General Relativity and its Applications General Relativity and its Applications Black Holes, Compact Stars and Gravitational Waves Valeria Ferrari Leonardo Gualtieri Paolo Pani CRC PressFirst edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as- sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Ferrari, Valeria, 1952- author. | Gualtieri, Leonardo, 1971- author. | Pani, Paolo, 1984- author. Title: General relativity and its Applications : Black Holes, Compact Stars and Gravitational Waves Valeria Ferrari, Leonardo Gualtieri, Paolo Pani. Description: Boca Raton : CRC Press, 2020. | Includes bibliographical references and index. Identifiers: LCCN 2020028364 | ISBN 9780367625320 (paperback) | ISBN 9781138589773 (hardback) | ISBN 9780429491405 (ebook) Subjects: LCSH: General relativity (Physics) | Gravitation. | Gravitational waves. Classification: LCC QC173.6 .F45 2020 | DDC 530.11--dc23 LC record available at https://lccn.loc.gov/2020028364 ISBN: 978-1-138-58977-3 (hbk) ISBN: 978-0-367-62532-0 (pbk) ISBN: 978-0-429-49140-5 (ebk) Typeset in Computer Modern font by KnowledgeWorks Global Ltd. Contents Preface xiii Notation and conventions xvii hapter C 1(cid:4) Introduction 1 1.1 NON-EUCLIDEANGEOMETRIES 1 1.1.1 The metric tensor in different coordinate frames 4 1.1.2 The Gaussian curvature 5 1.1.3 Pseudo-Euclidean geometries and spacetime 5 1.2 NEWTONIANTHEORYANDITSSHORTCOMINGS 6 1.3 THEROLEOFTHEEQUIVALENCEPRINCIPLE 9 1.4 GEODESICEQUATIONSASACONSEQUENCEOFTHEEQUIVALENCE PRINCIPLE 11 1.5 LOCALLYINERTIALFRAMES 13 hapter C 2(cid:4) Elements of differential geometry 17 2.1 TOPOLOGICALSPACES,MAPPING,MANIFOLDS 17 2.1.1 Topological spaces 17 2.1.2 Mapping 18 2.1.3 Manifolds and differentiable manifolds 22 2.1.4 Diffeomorphisms 26 2.2 VECTORS 27 2.2.1 The traditional definition of a vector 27 2.2.2 A geometrical definition 29 2.3 ONE-FORMS 39 2.3.1 One-forms as geometrical objects 39 2.3.2 Vector fields and one-form fields 43 2.4 TENSORS 46 2.4.1 Geometrical definition of a tensor 46 2.4.2 Symmetries of a tensor 51 2.5 THEMETRICTENSORANDITSPROPERTIES 54 v vi (cid:4) Contents hapter C 3(cid:4) Affine connection and parallel transport 63 3.1 THECOVARIANTDERIVATIVEOFVECTORS 63 3.2 THECOVARIANTDERIVATIVEOFSCALARSANDONE-FORMS 67 3.3 SYMMETRIESOFCHRISTOFFEL’SSYMBOLS 68 3.4 TRANSFORMATIONRULESFORCHRISTOFFEL’SSYMBOLS 69 3.5 THECOVARIANTDERIVATIVEOFTENSORS 70 3.6 CHRISTOFFEL’SSYMBOLSINTERMSOFTHEMETRICTENSOR 72 3.7 PARALLELTRANSPORT 76 3.7.1 Parallel transport of a vector along a closed path on a two- sphere 78 3.8 GEODESICEQUATION 81 3.9 FERMICOORDINATES 82 3.10 NON-COORDINATEBASES 84 hapter C 4(cid:4) The curvature tensor 87 4.1 PARALLELTRANSPORTALONGALOOP 87 4.2 SYMMETRIESOFTHERIEMANNTENSOR 91 4.3 THE RIEMANN TENSOR GIVES THE COMMUTATOR OF COVARIANT DERIVATIVES 91 4.4 THEBIANCHIIDENTITIES 92 4.5 THEEQUATIONOFGEODESICDEVIATION 92 hapter C 5(cid:4) The stress-energy tensor 97 5.1 THESTRESS-ENERGYTENSORINFLATSPACETIME 97 5.2 ISTαβ ATENSOR? 100 5.3 DOESTαβ SATISFYACONSERVATIONLAW? 104 5.4 ISTαβ = 0ACONSERVATIONLAW? 107 ;β hapter C 6(cid:4) The Einstein equations 109 6.1 GEODESICEQUATIONSINTHEWEAK-FIELD,STATIONARYLIMIT 110 6.2 EINSTEIN’SFIELDEQUATIONS 112 6.3 GAUGEINVARIANCEOFEINSTEIN’SEQUATIONS 117 6.4 THEHARMONICGAUGE 118 hapter C 7(cid:4) Einstein’s equations and variational principles 121 7.1 EULER-LAGRANGE’SEQUATIONSINSPECIALRELATIVITY 121 7.2 EULER-LAGRANGE’SEQUATIONSINCURVEDSPACETIME 122 7.3 EINSTEIN’SEQUATIONSINVACUUM 124 7.4 EINSTEIN’SEQUATIONSWITHSOURCES 128 7.4.1 The stress-energy tensor in some relevant cases 129 7.5 EINSTEIN’SEQUATIONSINTHEPALATINIFORMALISM 131 Contents (cid:4) vii hapter C 8(cid:4) Symmetries 135 8.1 KILLINGVECTORFIELDS 135 8.2 KILLING VECTOR FIELDS AND THE CHOICE OF COORDINATE SYS- TEMS 139 8.3 KILLINGVECTORFIELDSANDCONSERVATIONLAWS 142 8.3.1 Conserved quantities in geodesic motion 142 8.3.2 Conserved quantities from the stress-energy tensor 143 8.4 HYPERSURFACE-ORTHOGONALVECTORFIELDS 144 8.4.1 Frobenius’ theorem 145 8.4.2 Hypersurface-orthogonal vector fields and the choice of coor- dinate systems 146 8.5 DIFFEOMORPHISMINVARIANCEOFGENERALRELATIVITY 148 hapter C 9(cid:4) The Schwarzschild solution 151 9.1 STATICANDSPHERICALLYSYMMETRICSPACETIMES 151 9.2 THESCHWARZSCHILDSOLUTION 154 9.3 SINGULARITIESOFTHESCHWARZSCHILDSOLUTION 159 9.4 SPACELIKE,TIMELIKE,ANDNULLHYPERSURFACES 160 9.4.1 Constant radius hypersurfaces in Schwarzschild’s spacetime 162 9.5 SINGULARITIESINGENERALRELATIVITY 163 9.5.1 Geodesic completeness 163 9.5.2 How to remove a coordinate singularity 164 9.5.3 Extension of the Rindler spacetime 166 9.5.4 Extension of the Schwarzschild spacetime 170 9.5.5 Eddington-Finkelstein coordinates 176 9.6 THEBIRKHOFFTHEOREM 178 hapter C 10(cid:4) Geodesic motion in Schwarzschild’s spacetime 181 10.1 AVARIATIONALPRINCIPLEFORGEODESICMOTION 181 10.2 EQUATIONSOFMOTION 182 10.3 THECONSTANTSOFGEODESICMOTION 185 10.4 ORBITSOFMASSLESSPARTICLES 188 10.5 ORBITSOFMASSIVEPARTICLES 190 10.6 RADIALCAPTUREOFAMASSIVEPARTICLE 193 hapter C 11(cid:4) Kinematical tests of General Relativity 197 11.1 GRAVITATIONALSHIFTOFSPECTRALLINES 197 11.1.1 Redshift of spectral lines in the weak-field limit 201 11.1.2 Redshift of spectral lines in a strong gravitational field 201 11.2 THEDEFLECTIONOFLIGHT 203 11.3 PERIASTRONPRECESSION 207 viii (cid:4) Contents 11.4 THESHAPIROTIMEDELAY 212 11.5 THESHADOWOFABLACKHOLE 214 11.5.1 The accretion disk of a black hole 218 hapter C 12(cid:4) Gravitational waves 221 12.1 PERTURBATIVEAPPROACH 221 12.2 GRAVITATIONALWAVESASPERTURBATIONSOFFLATSPACETIME 223 12.3 HOWTOCHOOSETHEHARMONICGAUGE 228 12.4 PLANEGRAVITATIONALWAVES 229 12.5 THETTGAUGE 230 12.6 HOW DOES A GRAVITATIONAL WAVE AFFECT THE MOTION OF A SINGLEPARTICLE 232 12.7 GEODESICDEVIATIONINDUCEDBYAGRAVITATIONALWAVE 232 12.8 GRAVITATIONALWAVESANDMICHELSONINTERFEROMETERS 239 hapter C 13(cid:4) Gravitational waves in the quadrupole approximation 243 13.1 THEWEAK-FIELD,SLOW-MOTIONAPPROXIMATION 243 13.2 THEQUADRUPOLEFORMULA 245 13.2.1 The tensor-virial theorem 245 13.2.2 The quadrupole moment tensor 247 13.2.3 Absence of monopolar and dipolar gravitational waves 247 13.3 HOWTOTRANSFORMTOTHETTGAUGE 248 13.4 GRAVITATIONALWAVESEMITTEDBYAHARMONICOSCILLATOR 250 13.5 GRAVITATIONALWAVEEMITTEDBYABINARYSYSTEMINCIRCULAR ORBIT 252 13.6 ENERGYCARRIEDBYAGRAVITATIONALWAVE 257 13.6.1 The stress-energy pseudo-tensor of the gravitational field 257 13.6.2 Energy flux of a gravitational wave 261 hapter C 14(cid:4) Gravitational wave sources 267 14.1 EVOLUTIONOFACOMPACTBINARYSYSTEM 267 14.2 GRAVITATIONALWAVESFROMINSPIRALLINGCOMPACTOBJECTS 271 14.2.1 September 14th, 2015: the detection of gravitational waves 273 14.2.2 The chirp mass and the luminosity distance 274 14.2.3 A lower bound for the total mass of the system 277 14.2.4 The final stages of the inspiral 278 14.2.5 Merger and ringdown: identifying the nature of coalescing compact objects 279 14.2.6 More signals from coalescences 280 14.3 GRAVITATIONALWAVESFROMROTATINGCOMPACTSTARS 284 14.3.1 Stars rigidly rotating around a principal axis 284 14.3.2 Wobbling stars 289 Contents (cid:4) ix 14.4 COSMOLOGICALPARAMETERS 292 14.4.1 The cosmological redshift 293 14.4.2 The Hubble constant 294 14.4.3 Luminosity distance 295 14.4.4 Standard sirens: coalescing binaries as standard candles 297 hapter C 15(cid:4) Gravitational waves from oscillating black holes 299 15.1 ATOYMODEL:SCALARPERTURBATIONS 299 15.2 PERTURBATIONSOFTHESCHWARZSCHILDSPACETIME 304 15.2.1 Linearized Einstein’s equations in vacuum 304 15.2.2 Harmonic decomposition 305 15.2.3 The Regge-Wheeler gauge 308 15.2.4 Perturbations with l = 0 and l = 1 310 15.2.5 Linearized Einstein’s equations in vacuum 310 15.2.6 Separation of the angular dependence 311 15.3 MASTEREQUATIONSFORAXIALANDPOLARPERTURBATIONS 312 15.3.1 The Regge-Wheeler equation for the axial perturbations 313 15.3.2 The Zerilli equation for the polar perturbations 313 15.4 THEQUASI-NORMALMODESOFASCHWARZSCHILDBLACKHOLE 315 hapter C 16(cid:4) Compact stars 321 16.1 STELLAREVOLUTIONINANUTSHELL 321 16.2 WHITEDWARFS 324 16.2.1 The discovery of white dwarfs 324 16.2.2 Degenerate gas in quantum mechanics 325 16.2.3 A criterion for degeneracy 327 16.2.4 The equation of state of a fully degenerate gas of fermions 330 16.2.5 The structure of a white dwarf 334 16.2.6 The Chandrasekhar limit 338 16.3 NEUTRONSTARS 343 16.3.1 The discovery of neutron stars 343 16.3.2 The internal structure of a neutron star 343 16.3.3 Thermodynamics of perfect fluids in General Relativity 346 16.3.4 The stress-energy tensor of a perfect fluid 352 16.3.5 The equations of stellar structure in General Relativity 353 16.3.6 The Schwarzschild solution for a homogeneous star 358 16.3.7 Relativistic polytropes 360 16.3.8 Buchdahl’s theorem 365 16.3.9 Stability of a compact star 367