVESFOR SCHEDULINGPROJECTS Baptiste,P.,LePape,e.& Nuijten, W./CONSTRAINT-BASEDSCHEDULING Feinberg,E. & Shwartz,A./HANDBOOKOFMARKOVDECISIONPROCESSES: Methods andApplications GENERALIZEO CONCAVITY IN FUZZY OPTIMIZATION ANO OECISION ANALYSIS JAROSLAV RAMIK Silesian University School of Business Administration Karvinâ, Czech Republic MILANVLACH Japan Advanced Institute of Science and Technology School of Information Science Ishikawa, Japan Charles University Faculty of Mathematics and Physics Prague, Czech Republic .... " Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Data Ramik, Jaroslav. Generalized concavity in fuzzy optimization and decision analysis / Jaroslav Ramik, Milan Vlach. p. cm. --(International series in operations research & management science; 41) Inc1udes bibliographical references and index. ISBN 978-1-4613-5577-9 ISBN 978-1-4615-1485-5 (eBook) DOI 10.1007/978-1-4615-1485-5 1. Decision making. 2. Matbematical optimization. 3. Fuzzy mathematics. 4. Concave functions. 1. Vlach, Milan. II. Title. III. Series. T57.95 .R34 2001 658.4'03--dc21 2001046197 Copyright © 2002 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2002 Softcover reprint ofthe hardcover Ist edition 2002 AII rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission ofthe publisher. Springer Science+Business Media, LLC. Printed on acid-free paper. Contents Preface xi Acknowledgments xv PartI Theory 1. PRELIMINARIES 5 2. GENERALIZED CONVEXSETS 11 2.1 Convex Sets 11 2.2 StarshapedSets 12 2.3 StronglyStarshapedSets 18 2.4 Co-StarshapedSets 20 2.5 Separation ofStarshapedSets 21 2.5.1 Separating Hyperplanes 22 2.5.2 Separation byaFamilyofHyperplanes 24 2.5.3 Separation byaFamily ofLinearFunctionals 26 2.5.4 SeparationbyaCone 27 2.5.5 Separation ofStarshapedSets 31 2.6 Generalizations ofStarshapedSets 34 2.6.1 Path-ConnectedSets 34 2.6.2 Invex and Univex Sets 35 2.6.3 4>-Convex Sets 36 3. GENERALIZED CONCAVE FUNCTIONS 37 3.1 Concave and Quasiconcave Functions 37 3.2 StarshapedFunctions 40 3.3 FurtherGeneralizations ofConcave Functions 46 3.3.1 QuasiconnectedFunctions 46 3.3.2 (4), \lJ)-Concave Functions 50 3.4 DifferentiableFunctions 57 vi GENERALIZED CONCAVITY 3.4.1 DifferentiableQuasiconcaveFunctions 57 3.4.2 PseudoconcaveFunctions 59 3.4.3 Incave, Pseudoincave andPseudounicave Functions 62 3.5 ConstrainedOptimization 66 4. TRIANGULAR NORMS ANDT-QUASICONCAVE FUNCTIONS 73 4.1 TriangularNormsand Conorms 73 4.2 Properties ofTriangularNormsand TriangularConorms 76 4.3 RepresentationsofTriangularNormsandTriangularConorms 79 4.4 Negations and De MorganTriples 82 4.5 DominationofTriangularNorms 84 4.6 T-QuasiconcaveFunctions 85 4.7 (<I>,T)-Concave Functions 95 4.8 Propertiesof(<I>,T)-ConcaveFunctions 97 5. AGGREGATIONOPERATORS 101 5.1 Introduction 101 5.2 Definitionand Basic Properties 102 5.3 ContinuityProperties 104 5.4 Averaging AggregationOperators 106 5.4.1 CompensativeAggregationOperators 106 5.4.2 Order-StatisticAggregationOperators 108 5.4.3 OrderWeightedAveraging Operators 108 5.5 Sugeno andChoquetIntegrals 110 5.6 OtherAggregationOperators 113 5.7 AggregationofFunctions 114 6. FUZZYSETS 121 6.1 Introduction 121 6.2 DefinitionandBasic Properties 122 6.3 OperationswithFuzzy Sets 126 6.4 ExtensionPrinciple 127 6.5 Binary andValuedRelations 129 6.6 FuzzyRelations 131 6.7 Fuzzy ExtensionsofValuedRelations 133 6.8 Fuzzy Quantitiesand Fuzzy Numbers 137 6.9 FuzzyExtensionsofReal-Valued Functions 140 6.10 HigherDimensionalFuzzy Quantities 145 6.11 FuzzyExtensionsofValued Relations 150 Contents vii PartII Applications 7. FUZZY MULTI-CRITERIA DECISION MAKING 163 7.1 Introduction 163 7.2 FuzzyCriteria 164 7.3 Pareto-OptimalDecisions 166 7.4 CompromiseDecisions 170 7.5 Generalized CompromiseDecisions 173 7.6 AggregationofFuzzy Criteria 177 7.7 ExtremalProperties 178 7.8 ApplicationtoLocationProblem 179 7.9 ApplicationinEngineeringDesign 186 8. FUZZYMATHEMATICALPROGRAMMING 193 8.1 Introduction 193 8.2 ModellingRealitybyFuzzy MathematicalProgramming 195 8.3 MathematicalProgrammingProblemswithParameters 195 8.4 FormulationofFuzzy MathematicalProgrammingProblems 197 8.5 FeasibleSolutionsofFMPProblems 199 8.6 Properties ofFeasibleSolution 200 8.7 OptimalSolutionsofthe FMPProblem 208 9. FUZZYLINEAR PROGRAMMING 217 9.1 Introduction 217 9.2 FormulationofFLPproblem 217 9.3 Properties ofFeasible Solution 220 9.4 Properties ofOptimalSolutions 223 9.5 ExtendedAdditioninFLP 227 9.6 Duality 231 9.7 Special Models ofFLP 235 9.7.1 IntervalLinearProgramming 235 9.7.2 Flexible LinearProgramming 238 9.7.3 FLPProblems withInteractiveFuzzyParameters 240 9.7.4 FLP Problems withCenteredParameters 242 9.8 IllustrativeExamples 244 10. FUZZY SEQUENCING AND SCHEDULING 253 10.1 Introduction 253 10.2 DeterministicModels 254 10.3 StochasticModels 259 10.4 Fuzzy Models 265 10.4.1 FuzzyDueDates 266 Vlll GENERALIZEDCONCAVITY 10.4.2 Fuzzy ProcessingTimes 268 10.4.3 Fuzzy Precedence 276 10.4.4 ConcludingRemarks 281 List ofSymbols Symbol Description Rn n-dimensional(Euclidean)realvectorspace I:X-,Y mappingorfunctionI thatmapsasetX intoasetY Ran(f) rangeofI 1(-1) pseudo-inversefunctionto I (x,y) innerproductofx andy Ilxll normofx d(x,y) distancebetweenx andy B(x,8) openballwithcenterx andradius8 [0,1] unitintervalinR C(S) complementofS Ker(X) kernelofX Ker*(X) strongkernelofX Keroo(X) co-kernelofX Ker;'.,(X) strongco-kernelofX Int(S) interiorofS Rlint(S) relativeinteriorofS CI(S) closureofS Bd(S) boundaryofS U(J,a) upperlevelsetofI ata L(J,a) lowerlevelsetofI ata H(J,a) levelsetofI ata Epi(J) epigraphofI Hyp(J) hypographofI I(x,y) linesegmentjoiningx andy L(x,y) linegoingthroughx andy H(x,y) halflineemanatingfromx throughy Conv(S) convexhullofS dimeS) dimensionofS Card(S) cardinalityofS,numberofelementsofS Ext(S) setofallextremepointsofS Core(J..L) coreofJ..L Supp(J..L) supportofJ..L \11(x) gradientvectorofI atx \12/(x) HessianmatrixofI atx TM,SM minimumt-norm,maximumt-conorm Tp,Sp productt-norm,probabilisticsumt-conorm TL,SL Lukasiewiczt-norm,boundedsumt-conorm Tv,Sv drasticproductt-norm,drasticsumt-conorm OSk k-orderstatisticaggregationoperator OWA'I\r orderweightedaveragingoperatorofdimensionn [A]", a-cutofafuzzysetA .r(X) setofallfuzzysubsetsofX CNA complementoffuzzysetAwithrespecttonegationN J..LilT(A,B) T-fuzzy extensionofrelationRoffuzzysetsAandB

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.