ebook img

General relativity, astrophysics, and cosmology [small handout] PDF

7 Pages·1992·0.129 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview General relativity, astrophysics, and cosmology [small handout]

Tensor Analysis & Geometry Spherical Coordinates x1 = rsinq cosf x2 = rsinq sinf x3 = rcosq x4 = ct , , , ( ) 3-dimensional line element: ds2 = dr2 +r2 dq 2 +sin2q df 2 Christoffel Symbols [ ] 1(cid:230) ¶ g ¶ g ¶ g (cid:246) Christoffel Symbol of the first kind: G = mn,r = (cid:231) rm + rn - mn (cid:247) . rmn 2Ł ¶ xn ¶ xm ¶ xr ł (cid:236) z (cid:252) Christoffel Symbol of the second kind: G z = (cid:237) (cid:253) = grzG . mn (cid:238) mn(cid:254) mnr Derivation of the Riemann Curvature Tensor In general, a second order differentiation on a covariant vector is independent of the order in which it is carried out, i.e.: ¶ 2V ¶ 2V i = i . ¶ xj¶ xk ¶ xk¶ xj However, the presence of Christoffel symbols can have an effect on this statement. We investigate this by first finding the general second derivatives for both permutations of the differentiating parameters: ( ) V =V - G rV - G rV . i;j ;k i,jk ik r,j jk i,r But V =V - G sV , i;j i,j ij s ( ) ¶ G s [ ] [ ] \ V =V - ij V - G sV - G r V - G sV - G r V - G sV i:j :k i,jk ¶ xk s ij s,k ik r,j rj s jk i,r ir s ( ) ¶ G s (cid:219) V =V - ij V - G sV - G rV +G rG sV - G rV +G r G sV i:j :k i,jk ¶ xk s ij s,k ik r,j ik rj s jk i,r jk ir s Now we interchange j and k (which is the other possible way of determining this second derivative): ¶ G s ( ) V =V - ik V - G sV - G rV +G rG sV - G rV +G rG sV . i:k :j i,kj ¶ xj s ik s,j ij r,k ij rk s kj i,r kj ir s We now find the difference between these two. On the RHS, the first, third, fourth, sixth, and seventh terms cancel out, thus giving the result: ¶ G s ¶ G s Ø ¶ G s ¶ G s ø V - V = - ij V +G rG sV + ik V - G rG sV = Œ ik - ij +G rG s - G rG s œ V . i:jk i:kj ¶ xk s ik rj s ¶ xj s ij rk s Œº ¶ xj ¶ xk ik rj ij rkœß s We define the Riemann (or Riemann-Christoffel) Curvature tensor by: ¶ G s ¶ G s Rs = ik - ij +G rG s - G rG s . ijk ¶ xj ¶ xk ik rj ij rk The difference between the covariant derivatives can thus be written as V - V = Rs V . The Riemann i:jk i:kj ijk s tensor used in this equation is called the Riemann curvature tensor of the second kind. The curvature tensor of the first kind is defined as: R = g Rr . ijkl ir jkl Symmetry Properties: First skew symmetry R = - R ijkl jikl Second skew symmetry R = - R ijkl ijlk Courtney James Mewton Page 1 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY Block symmetry R = R ijkl klij Bianchi’s identity R + R + R = 0 ijkl iklj iljk The Ricci Tensor The Ricci tensor of the first kind is simply a contraction of the Riemann tensor: R = Rk . ij ijk The last index can be raised to yield the Ricci tensor of the second kind: Rj = gikR . i ki If this tensor is finally contracted by letting I = j, we get the Ricci curvature scalar. If it is zero, the space is flat. From the first of the two equations above the Ricci tensor of the first kind can be calculated directly by: ¶ G k ¶ G k R = Rk = ik - ij +G rG k - G rG k . ij ijk ¶ xj ¶ xk ik rj ij rk Transformation Of A Geodesic From Parameter u To v, Where v = f(u) Given a particular geodesic in terms of a parameter u, in this section the geodesic equation will be transformed so that it is in terms of a new parameter v. D (cid:230) dxa (cid:246) d2xa dxb dxc Start with (cid:231)(cid:231) (cid:247)(cid:247) = +G a =0. duŁ du ł du2 bc du du dxa dxa dv = Substitute , du dv du D (cid:230) ¶ xa dv(cid:246) ¶ xa dv ¶ xb dv dxc ¶ xa d2v then (cid:231)(cid:231) (cid:247)(cid:247) = +G a + =0 duŁ ¶ v duł ¶ u¶ v du bc ¶ v du du ¶ v du2 ¶ xa dv ¶ xb dxc dv ¶ xa d2v (cid:219) +G a = - ¶ u¶ v du bc ¶ v du du ¶ v du2 ¶ xa dv(cid:230) du du(cid:246) ¶ xb dxc dv(cid:230) du du(cid:246) ¶ xa d2v(cid:230) du du(cid:246) (cid:219) (cid:231) (cid:247) +G a (cid:231) (cid:247) = - (cid:231) (cid:247) ¶ u¶ v duŁ dv dvł bc ¶ v du duŁ dv dvł ¶ v du2 Ł dv dvł ¶ xa ¶ xb dxc ¶ xa d2v(cid:230) du(cid:246) 2 (cid:219) +G a = - (cid:231) (cid:247) . ¶ v2 bc ¶ v dv ¶ v du2 Ł dvł Since the LHS is now in terms of v, partial differentiation can be replaced by normal differentiation: dxa dxb dxc dxa d2v (cid:230) dv(cid:246) 2 (cid:219) +G a = - (cid:231) (cid:247) . dv2 bc dv dv dv du2 Ł duł d2v (cid:230) dv(cid:246) 2 l = - (cid:231) (cid:247) By letting , we arrive at the final equation: du2 Ł duł dxa dxb dxc dxa +G a = l . dv2 bc dv dv dv General Relativity The Metric Tensor for Special Relativity Courtney James Mewton Page 2 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY Ø 1 0 0 0 ø Œ 0 - 1 0 0 œ h = nm Œ 0 0 - 1 0 œ . Œº 0 0 0 - 1œß Einstein's Law of Gravitation Simply stated, Einstein's law of gravitation is: R = 0. nm This condition holds when the local space is completely devoid of all forms of matter and energy. Derivation of the Schwarzchild Solution In this section the line-element solution to the field equations for a quasi-static gravitational field produced by a spherical body will be derived. We start by setting up a general line element employing spherical coordinates: ( ) c2dt 2 = Ac2dt2 - Bdr2 - Wr2 dq 2 +sin2q df 2 . Before we continue, a few assumptions need to be made: (cid:0) The space is asymptotically flat. This means that A= B fi 1 as r fi ¥ . (cid:0) The gravitational field only affects time and radial distance, so W = 1. We can immediately define the metric tensor: g = Ac2, g = - B, g = - r2 and g = - r2sin2q . 00 11 22 33 Since we are dealing with the empty space surrounding the body, the Ricci tensor needs to equal zero. With this in mind, the derivation begins. We first calculate the Christoffel symbols. Note that since a Christoffel symbol of the second kind is defined as (cid:236) z (cid:252) G z = (cid:237) (cid:253) = grzG mn (cid:238) mn(cid:254) mnr we need only calculate them for values when r = z. [ ] G 0 = g00G = 1 A- 1c- 2 g + g - g = 1 A- 1A¢ 10 100 2 00,1 10,0 10,0 2 [ ] G 1 = g11G = - 1 B- 1 g + g - g = 1 B- 1g = 1 B- 1A¢c2 00 001 2 10,0 01,0 00,1 2 00,1 2 [ ] G 1 = g11G = - 1 B- 1 g + g - g = - 1 B- 1g = 1 B- 1B¢ 11 111 2 11,1 11,1 11,1 2 11,1 2 [ ] ( ) G 1 = g11G = - 1 B- 1 g + g - g = - 1 B- 1g = - 1 B- 1(cid:215) 2r = - rB- 1 22 221 2 [ 12,2 21,2 22,1] 2 ( 22,1 ) 2 ( ) G 1 = g11G = - 1 B- 1 g + g - g = - 1 B- 1 - g = - 1 B- 1 2rsin2q = - rB- 1sin2q 33 331 2 13,3 31,3 33,1 2 33,1 2 [ ] ( ) G 2 = g22G = - 1r- 2 g + g - g = - 1r- 2 (cid:215) - 2r = r- 1 21 212 2 21,2 22,1 21,2 2 [ ] G 2 = g22G = - 1r- 2 g + g - g = - 1r- 2 (cid:215) 2r2 cosq sinq = - cosq sinq 33 332 2 23,3 [ 32,3 33,2 2] ( ) G 3 = g33G = - 1r- 2sin- 2q g + g - g = - 1r- 2sin- 2q (cid:215) - 2rsin2q = r- 1 13 133 2 [ 33,1 13,3 13,3 ] 2 ( ) G 3 = g33G = - 1r- 2sin- 2q g + g - g = - 1r- 2sin- 2q (cid:215) - 2r2cosq sinq =cotq 23 233 2 33,2 23,3 23,3 2 We now solve the field equations: [ ( ) ( ) ( ) ( )] R = G 0 - G 0 + G 0G 0 - G 0G 0 + G 1 G 0 - G 1 G 0 + G 2G 0 - G 2G 0 + G 3G 0 - G 3G 0 00 00,0 0(0,0 00 00 )00 (00 00 10 )00 10 00 20 00 20 00 30 00 30 [ ( ) ( )] + G 1 - G 1 + G 0G 1 - G 0G 1 + G 1G 1 - G 1 G 1 + G 2G 1 - G 2G 1 + G 3G 1 - G 3G 1 01,0 00,1 01 00 00 01 (01 10 00 11 ) 01 20 00 21 01 30 00 31 [ ( ) ( ) ( )] + G 2 - G 2 + G 0G 2 - G 0G 2 + G 1 G 2 - G 1 G 2 + G 2G 2 - G 2G 2 + G 3G 2 - G 3G 2 02,0 00,2 02 00 00 02 ( 02 10 00 12) 02 20 00 22 02 30 00 32 [ ( ) ( ) ( )] + G 3 - G 3 + G 0G 3 - G 0G 3 + G 1 G 3 - G 1 G 3 + G 2G 3 - G 2G 3 + G 3G 3 - G 3G 3 03,0 00,3 03 00 00 03 03 10 00 13 03 20 00 23 03 30 00 33 Courtney James Mewton Page 3 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY ( ) ( ) Ø ( ) ( )] R = G 0 - G 0 + G 0G 0 - G 0G 0 + G 1G 0- G 1G 0 + G 2G 0 - G 2G 0 + G 3G 0 - G 3G 0 11 Œº 10,1 11,0 10 01 11 00 10 11 11 10 10 21 11 20 10 31 11 30 [ ( ) ( ) ( ) ( )] + G 1 - G 1 + G 0G 1 - G 0G 1 + G 1G 1 - G 1G 1 + G 2G 1 - G 2G 1 + G 3G 1 - G 3G 1 11,1 11,1 11 01 11 01 (11 11 11 11 ) (11 21 11 21 ) 11 31 11 31 Ø ( ) ( )] + G 2 - G 2 + G 0G 2 - G 0G 2 + G 1G 2- G 1G 2 + G 2G 2 - G 2G 2 + G 3G 2 - G 3G 2 Œº 12,1 11,2 12 01 11 02 12 11 11 12 12 21 11 22 12 31 11 32 ( ) ( )] Ø ( ) ( ) + G 3 - G 3 + G 0G 3 - G 0G 3 + G 1G 3- G 1G 3 + G 2G 3 - G 2G 3 + G 3G 3 - G 3G 3 Œº 13,1 11,3 13 01 11 03 13 11 11 13 13 21 11 23 13 31 11 33 ( ) [ ( ) ( ) ( )] R = G 0 - G 0 + G 0G 0 - G 0G 0 + G 1 G 0 - G 1 G 0 + G 2G 0 - G 2G 0 + G 3G 0 - G 3G 0 22 20,2 22,0 20 02 22 (00 20 12 )22 (10 20 22 )22 20 20 32 22 30 [ ( ) ( )] + G 1 - G 1 + G 0G 1 - G 0G 1 + G 1 G 1 - G 1 G 1 + G 2G 1 - G 2G 1 + G 3G 1 - G 3G 1 21,2 22,1 21 02 22 01 (21 12 22 11 ) 21 22 22 21 21 32 22 31 [ ( ) ( ) ( )] + G 2 - G 2 + G 0G 2 - G 0G 2 + G 1 G 2 - G 1 G 2 + G 2G 2 - G 2G 2 + G 3G 2 - G 3 G 2 22,2 22,2 22 02 22 02 ( 22 12 22 12) 22 22 22 22 ( 22 32 22 32)] [ ( ) ( ) + G 3 - G 3 + G 0G 3 - G 0G 3 + G 1 G 3 - G 1 G 3 + G 2G 3 - G 2G 3 + G 3G 3 - G 3 G 3 23,2 22,3 23 02 22 03 23 12 22 13 23 22 22 23 23 32 22 33 ( ) [ ( ) ( ) ( )] R = G 0 - G 0 + G 0G 0 - G 0G 0 + G 1 G 0 - G 1 G 0 + G 2G 0 - G 2G 0 + G 3G 0 - G 3G 0 33 30,3 33,0 30 03 33 (00 30 13 )33 10 30 23 33 (20 30 33 )]33 30 [ ( ) ( ) + G 1 - G 1 + G 0G 1 - G 0G 1 + G 1G 1 - G 1 G 1 + G 2G 1 - G 2G 1 + G 3G 1 - G 3G 1 31,3 33,1 31 03 33 01 (31 13 33 11 ) 31 23 33 21 (31 33 33 31 )] [ ( ) ( ) + G 2 - G 2 + G 0G 2 - G 0G 2 + G 1 G 2- G 1 G 2 + G 2G 2 - G 2G 2 + G 3G 2 - G 3G 2 32,3 33,2 32 03 33 02 32 13 33 12 32 23 33 22 32 33 33 32 [ ( ) ( ) ( ) ( )] + G 3 - G 3 + G 0G 3 - G 0G 3 + G 1 G 3 - G 1 G 3 + G 2G 3 - G 2G 3 + G 3G 3 - G 3G 3 33,3 33,3 33 03 33 03 33 13 33 13 33 23 33 23 33 33 33 33 We are left with R =- G 1 +G 0G 1 - G 1G 1 - G 1G 2 - G 1G 3 , 00 00,1 01 00 00 11 00 12 00 13 R =G 0 +G 0G 0 - G 1G 0 +G 2 - G 1G 2 +G 2G 2 +G 3 - G 1G 3 +G 3G 3 , 11 10,1 10 01 11 10 12,1 11 12 12 21 13,1 11 13 13 31 R =- G 1 G 0 - G 1 - G 1 G 1 +G 2G 1 +G 3 - G 1 G 3 +G 3G 3 , 22 22 10 22,1 22 11 21 22 23,2 22 13 23 32 R = - G 1G 0 - G 1 - G 1G 1 +G 3G 1 - G 2 - G 1G 2 +G 3G 2 . 33 33 10 33,1 33 11 31 33 33,2 33 12 32 33 These equations must equal zero, thus after substitution, we have: Ø B¢A¢ A¢¢ A¢A¢ A¢ ø 1 R = Œ - + - œ , (1) 00 º 4B 2 4A r ß B A¢ 2 A¢¢ A¢B¢ B¢A R =- + - - , (2) 11 4A 2 4B Br ¢ ¢ Ar Br 1 R = - + - 1, (3) 22 2AB 2B2 B Ø A¢r B¢r 1 ø R = Œ - + - 1œ sin2q = R sin2q . (4) 33 º 2AB 2B2 B ß 22 Equation 2 becomes: A¢ 2 A¢¢ A¢B¢ B¢A B¢A A¢ 2 A¢¢ A¢B¢ 0= - + - - (cid:222) =- + - . 4A 2 4B Br Br 4A 2 4B This can be substituted into equation 1 to give: Ø B¢A A¢ ø 1 B¢A A¢ B¢ A¢ 0= Œ - - œ (cid:222) =- (cid:222) =- . º Br r ß B Br r B A This can also be written as: Courtney James Mewton Page 4 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY dB dA dB dA 1 =- (cid:219) =- (cid:222) B = (cid:222) AB =1, Bdr Adr B A A upon solving the simple differential equation. We use this solution to simplify equation 3: A¢r A¢r ( )¢ 0= + + A- 1(cid:219) 1= A¢r + A= A¢r + Ar¢ = Ar 2 2A We now integrate: (cid:242) dr = (cid:242) d (Ar)dr (cid:222) r +k = Ar, dr where k is an integration constant. The equation can be rearranged to find A: k A=1+ . r Since B = A- 1, (cid:230) k(cid:246) - 1 B =(cid:231) 1+ (cid:247) . Ł r ł The value of k is the last thing to obtain. In the next section on the approximation of Newtonian gravitation, g =1+h . It can immediately be seen that the h is equivalent to k. In the Newtonian approximation, it 00 00 00 is required that the Newtonian gravitational potential V = 1c2h . Using the Newtonian potential 2 00 V = - GM r, this gives a value of k =- 2GM rc2. By substituting A and B back into the original line- element equation at the start of this section, we have the Schwarzchild solution: (cid:230) 2GM (cid:246) (cid:230) 2GM (cid:246) - 1 ( ) c2dt 2 =(cid:231) 1- (cid:247) c2dt2 - (cid:231) 1- (cid:247) dr2 - r2 dq 2 +sin2q df 2 . Ł rc2 ł Ł rc2 ł Utilising Geodesic Equation to Find GR Approximation of Newtonian Gravity A particle travels through spacetime along a geodesic, given by the equation: dxm dxn dxs +G m = 0. dt 2 sn dt dt t is the time experienced relative to the particle. The equation simply states that relative to a free particle, it experiences no net acceleration (though other objects appear to accelerate if a gravitational field is present). We wish to determine the motion of the particle relative to coordinate time, denoted by t. The equation would give the path of the particle in accordance to what other observers would see if they thought they were in a gravitational field. With the above said, the following equation can be immediately written, transforming from proper time to coordinate time: d2xm +G m dxn dxs =(cid:231)(cid:230) d2t (cid:231)(cid:230) dt (cid:247)(cid:246) 2(cid:247)(cid:246) dxm dt2 sn dt dt (cid:231)Ł dt 2 Ł dt 2 ł (cid:247)ł dt . First, we expand and consider its spatial components: dd2tx2i +G ijk ddxtj ddxtk +2G 0ik ddxt0 ddxtk +G 0i0 ddxt0 ddxt0 =(cid:231)(cid:231)Ł(cid:230) ddt2t2 (cid:231)Ł(cid:230) ddtt2 (cid:247)ł(cid:246) 2(cid:247)(cid:247)ł(cid:246) ddxti . dxj dx0 dx0 dxk G i = G i One of the Christoffel symbols has a coefficient of two since . We simplify the j0 dt dt 0k dt dt equation: dd2tx2i +G ijk ddxtj ddxtk +2G 0ikcddxtk +c2G 0i0 =(cid:231)(cid:231)Ł(cid:230) ddt2t2 (cid:231)Ł(cid:230) ddtt2 (cid:247)ł(cid:246) 2(cid:247)(cid:247)ł(cid:246) ddxti . Courtney James Mewton Page 5 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY We assume that the gravitational field is quasi-static, i.e. that it doesn't change with respect to time. Therefore, any derivatives of the metric tensor with respect to time can be left out. Now we evaluate the connection coefficients: 1 gir (cid:230) ¶ g ¶ g ¶ g (cid:246) G i = gir G = (cid:231)(cid:231) rj + rk - jk (cid:247)(cid:247) . These derivatives are quite small, and can be neglected.1 jk 2 rjk 2 Ł ¶ xk ¶ xj ¶ xr ł gir (cid:230) ¶ g ¶ g ¶ g (cid:246) ( )(cid:230) ¶ h ¶ h ¶ h (cid:246) 2G i = 2 (cid:231)(cid:231) r 0 + rk - 0k (cid:247)(cid:247) » h ir +hir (cid:231)(cid:231) r 0 + rk - 0k (cid:247)(cid:247) 0k 2 Ł ¶ xk ¶ x0 ¶ xr ł Ł ¶ xk ¶ x0 ¶ xr ł ( )(cid:230) ¶ h ¶ h ¶ h (cid:246) (cid:230) ¶ h ¶ h (cid:246) ¶ h » h ir +hir (cid:231)(cid:231) 0r + rk - 0k (cid:247)(cid:247) » - d is(cid:231) 0s - 0k (cid:247) on neglecting terms involving mn . Ł ¶ xk ¶ x0 ¶ xr ł Ł ¶ xk ¶ xs ł ¶ x0 gik (cid:230) ¶ g ¶ g ¶ g (cid:246) d iz ¶ h G i = (cid:231) k 0 + 0k - 00 (cid:247) » 00 . 00 2 Ł ¶ x0 ¶ x0 ¶ xk ł 2 ¶ xz Now we need to evaluate the RHS of the equation. We start by first looking at the following line element: (cid:230) dt (cid:246) 2 1 ( )dxm dxn 1 ( )dxm dxn c2dt 2 = g dxm dxn (cid:219) (cid:231) (cid:247) = h +h = 1+h . Neglecting mn Ł dt ł c2 mn mn dt dt c2 mn dt dt terms involving the spatial components, which are small in comparison to the temporal components, we get: (cid:230) dt (cid:246) 2 ( ) dt ( ) ( ) (cid:231) (cid:247) = 1+h (cid:222) = 1+h 12 » 1+ 1h . Ł dt ł 00 dt 00 2 00 d2t dh dh Now = 00 =c 00 , so the RHS of our major equation becomes: dt2 dt dx0 dh dxi ŒØ d2t (cid:231)(cid:230) dt (cid:247)(cid:246) 2œø » c dx000 dxi » cdh00 (1- 1h )dxi . dt Œº dt 2 Ł dt 2 ł œß 1+ 1h dt dx0 2 00 dt 2 00 This is negligible since it involves temporal derivatives of the gravitational field. By plugging everything into our equation, we get: d2xi (cid:230) ¶ h ¶ h (cid:246) dxk d iz ¶ h - d is(cid:231) 0s - 0k (cid:247) +c2 00 =0. dt2 Ł ¶ xk ¶ xs ł dt 2 ¶ xz Through multiplying by mass m and rearranging the equation, we get: d2xi d iz ¶ h (cid:230) ¶ h ¶ h (cid:246) dxk m = - mc2 00 +md is(cid:231) 0s - 0k (cid:247) . dt2 2 ¶ xz Ł ¶ xk ¶ xs ł dt The term on the left is the force that the particle appears to experience. The first term on the right is some kind of potential of the field, since its temporal component is involved. The last term, which involves perpendicular velocities, is indicative of some sort of Coriolis force. We are not interested in the Coriolis effects, so we shall assume that we are in a non-rotating frame, so we get: d2xi d iz ¶ h m = - mc2 00 . dt2 2 ¶ xz If we denote a potential by V = 1c2h , then the equation simply becomes F = - m(cid:209) V , or 2 00 d2xi ¶ V = - d iz . We want the metric tensor to be flat when there is no gravitational field present. The dt2 ¶ xz 1 The metric tensor gmn » h mn +hmn , where h mn is the familiar metric tensor of Special Relativity, and hmn are small terms which include the action of any gravitational fields which may be present, and are small in h mn comparison to the in weak gravitational fields, as opposed to the awesome sucking power of a black hole! Courtney James Mewton Page 6 GR, Tensor Analysis & Geometry GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY equation for the potential leads us to the expression g =h +h =1+2V c2 . To finally get the actual 00 00 00 expression for the potential in terms of mass, we need to use the line element from the Schwarzchild solution. The temporal component gives V = - GM r. With this expression, we can easily obtain an approximation of the gravitational force: F = - m(cid:209) V = - GMm r2 . Field Equations in the Presence of Matter: The Poisson Approximation Let us write the equation: Rmn - 1 gmn =k Tmn , 2 or, more compactly as: Gmn =k Tmn , where G is the Einstein tensor. As a test for General Relativity, at velocities which are small in comparison to the speed of light, there must be an approximation to Poisson’s equation: (cid:209) 2V = 4p Gr . To achieve this requires the weak field approximation by leaving out negligible terms in the Ricci tensor.2 Gmn =k Tmn Rmn - 1 gmn R =k Tmn 2 g Rmn - 1 g gmn R =k Tmn g mn 2 mn mn R- 2R =k Tmn g mn \ R = - k Tmn g mn We substitute this back into our original equation: Rmn =k Tmn + 1 gmn R =k Tmn - 1 gmn k Tmn g 2 2 mn We are approximating that the material energy tensor has a negligible value in for all m , n except when m = n = 0, so we get: R00 =k T00 - 1 g00k T00g = 1k T00. 2 00 2 We now make the Ricci tensor covariant: g g R00 = 1k T00g g (cid:219) R = 1k T 00 00 2 00 00 00 2 00 Weak field approximation. ( ) R » 1 g - g - g + g » 1 g mn 2 aa ,mn na ,ma am ,na mn ,aa 2 mn ,aa 1 \ R » 1 g » 1(cid:209) 2g = (cid:209) 2V 00 2 00,aa 2 00 c2 1 \ (cid:209) 2V = 1k T = 1kr v v c2 2 00 2 0 0 The particles are traveling at the travelling at the speed of light through time, so we get: (cid:209) 2V = 1kr c4 2 This must equal Poisson’s equation, stated earlier 8p G k = This gives a value . c4 2 Note that this particular calculation would be shorter if we took the Einstein tensor and the material energy tensor to be covariant as opposed to contravariant, but due to the actual form of the material energy tensor, I prefer it to be contravariant. Courtney James Mewton Page 7 GR, Tensor Analysis & Geometry

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.