General Relativity, Black Holes, and Cosmology Andrew J. S. Hamilton 13 January 2020 Contents Table of contents page iii List of illustrations xviii List of tables xxiii List of exercises and concept questions xxiv Legal notice 1 Notation 2 PART ONE FUNDAMENTALS 5 Concept Questions 7 What’s important? 9 1 Special Relativity 10 1.1 Motivation 10 1.2 The postulates of special relativity 11 1.3 The paradox of the constancy of the speed of light 13 1.4 Simultaneity 17 1.5 Time dilation 18 1.6 Lorentz transformation 19 1.7 Paradoxes: Time dilation, Lorentz contraction, and the Twin paradox 22 1.8 The spacetime wheel 26 1.9 Scalar spacetime distance 31 1.10 4-vectors 33 1.11 Energy-momentum 4-vector 35 1.12 Photon energy-momentum 37 1.13 What things look like at relativistic speeds 39 1.14 Occupation number, phase-space volume, intensity, and (cid:29)ux 44 1.15 How to program Lorentz transformations on a computer 46 iii iv Contents Concept Questions 48 What’s important? 50 2 Fundamentals of General Relativity 51 2.1 Motivation 52 2.2 The postulates of General Relativity 53 2.3 Implications of Einstein’s principle of equivalence 55 2.4 Metric 57 2.5 Timelike, spacelike, proper time, proper distance 58 2.6 Orthonormal tetrad basis γγ 58 m 2.7 Basis of coordinate tangent vectors e 59 µ 2.8 4-vectors and tensors 60 2.9 Covariant derivatives 63 2.10 Torsion 66 2.11 Connection coe(cid:30)cients in terms of the metric 68 2.12 Torsion-free covariant derivative 68 2.13 Mathematical aside: What if there is no metric? 72 2.14 Coordinate 4-velocity 72 2.15 Geodesic equation 72 2.16 Coordinate 4-momentum 73 2.17 A(cid:30)ne parameter 74 2.18 A(cid:30)ne distance 74 2.19 Riemann tensor 76 2.20 Ricci tensor, Ricci scalar 79 2.21 Einstein tensor 80 2.22 Bianchi identities 80 2.23 Covariant conservation of the Einstein tensor 81 2.24 Einstein equations 81 2.25 Summary of the path from metric to the energy-momentum tensor 82 2.26 Energy-momentum tensor of a perfect (cid:29)uid 82 2.27 Newtonian limit 83 3 More on the coordinate approach 90 3.1 Weyl tensor 90 3.2 Evolution equations for the Weyl tensor, and gravitational waves 91 3.3 Geodesic deviation 93 4 Action principle for point particles 95 4.1 Principle of least action for point particles 95 4.2 Generalized momentum 97 4.3 Lagrangian for a test particle 97 4.4 Massless test particle 99 Contents v 4.5 E(cid:27)ective Lagrangian for a test particle 100 4.6 Nice Lagrangian for a test particle 101 4.7 Action for a charged test particle in an electromagnetic (cid:28)eld 102 4.8 Symmetries and constants of motion 104 4.9 Conformal symmetries 105 4.10 (Super-)Hamiltonian 108 4.11 Conventional Hamiltonian 109 4.12 Conventional Hamiltonian for a test particle 109 4.13 E(cid:27)ective (super-)Hamiltonian for a test particle with electromagnetism 111 4.14 Nice (super-)Hamiltonian for a test particle with electromagnetism 111 4.15 Derivatives of the action 113 4.16 Hamilton-Jacobi equation 114 4.17 Canonical transformations 114 4.18 Symplectic structure 116 4.19 Symplectic scalar product and Poisson brackets 118 4.20 (Super-)Hamiltonian as a generator of evolution 118 4.21 In(cid:28)nitesimal canonical transformations 119 4.22 Constancy of phase-space volume under canonical transformations 120 4.23 Poisson algebra of integrals of motion 120 Concept Questions 122 What’s important? 124 5 Observational Evidence for Black Holes 125 6 Ideal Black Holes 128 6.1 De(cid:28)nition of a black hole 128 6.2 Ideal black hole 129 6.3 No-hair theorem 129 7 Schwarzschild Black Hole 131 7.1 Schwarzschild metric 131 7.2 Stationary, static 132 7.3 Spherically symmetric 133 7.4 Energy-momentum tensor 134 7.5 Birkho(cid:27)’s theorem 134 7.6 Horizon 135 7.7 Proper time 136 7.8 Redshift 137 7.9 (cid:16)Schwarzschild singularity(cid:17) 137 7.10 Weyl tensor 138 7.11 Singularity 138 7.12 Gullstrand-PainlevØ metric 140 vi Contents 7.13 Embedding diagram 148 7.14 Schwarzschild spacetime diagram 150 7.15 Gullstrand-PainlevØ spacetime diagram 151 7.16 Eddington-Finkelstein spacetime diagram 151 7.17 Kruskal-Szekeres spacetime diagram 153 7.18 Antihorizon 154 7.19 Analytically extended Schwarzschild geometry 156 7.20 Penrose diagrams 157 7.21 Penrose diagrams as guides to spacetime 159 7.22 Future and past horizons 161 7.23 Oppenheimer-Snyder collapse to a black hole 161 7.24 Apparent horizon 162 7.25 True horizon 163 7.26 Penrose diagrams of Oppenheimer-Snyder collapse 164 7.27 Illusory horizon 165 7.28 Collapse of a shell of matter on to a black hole 167 7.29 The illusory horizon and black hole thermodynamics 169 7.30 Rindler space and Rindler horizons 170 7.31 Rindler observers who start at rest, then accelerate 172 7.32 Killing vectors 176 7.33 Killing tensors 180 7.34 Lie derivative 181 8 Reissner-Nordstr(cid:246)m Black Hole 187 8.1 Reissner-Nordstr(cid:246)m metric 187 8.2 Energy-momentum tensor 188 8.3 Weyl tensor 189 8.4 Horizons 189 8.5 Gullstrand-PainlevØ metric 189 8.6 Radial null geodesics 191 8.7 Finkelstein coordinates 192 8.8 Kruskal-Szekeres coordinates 193 8.9 Analytically extended Reissner-Nordstr(cid:246)m geometry 196 8.10 Penrose diagram 196 8.11 Antiverse: Reissner-Nordstr(cid:246)m geometry with negative mass 198 8.12 Outgoing, ingoing 198 8.13 The in(cid:29)ationary instability 199 8.14 The X point 201 8.15 Extremal Reissner-Nordstr(cid:246)m geometry 201 8.16 Super-extremal Reissner-Nordstr(cid:246)m geometry 202 Contents vii 8.17 Reissner-Nordstr(cid:246)m geometry with imaginary charge 204 9 Kerr-Newman Black Hole 207 9.1 Boyer-Lindquist metric 207 9.2 Oblate spheroidal coordinates 208 9.3 Time and rotation symmetries 210 9.4 Ring singularity 210 9.5 Horizons 210 9.6 Angular velocity of the horizon 212 9.7 Ergospheres 212 9.8 Turnaround radius 212 9.9 Antiverse 213 9.10 Sisytube 213 9.11 Extremal Kerr-Newman geometry 213 9.12 Super-extremal Kerr-Newman geometry 215 9.13 Energy-momentum tensor 215 9.14 Weyl tensor 216 9.15 Electromagnetic (cid:28)eld 216 9.16 Principal null congruences 216 9.17 Finkelstein coordinates 217 9.18 Doran coordinates 217 9.19 Penrose diagram 220 Concept Questions 221 What’s important? 223 10 Homogeneous, Isotropic Cosmology 224 10.1 Observational basis 224 10.2 Cosmological Principle 230 10.3 Friedmann-Lema(cid:238)tre-Robertson-Walker metric 230 10.4 Spatial part of the FLRW metric: informal approach 230 10.5 Comoving coordinates 233 10.6 Spatial part of the FLRW metric: more formal approach 234 10.7 FLRW metric 235 10.8 Einstein equations for FLRW metric 235 10.9 Newtonian (cid:16)derivation(cid:17) of Friedmann equations 236 10.10 Hubble parameter 238 10.11 Critical density 239 10.12 Omega 239 10.13 Types of mass-energy 241 10.14 Redshifting 243 10.15 Evolution of the cosmic scale factor 244 viii Contents 10.16 Age of the Universe 246 10.17 Conformal time 247 10.18 Looking back along the lightcone 248 10.19 Hubble diagram 249 10.20 Recombination 251 10.21 Horizon 251 10.22 In(cid:29)ation 254 10.23 Evolution of the size and density of the Universe 256 10.24 Evolution of the temperature of the Universe 257 10.25 Neutrino mass 262 10.26 Occupation number, number density, and energy-momentum 265 10.27 Occupation numbers in thermodynamic equilibrium 267 10.28 Maximally symmetric spaces 275 PART TWO TETRAD APPROACH TO GENERAL RELATIVITY 285 Concept Questions 287 What’s important? 289 11 The tetrad formalism 290 11.1 Tetrad 290 11.2 Vierbein 291 11.3 The metric encodes the vierbein 291 11.4 Tetrad transformations 292 11.5 Tetrad vectors and tensors 293 11.6 Index and naming conventions for vectors and tensors 295 11.7 Gauge transformations 296 11.8 Directed derivatives 296 11.9 Tetrad covariant derivative 297 11.10 Relation between tetrad and coordinate connections 299 11.11 Antisymmetry of the tetrad connections 299 11.12 Torsion tensor 299 11.13 No-torsion condition 300 11.14 Tetrad connections in terms of the vierbein 300 11.15 Torsion-free covariant derivative 301 11.16 Riemann curvature tensor 301 11.17 Ricci, Einstein, Bianchi 304 11.18 Expressions with torsion 305 11.19 General relativity in 2 spacetime dimensions 306 Contents ix 12 Spin and Newman-Penrose tetrads 311 12.1 Spin tetrad formalism 311 12.2 Newman-Penrose tetrad formalism 314 12.3 Weyl tensor 316 12.4 Petrov classi(cid:28)cation of the Weyl tensor 319 13 The geometric algebra 322 13.1 Products of vectors 323 13.2 Geometric product 324 13.3 Reverse 326 13.4 The pseudoscalar and the Hodge dual 326 13.5 Multivector metric 328 13.6 General products of multivectors 328 13.7 Re(cid:29)ection 330 13.8 Rotation 331 13.9 Rotor group 334 13.10 Active and passive rotations 338 13.11 A rotor is a spin-1 object 338 2 13.12 2D rotations and complex numbers 339 13.13 Quaternions 340 13.14 3D rotations and quaternions 342 13.15 Pauli matrices 344 13.16 Pauli spinors as quaternions, or scaled rotors 345 13.17 Spin axis 347 14 The spacetime algebra 349 14.1 Spacetime algebra 349 14.2 Complex quaternions 351 14.3 Lorentz transformations and complex quaternions 353 14.4 Spatial inversion (P) and Time reversal (T) 356 14.5 How to implement Lorentz transformations on a computer 358 14.6 Killing vector (cid:28)elds of Minkowski space 363 14.7 Dirac matrices 367 14.8 Dirac spinors 368 14.9 Dirac spinors as complex quaternions 369 14.10 Non-null Dirac spinor 374 14.11 Null Dirac Spinor 376 15 Geometric Di(cid:27)erentiation and Integration 380 15.1 Covariant derivative of a multivector 381 15.2 Riemann tensor of bivectors 383 15.3 Torsion tensor of vectors 384 x Contents 15.4 Covariant spacetime derivative 384 15.5 Torsion-full and torsion-free covariant spacetime derivative 386 15.6 Di(cid:27)erential forms 387 15.7 Wedge product of di(cid:27)erential forms 388 15.8 Exterior derivative 389 15.9 An alternative notation for di(cid:27)erential forms 390 15.10 Hodge dual form 392 15.11 Relation between coordinate- and tetrad-frame volume elements 393 15.12 Generalized Stokes’ theorem 394 15.13 Exact and closed forms 396 15.14 Generalized Gauss’ theorem 397 15.15 Dirac delta-function 398 15.16 Integration of multivector-valued forms 399 16 Action principle for electromagnetism and gravity 400 16.1 Euler-Lagrange equations for a generic (cid:28)eld 401 16.2 Super-Hamiltonian formalism 403 16.3 Conventional Hamiltonian formalism 403 16.4 Symmetries and conservation laws 404 16.5 Electromagnetic action 405 16.6 Electromagnetic action in forms notation 411 16.7 Gravitational action 418 16.8 Variation of the gravitational action 421 16.9 Trading coordinates and momenta 423 16.10 Matter energy-momentum and the Einstein equations with matter 424 16.11 Spin angular-momentum 425 16.12 Lagrangian as opposed to Hamiltonian formulation 432 16.13 Gravitational action in multivector notation 434 16.14 Gravitational action in multivector forms notation 438 16.15 Space+time (3+1) split in multivector forms notation 454 16.16 Loop Quantum Gravity 464 16.17 Bianchi identities in multivector forms notation 470 17 Conventional Hamiltonian (3+1) approach 476 17.1 ADM formalism 477 17.2 ADM gravitational equations of motion 487 17.3 Conformally scaled ADM 493 17.4 Bianchi spacetimes 495 17.5 Friedmann-Lema(cid:238)tre-Robertson-Walker spacetimes 501 17.6 BKL oscillatory collapse 502 17.7 BSSN formalism 511