ebook img

General relativistic modelling of the negative reverberation X-ray time delays in AGN PDF

20 Pages·2014·1.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview General relativistic modelling of the negative reverberation X-ray time delays in AGN

MNRAS439,3931–3950(2014) doi:10.1093/mnras/stu249 AdvanceAccesspublication2014March3 General relativistic modelling of the negative reverberation X-ray time (cid:2) delays in AGN D. Emmanoulopoulos,1† I. E. Papadakis,2,3 M. Dovcˇiak4 and I. M. McHardy1 1PhysicsandAstronomy,UniversityofSouthampton,SouthamptonSO171BJ,UK 2DepartmentofPhysicsandInstituteofTheoreticalandComputationalPhysics,UniversityofCrete,GR-71003Heraklion,Greece 3IESL,FoundationforResearchandTechnology,GR-71110Heraklion,Greece 4AstronomicalInstituteoftheAcademyofSciences,Bocˇn´ıII1401,CZ-14100Praha4,CzechRepublic D o w Accepted2014February4.Received2014January28;inoriginalform2013December17 n lo a d e d ABSTRACT fro m We present the first systematic physical modelling of the time-lag spectra between the soft h (0.3–1keV)andthehard(1.5–4keV)X-rayenergybands,asafunctionofFourierfrequency, ttp s in a sample of 12 active galactic nuclei which have been observed by XMM–Newton. We ://a c concentrate particularly on the negative X-ray time-lags (typically seen above 10−4Hz), i.e. ad e soft-band variations lag the hard-band variations, and we assume that they are produced by m ic reprocessingandreflectionbytheaccretiondiscwithinalamp-postX-raysourcegeometry. .o u p Wealsoassumethattheresponseoftheaccretiondisc,inthesoftX-raybands,isadequately .c describedbytheresponseintheneutralFeKαlineat6.4keVforwhichweusefullygeneral om /m relativisticray-tracingsimulationstodetermineitstimeevolution.Theseresponsefunctions, n andthusthecorrespondingtime-lagspectra,yieldmuchmorerealisticresultsthanthecom- ras /a monlyused,buterroneous,top-hatmodels.Additionally,weparametrizethepositivepartof rtic the time-lag spectra (typically seen below 10−4Hz) by a power law. We find that the best- le -a fitting black hole (BH) masses, M, agree quite well with those derived by other methods, b s thus providing us with a new tool for BH mass determination. We find no evidence for any tra c correlation between M and the BH spin parameter, α, the viewing angle, θ, or the height of t/4 3 9 the X-ray source above the disc, h. Also on average, the X-ray source lies only around 3.7 /4 gravitational radii above the accretion disc and θ is distributed uniformly between 20◦ and /39 3 60◦.Finally,thereisatentativeindicationthatthedistributionofαmaybebimodalaboveand 1/1 below0.62. 17 2 4 Keywords: accretion,accretiondiscs–blackholephysics–relativisticprocesses–galaxies: 31 b active–galaxies:nuclei–X-rays:galaxies. y g u e s t o n thecentroidoftheX-rayemittingsource),lyingabovethecentral 0 1 INTRODUCTION BH,ontheaxisofsymmetryofthesystem(i.e.BHspinaxis).This 9 A p Inthecurrentparadigm,activegalacticnuclei(AGN)containacen- arrangementisknownasthe‘lamp-postgeometry’.Thephotons, ril 2 tralblackhole(BH)whichisfed,inmostcases,byanopticallythick fromtheX-raysource,formapower-lawspectrum,anddepending 0 1 andgeometricallythinaccretiondiscasaresultofmattertransporta- onthelocationoftheX-raysource,asubstantialpartofthemmay 9 tioninwardsandangularmomentumoutwards.Thisdiscradiatesas illuminatetheaccretiondisc.Inthiscase,theyareeitherCompton aseriesofblackbodycomponents(Shakura&Sunyaev1973)with scatteredbyfreeorboundelectrons,orphotoelectricallyabsorbed peak emission at optical–ultraviolet wavelengths (Malkan 1983). followedbyfluorescentlineemission,orbyAugerde-excitation. PartofthisradiationisassumedtobeComptonup-scatteredwithina Thisyieldstheso-calledreflectionspectrumconsistingofanumber mildlyrelativistichotelectroncloud,oftencalledtheX-raycorona. of emission and absorption lines (mainly below 1keV), together Thismediumisoftenapproximatedasapointsource(representing withthe6.4keVFeKαemissionlinefromneutralmaterial,which is the strongest X-ray spectral feature (George & Fabian 1991). Depending on the proximity of the reflection process to the BH, (cid:4) thevariouslinescanundergorelativisticbroadening(Fabianetal. BasedonobservationsobtainedwithXMM–Newton,anESAsciencemis- sionwithinstrumentsandcontributionsdirectlyfundedbyESAMember 1989; Laor 1991). These relativistically broadened lines may ac- StatesandNASA. count for the observed soft X-ray excess (Crummy et al. 2006), †E-mail:[email protected] where the X-ray spectrum below 1keV (soft band) lie above the (cid:3)C 2014TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 3932 D.Emmanoulopoulos etal. power-lawextrapolationofthecontinuum,usuallymeasuredinthe Inordertoproperlymodeltheimpulseresponsefunction,onehas 1.5–4keV(hardband).However,alternativeinterpretationsforthe totakeintoaccountindetailthevariousgeneralrelativistic(GR) softexcessarealsopossiblee.g.Comptonizationofdiscphotons effects which affect the geometric path of both the hard and re- fromtheX-raysource(Pageetal.2004),Comptonizationofdisc flectedX-rays.AfirstattemptatsuchamodellingofNXTLswas photonswithinahotlayerontheaccretiondisc(Wang&Netzer performedbyChainakun&Young(2012)fortheAGN1H0707– 2003;Doneetal.2012).Inadditiontotheprimaryandthereflected 495 using a GR light-bending model and a moving X-ray source components,severalAGNexhibitabsorptionfeaturesintheirX-ray in order to take account of the observed X-ray variability. Their spectraaswell.Thesefeaturecanariseby(i)outflowswhichare conclusion was that a more complex physical model is required eitherthermallyorradiativelyormagneticallydrivenwinds(Cappi in order to explain both the source’s geometry and intrinsic vari- 2006)andcanreachmildlyrelativisticspeeds(Tombesietal.2010), ability.Morerecently,Wilkins&Fabian(2013)usingthefullGR (ii)inflows(Krug,Rupke&Veilleux2010)and(iii)X-rayabsorp- treatmentwithavarietyofdifferentgeometriesofcorona,forthe tionclouds(Risaliti,Elvis&Nicastro2002).Thepositionofthese sameAGN1H0707–495,foundtheX-raysourceextendsradially structuresvariesfromtensuptothousandsofgravitationalradii,1 outwards to around 35rg and at a height of around 2rg above the D rg = GMBH/c2. In this framework, and taking advantage of the planeoftheaccretiondiscandthatpropagatingfluctuationsmight ow n highly variable behaviour of AGN, detection of time delays, as a accountforthepositivelow-frequencytimedelays.Inthispaper, lo a function of the Fourier frequency, between the soft-band and the weperformthefirstsystematicanalysisofthetime-lagspectraofa d e hnaisrmd-baannddthpehogteoonms,ectarynoshfetdhelsieghstyostnemthse. CXu-rrareynetlmy,istshieonobmseercvhead- sfuamncptiloenosf(1G2RAIGRNFsu,shienrgeafuftlelyr)g.eTnheersaelrfeulnatcitviiosntiscaimrepguelsneerraetsepdonusse- d from negativeX-raytime-lags(i.e.soft-bandvariationslaggingthehard- ingalamp-postmodelwithvariableBHmass,BHspinparameter, h band variations; NXTL hereafter) have triggered a great deal of viewingangleandheightoftheX-raysourceabovethedisc.The ttp s scientificinterestoninterpretingtheirnature.Aftertheirfirsttenta- paperisorganizedasfollows:Initially,inSection2,wepresentthe ://a c tivedetectionintheAGNArk564(McHardyetal.2007),wherean observationsanddatareductionprocedures.Then,inSection3,we a d origininreflectionfromtheaccretiondiscwasfirstproposed,the describethelamp-postmodelandthemethodthatweusetoderive em firststatisticalsignificantdetectioncamefromFabianetal.(2009) theGRIRFs.Inthenextsection,weoutlinetheprocedureforthe ic .o fortheAGN1H0707–495.Then,Emmanoulopoulos,McHardy& estimationofthetime-lagspectramodelsfromthecorresponding u p Papadakis(2011)foundthatthistime-delayedX-raybehaviouris GRIRFs, and in Section 5, we describe the fitting methodology. .c o much more common than was initially thought by analysing the Section 6 contains the results of the best-fitting time-lag spectral m /m datasetsfromtwowidelystudiedbrightAGN,MCG–6-30-15and models and finally, in the last section we give a summary of our n Mrk766.Subsequently,DeMarcoetal.(2013)inasystematicanal- results,andwediscussourconclusions.Throughoutthepaper,the ras yhsigishosfta3t2istAicGalNc,ofnofiunddenaceto.tTalheofo1p5poAsGiteNtiemxhei-bdietlianygeNdXbeThLasviwoiutrh, ethrreo6r8e.3stpimeracteesntfocronthfiedevnacreioiunsteprvhaylssicuanllepsasraomtheetrewrsisceosrtraetsepdo.nSdimto- /article i.e. positive X-ray time delays (hard-band variations lag the soft- ilarly,theerrorbarsoftheplotpointsinallthefiguresindicatethe -a b bandvariations),hasbeenknownforquitesometimeinbothAGN 68.3percentconfidenceintervals. stra (e.g. Papadakis, Nandra & Kazanas 2001; McHardy et al. 2004; c Are´valoetal.2006;Sriram,Agrawal&Rao2009)andX-raybi- t/43 2 OBSERVATIONS AND DATA REDUCTION 9 naries(e.g.Miyamoto&Kitamoto1989;Nowak&Vaughan1996; /4 Nowaketal.1999).Althoughpositivetime-lagsareexpectedinthe In Table 1, we list the details of the XMM–Newton observations /39 3 standardComptonizationprocesswithintheX-raysource(Nowak whichweusedinthiswork.Inthesecondcolumn,welisttheob- 1 /1 etal.1999),theycanalsobeproducedbydiffusivepropagationof servationIDforeachobject.Thelettersinparenthesesrefertothe 1 7 perturbations in the accretion flow (Kotov, Churazov & Gilfanov pnobservationmode;fw,lwandswrefertothePrimeFullWindow, 24 3 2001).TheoriginofNXTLstillremainsunclear.Assumingalamp- PrimeLargeWindow and PrimeSmallWindow modes, respec- 1 b post geometry, in which the reflection of the hard X-rays occurs tively. The XMM–Newton data were processed using Scientific y g very close to the BH (few rg), the NXTL arise from the differ- AnalysisSystem(SAS;Gabrieletal.2004)version12.0.1.Wecon- ue ence in the path-lengths between the soft (reflected photons) and sider only the EPIC pn data (Stru¨der et al. 2001) as they have a st o thehardX-rayphotons(comingdirectlyfromtheX-raysource)to highercountrateandlowerpile-updistortionthantheMOSdata. n 0 theobserver(Fabianetal.2009,2013;Zoghbietal.2010;Zoghbi, ThesourcecountsforeachAGNwereaccumulatedfromacircular 9 A Uttley&Fabian2011;Cackettetal.2013).Ontheotherhandbased apertureofradius40arcseccentredonthesource.Thebackground p on the large-scale distant scattering scenario (Miller et al. 2010; countswereaccumulatedfromasource-freecircularregiononthe ril 2 Leggetal.2012),NXTLsmightbecausedbyscatteringofX-rays sameCCDchipasthesource.Forthetypeofevents,weselected 01 as they pass through, or are scattered from, a distant (tens up to onlysingleanddoublepixelevents,i.e.PATTERN==0–4,andwere- 9 hundredr )absorbingclumpymedium(e.g.wind,outflow,cloud), jectedbadpixelsandeventstooclosetotheedgesoftheCCDbyus- g thatpartiallycoverstheX-raysource,andwhoseopacitydecreases ingthestandardqualitycriterionFLAG==0.Sourceandbackground withincreasingenergy.Currently,modellingofNXTLsisusually lightcurveswereextractedusingevselectin10stimebins.We doneintermsofsimpletop-hatimpulseresponsefunctions(THIRF, checkedalllightcurvesforpile-upusingthetaskepatplot.We hereafter;Milleretal.2010;Emmanoulopoulosetal.2011;Zoghbi found that only three observations of Ark 564 were affected by etal.2011).Thisapproachis,however,justaparametrizationofthe moderate pile-up with Obs. IDs: 0670130201, 0670130501 and NXTLspectraanddoesnotcarryanyphysicalinformationabout 0670130901.Inthesecases,weusedanannularregiontoexclude thegeometryandthephysicalpropertiesoftheBH(i.e.mass,spin). theinnermostsourceemissionhavingaradius,inpixels,of:280, 200and250,respectively.Thesourcelightcurveswerescreened forhighbackgroundandflaringactivity.Thelight-curvepartswith 1ForaBHmassof2×106M(cid:4)photonsneedtg=rg/c=9.8stotravela highbackgroundactivity,usuallyatthebeginningand/orendofan distanceof1rg. observation,wereremovedfromthefinaldataproducts.Thetotal MNRAS439,3931–3950(2014) GRmodelling ofNXTL 3933 Table1. XMM–Newtonobservations.Thefirstcolumn,(1),givesthenamesoftheAGNandtheirBHmasses.EachBH massestimatecomeswithafootnote(attheendofthetable)indicatingthecorrespondingliteraturereference.ThoseBH massesthathavebeenestimatedusingthereverberationmappingtechniquearefollowedbytheindication(r).Thesecond column,(2),givestheXMM–NewtonobservationIDstogetherwiththecorrespondingobservingmodeoftheEPIC-pncamera: smallwindow(sw),largewindow(lw)andfullwindow(fw)mode.Thethirdcolumn,(3),givesthenetexposuretimeofthe observationsi.e.durationafterbackgroundsubtractionanddatascreening. (1) (2) (3) (1) (2) (3) AGNname Obs.ID(PNmode) Netexp. Name Obs.ID(PNmode) Netexp. BHMass(×106M(cid:4)) (ks) BHMass(×106M(cid:4)) (ks) NGC4395 1H0707−495 0.36±0.11a(r) 0142830101(fw) 108.7 2.34±0.71f 0110890201(fw) 40.7 NGC4051 0148010301(fw) 78 D 1.73+−00..5552b(r) 0109141401(sw) 117 0506200201(lw) 38.7 ow 0157560101(lw) 50 0506200301(lw) 38.7 n lo 0606320101(sw) 45.3 0506200401(lw) 40.6 a d 0606320201(sw) 44.4 0506200501(lw) 40.9 e d 0606320301(sw) 31.3 0511580101(lw) 121.6 fro 0606320401(sw) 28.8 0511580201(lw) 102.1 m 0606321301(sw) 30.1 0511580301(lw) 104.2 h 0606321401(sw) 39.2 0511580401(lw) 101.8 ttps 0606321501(sw) 38.8 0554710801(lw) 96.1 ://a 0606321601(sw) 41.5 0653510301(lw) 113.9 ca d 0606321701(sw) 38.3 0653510401(lw) 125.8 e m 0606321801(sw) 39.9 0653510501(lw) 117 ic 0606321901(sw) 6.2 IRAS13224−3809 .o u 0606322001(sw) 36.9 5.75±0.82f 0110890101(fw) 60.9 p.c 0606322101(sw) 37.7 0673580101(lw) 126.1 o m 0606322201(sw) 41.1 0673580201(lw) 125.1 /m 0606322301(sw) 42.3 0673580301(lw) 125 n ra Mrk766 0673580401(lw) 127.5 s 1.76+−11..5460c(r) 00130094104310310011((ssww)) 19258.1.6 ES6O.9611±3−0.G240g10 0301890101(fw) 92.6 /article 0304030301(sw) 98.5 NGC7469 -a b 0304030401(sw) 98.5 12.2±1.4h(r) 0112170101(sw) 17.6 s 0304030501(sw) 95.1 0112170301(sw) 23.1 trac 0304030601(sw) 98.5 0207090101(sw) 84.6 t/4 3 0304030701(sw) 34.6 0207090201(sw) 78.7 9 MCG-6−30−15 Mrk335 /4/3 2.14±0.36d 0111570101(sw) 43.2 26±8i 0306870101(sw) 132.8 93 1 0111570201(sw) 55 0600540501(fw) 80.7 /1 0029740101(sw) 83.5 0600540601(fw) 130.3 17 2 0029740701(sw) 127.4 NGC3516 4 0029740801(sw) 125 31.7+−24..82b(r) 0107460601(sw) 79.3 31 b Ark564 0107460701(sw) 120.5 y 2.32±0.41e 0006810101(sw) 10.6 0401210401(sw) 51.7 gu e 0206400101(sw) 98.9 0401210501(sw) 62.6 s 0670130201(sw) 59.1 0401210601(sw) 61.6 t o n 0670130301(sw) 55.5 0401211001(sw) 42.2 0 9 0670130401(sw) 62.5 NGC5548 A 00667700113300560011((ssww)) 6660..95 44.2+−91.39.8b(r) 0089960301(sw) 85.2 pril 2 0 0670130701(sw) 55.3 19 0670130801(sw) 57.8 0670130901(sw) 55.5 aPetersonetal.(2005). bDenneyetal.(2010). cBentzetal.(2009). dEstimatedfromequation3inGu¨ltekinetal.(2009)usingthestellarvelocitydispersionvalueofMcHardyetal.(2005). eEstimatedfromequation5inVestergaard&Peterson(2006)usingthemeanvaluesofFWHM(Hβ)andλLλ(5100Å)of Romanoetal.(2004). fZhou&Wang(2005). gEstimatedfromequation5inVestergaard&Peterson(2006)usingthemeanvaluesofFWHM(Hβ)andtheλLλ(5100Å) estimatedbyCackettetal.(2013)usingdataofPietschetal.(1998). hPetersonetal.(2004). iGrieretal.(2012). MNRAS439,3931–3950(2014) 3934 D.Emmanoulopoulos etal. netpnexposuretime,i.e.aftertheexclusionofthehighbackground activityperiods,islistedinthethirdcolumnofTable1.Sincewe areinterestedinstudyingthetime-lagsbetweenthesoftexcessand theX-raycontinuum,thesourceandbackgroundlightcurveswere extractedinthoseenergybandswherethesoftexcesscontribution is maximized and the continuum emission is dominating, respec- tively.Thus,forallthesources,weuseforthesoftexcessandthe continuumtheenergybandsof0.3–1and1.5–4keV,respectively. The background subtracted light curves were produced using the (SAS)taskepiclccorr.NotethatinSection4.2.1wediscusswhy for the purposes of our paper detailed fine-tuning of the selected energybands isnotnecessary. Theresultingdatasetsarecontin- uouslysampledsufferingonlyfromveryfewdatagapsandcount D o ratedrops(asaconsequenceoftelemetrydrop-outs).Withrespect w n tothedatagaps,onaveragethereareatmost3–6missingobserva- lo a tionswhichwefilledupbylinearinterpolation.Forthecountrate d e dwreoprse,swcahleichthaerecoaulsnotvreartye,fewwith(oinnaevaecrhagtiembeetbwine,enac2caonrddi5ngpotointtsh)e, Figure1. Geometricallayoutofthelamp-postmodel.Theaccretiondisc d from correspondingfractionalexposuretime. isanopticallythick,geometricallythin,Kepleriancold(i.e.neutral)disc http 3 THE LAMP-POST MODEL tαh,attoex1t0e0n0drsgf.roTmhethXe-IrSayCOso,urricne,wishidcehpiisctdeedfibnyedthbeyothraenBgHesspphinerpeaaranmdeitteirs, s://ac situatedataheighthabovetheBH.Thebluesolidlinescorrespondtothe a d In this section, we describe the basic physical and geometrical trajectoriesoftwoexamplehardX-rayphotonsleavingtheX-raysource, em propertiesofthelamp-postmodel.Then,weoutlinetheprocessthat oneheadingtowardstheobserverandanotheronetowardstheaccretion ic weusetoestimatetheGRIRFs.Allthetime-scalesareestimated disc.Thelatterfollowsacurvedtrajectory,duetotheGReffects,andthe .ou innormalizedtimeunits,oft ,andthustheyscalelinearlywiththe trajectoryofthecorrespondingsoftX-rayphotonfromtheaccretiondisc p.c BHmass,M,viatherelationg (reflectedproduct)isshownwiththereddottedline.Thewholesystemis om viewedfromanangleθ.Acolourversionofthisfigureisavailableinthe /m tg,M =4.9255Ms (1) onlineversionofthejournal. nra s whereMisgiveninunitsof106M(cid:4). athnedpfrheoqtuoennscwieisllsfcoallleowlindeiafrfleyrewnitthtriatj(eecqtouraiteisonfr1o)m.ItnheeaXch-rgaeyosmoeutrrcye, /article tothediscandfromthedisctotheobserver,andthus,theresponse -a 3.1 Thegeometricallayoutandparameterspace b ofthesystemwillbedifferent. stra Thelamp-postmodelthatweconsiderinthispaperconsistsofthe c following three physical components: a central supermassive BH t/43 3.2 EstimationoftheGRIRFs 9 withanaccretiondiscilluminatedbyapoint-likeX-raysourcelo- /4 catedontheaxisofthesystem(Fig.1).Thissystemischaracterized Inordertocomputetheresponseoftheaccretiondisctotheprimary /39 3 bythefollowingparameters:spinparameterandmassofthecentral illuminationfromtheX-raysource(describedbythepowerlaw), 1 /1 BH,heightoftheX-raysource,andviewingangle.Theaccretion weuseaflarewithastepfunctionprofilethathasveryshortduration 1 7 discextendsfromtheinnermoststablecircularorbit(ISCO),rin,to of1tg.Theprimaryintrinsicspectrumhasanormalizationofunity. 24 3 1co0l0d0(rig.e,.annedutirtails)dainsco.pTtihceaXlly-rathyicsko,urgceeolmieestaribcoavlleyththeinB,HKaetphleeirgiahnt Tonhleyn,ofwteheesntiemuatrtaeltflheuorreesspcoennsteFoefKthαedliinsec,bayt 6m.4eakseuVrinigntthheeflreusxt 1 by g handitcomprisestheprimarysourceofX-rays,whichweassume frameoftheaccretiondisc. u e ttsropuibmneposatfraaptmihcoeattonenrd,iαtno,dabenexde(cid:7)imts=itmti2an.sgTs,ihsMeot.crFeoonprtirctahallelByfoHwrmiistehcrh,awaprhoaiwcctheerrd-izleaefiwdnebsspyteihctes- ttiaskcTeaosttcienortimongpaucctcoeodutehneNtObFAoeRthK(Dαthuelmindoeinreflt,cutAxa,bnrwdaesisnuavrseter&steheCCoMolmloinnptt2eo0nC0s0ac)ra,lotwtemhriiunclgh- st on 09 I0S.6C7O6,(iwnetecrmonesdiidaetretshprieneBvHal,ureins:=03(.S5crhg)waanrdzs1ch(mildaxBimHa,lrlyinr=ota6tring)g, pdaroncceeseseqsu.aWltoetahsesuSmolearavnaeluuetr.aTlhaeccrreestuioltnandtiflscuxanadtthaneoirbosneravbeurnis- April 2 KerrBH,rin = 1rg). We have chosen a variety ofheights forthe computedusingalltheGReffects(Dovcˇiak,Karas&Matt2004), 019 X-raysource,dependingonthespinoftheBH.Forthecaseofa withouttakingintoaccounthigherorderimagesofthedisc.Thus, SchwarzschildBH,weselectanensembleof18heights:{2.3,2.9, we exclude photons emitted from the accretion disc (either from 3.6,4.5,5.7,7,8.8,11,13.7,17.1,21.3,26.5,33.1,41.3,51.5,64.3, the top or the bottom surface) that go around the BH (any num- 80.2,100}r .Fortheintermediatecase,weaddtotheensemble ber of times), which reach the observer by travelling through the g a lower height of 1.9r , and for the Kerr BH we add yet another gapbetweentheISCOandtheBH.Higherorderimagesaremore g heightof 1.5r , respectively. Finally, thesystemis observed bya prominentforaSchwarzshildBHwheretheISCOisthefurthest g distantobserverataviewingangleofθ,i.e.θ=0or90◦ifthedisc outandthegapbetweentheinneredgeofthediscandtheBHis isfaceonoredgeon,respectively.ForeachoneofthethreeBH the largest. Nevertheless, even in this case these photons do not spinparametersandeachoneheight,weconsiderthreeangles:20◦, contributeverymuchtothetotalflux(Beckwith&Done2004).An 40◦and60◦.Thiswideparameterspace,consistingofthevariables interestingpointisthatinthecaseofthelowerspinBHs,matter α,handθ,yieldsatotalof(20+19+18)×3=171different fromtheaccretiondiscfallsdownontotheBHratherquickly(on geometricallayoutsofthelamp-postmodel.TheBHmassisnotan theorbitaldynamicaltime-scaleattheISCO).Thus,itisexpected additionalvariableinourestimationofGRIRFsasalltime-scales thatthisfree-fallingmaterial,fillingthegapbetweentheISCOand MNRAS439,3931–3950(2014) GRmodelling ofNXTL 3935 D o w n lo a d e d fro m h ttp s Figure2. EstimationoftheGRIRFforthelamp-postmodelwithα=0.676,θ=40◦andh=3.6rg.Left-handpanel:thedynamicreflectionspectrumwitha ://aca timeresolutionof0.1tg.Right-handpanel:theGRIRFderivedbyaddinguptheFeKαlineflux,atagiventime(blackpoints),andthedottedlineistheresult de ofthecubicinterpolation.Acolourversionofthisfigureisavailableintheonlineversionofthejournal. m ic .o u theBH,willhavemuchlowerdensity,andconsequently,itcould timealltheFeKα linefluxesintheenergyband0–8keV.Inthe p.c be heavily ionized contributing to the overall reflection spectrum right-handpanelofFig.2,weshowtheGRIRFwhichcorresponds om (Reynolds 1997). In this case, higher order images would not be tothedynamicreflectionspectrumoftheleft-handpanel.Thisplot /m produced. The soft excess, of the contributed re-processed emis- ineffectshowshowtheFeKαlineflux(in0–8keV)evolveswith nra s sion,ismoreprominentinthestateswithhigherionization,butdue time,asseenbyadistantobserver.Theactualsumsaredepictedby /a tothemuchlowerdensityofthematterintheplungingregion,we theblackpointsandthedottedlineisacubicinterpolation.Note rtic donotexpectaverylargecontributiontotheoverallemissionand thatthecubicinterpolationisneededbecauseinsomecasesthere le-a thustotheresponsefunctionsofthesystem.Therefore,inourcom- are very small numerical errors during the estimation of the line b s putationswedonottakeintoaccounttheionizedemissionbelow fluxinthedynamicspectra(oftheorderof10−5)whichcancreate tra c theISCOinthecaseoflowerspinBHs.TheGReffectsincludethe oscillatory artefacts (Fig. 3) in the corresponding GRIRF (during t/4 3 light bending that causes the gravitational lensing, energy shift – the summation process). By performing a cubic interpolation (as 9 /4 Dopplerandgravitational–andtherelativistictimedelaysforboth opposedtoalinearorquadratic)theseartefactsaresuppressedand /3 9 thephotonstravellingfromtheprimarysourcetothedisc,aswellas theintegrationprocesswhichisusedtoderivethetime-lagspectra 3 1 there-processedphotonsemittedfromthedisctravellingtowards (Section4.1)ismuchfaster,i.e.thereisnoneedtotakeglobally /1 1 the observer. Due to the lamp-post geometry and relativistic ef- a very small integration step. As we can see from the right-hand 7 2 fects,theilluminationoftheaccretiondisc,fromtheprimaryX-ray panelofFig.2,thegeneralshapeoftheIRFconsistsofanabrupt 43 1 source,isuneven(i.e.dependingontheradius).Thereflectedflux risefollowedbytwopeaksandadecay.Theonsetofthefirstpeak b y fromthediscisproportionaltotheincidentfluxonthediscwhich corresponds to the time that the first hard X-ray photons hit the g u isapowerlawwithitsnormalizationbeingafunctionofα,h,θand disc and from that point, a ring of an expanding echo is created e s (cid:7) (seeequation3inDovcˇiaketal.2011).DuetotheGReffects, onthediscaroundtheBH.Asthepartoftheechoapproachesthe t o n thefluxoftheFeKαlineisspreadoverawiderangeofenergies, BH, it is deformed in such a way that eventually two echoes are 0 9 asafunctionoftime,yieldingforeachlamp-postconfigurationa created, inner and outer, which correspond to the second peak in A 0d.y1ntag.mIinctrheeflleecftti-ohnansdpepcatnreulmo,f2Feisgti.m2,awteedswhoitwhaantiemxeamrepsloelouftiaonnFoef tohneeIcRoFn.tiTnhueesinwneitrhriintsgriasdtihaelnexmpoavnisniogntoawwaarydsfrtohmeBthHe,ctheentoreutoefr pril 20 Kαdynamicreflectionspectrumforthecaseofα=0.676,θ=40◦ the disc and the IRF is gradually fading out. For low spin values 19 andh=3.6r .AswecanseethefluxoftheFeKα lineisspread (e.g.fortheSchwarzschildBH),theinnerringisnotcreateddueto g overawiderangeofenergiesbetween2.5and7keVandfades-out theexistenceofthegapintheaccretiondiscbelowtheISCO.The astimegoeson,indicatingthedecayofthe‘echo’asitismoving secondpeakinthetransferfunctioninthiscasecorrespondstothe awayfromthecentreoftheaccretiondisc.Inordertoderivethe re-appearanceofthepartoftheouterring,behindtheBH,afterit GRIRF, (cid:8)(t), of the accretion disc for the Fe Kα emission line, was‘hidden’belowtheISCO. weusethedynamicreflectionspectrumandweaddupforagiven 4 TIME-LAG SPECTRA ESTIMATION 2Sometimesthedynamicreflectionspectrumiscalleda‘2Dtransferfunc- tion’(Campana&Stella1995;Reynoldsetal.1999)despitethefactthat 4.1 Modeltime-lagspectra strictlyspeakinginsignalprocessingtheterm‘transferfunction’refersto the Fourier domain, i.e. ratio of the Fourier transformed input to output WecannowusetheGRIRFs,whichwehavecomputedfortheFe signals. Kαlinephotons,toconstructthemodeltime-lagspectra.Assume MNRAS439,3931–3950(2014) 3936 D.Emmanoulopoulos etal. D o w n lo a d e d fro m h ttp s ://a c a Figure3. Small-scaleoscillatoryartefacts.TheplotshowsthelinearlyinterpolatedGRIRFforthelamp-postmodelwithα=0,θ=60◦andh=51.5rg.The de dashedrectangleszoomintworegionsoftheGRIRFwheretheoscillatoryartefactsbecomeprominent. m ic .o u thattheX-rayspectrumofAGNcanbedescribedbyapower-law whereEistheexpectationoperator,andthevaluesinanglebrackets p .c form a(t)E−(cid:7), where (cid:7) is constant as a function of time and all denotemeanvalues.Itcanbeshownthatinourcase, om (cid:3) theobservedfluxvariabilityisduetothevariationsofthenormal- ∞ /m ization a(t) (primary continuum). Then, the source’s hard X-ray rs,h(τ)=bkra,a(τ)+fb (cid:8)(t(cid:6))ra,a(τ +t(cid:6))dt(cid:6), (5) nra emission in the 1.5–4keV band, h(t), which is dominated by the 0 s/a X-raycontinuumsourcecanbewrittenas wherera,a(τ)istheautocovariancefunctionofthecontinuumvari- rtic abilityprocess, le -a h(t)=ba(t), (2) ra,a =E[(a(t)−(cid:7)a(t)(cid:8))(a(t+τ)−(cid:7)a(t)(cid:8))]. (6) bstra twamheirneabtio=n(cid:2)o1f4.5ktkehVeeVcEo−n(cid:7)tidnEuu(minbSyecthtieonre7flwecetidoinsccuosmsfpuorntheenrt)t.hLeectouns- IwfewoebttaakinetheFourier(cid:4)transfofrm(cid:3)o∞fbothsidesofthe(cid:5)aboveequation, ct/439/4 then assume that s(t) is the variable source’s soft X-ray emission Ps,h(ν)=bkPa,a(ν) 1+ k (cid:8)(t(cid:6))e−i2πνt(cid:6)dt(cid:6) , (7) /393 inthe0.3–1keVenergyrangewhere,inadditiontothecontinuum, 0 1 /1 wealsodetectemissionfromthereprocessingcomponentsothat where Ps,h(ν) is the cross-spectral density function between h(t) 17 s(t)=ka(t)+f (cid:3)0∞(cid:8)(t(cid:6))a(t−t(cid:6))dt(cid:6), (3) t(rriea.flel.edctehtenedsiietnympufisutsnhicoatnriod)naXto-ffrraetyqhueeemcnocinsystiiνno,unau)nmadn.PdTahs,e(at()fνu()ni.icest.itohthneepPoosuw,htep(rνut)spsiesocfa-t 2431 by g complex function, and its complex argument defines its phase, at u e wKαherlienekp=ho(cid:2)t0o1.3nkkesVeVoEve−r(cid:7)tdhEe 0a–n8dke(cid:8)V(t(cid:6)b)aanrdeththaet wGeRIdRisFcsusfsoerdthinetFhee fhtir(metq)e.u-Selainngcc,yeτ(νPν,)a,i,.abe(.eνt)twhieeseapnhrteahaseel-tfwluaongcttbiimeotnew,seeeeqrniueastthiaoetnftir(me7q)euiemsnepcrilyeiesνssits(hta)gtiavtnehnde st on 09 previous section (Section 3.2). In this way, we basically assume A by p tohbastetrhveedph0o.t3o–n1skoefVtheenreerflgeyctbeadncdo,mapnodntehnet,FwehKicαhclionnetrpibhuotteotnos,thaet arg(cid:6)1+(f/k)(cid:2)∞(cid:8)(t(cid:6))e−i2πνt(cid:6)dt(cid:6)(cid:7) ril 20 6.4keV,areproducedinthesamepartsoftheaccretiondisc;hence, τν =− 20πν . (8) 19 theshapeofthesoft-bandGRIRFissimilartotheGRIRFsthatwe Weuseequation(8)toestimatethemodeltime-lagspectrafor haveestimatedfortheFeKα linephotons.However,evenifthis eachoneofthemodelGRIRF(intotal171,Section3).Foreach is the case, we do not expect the flux of the soft-band reflection (cid:8)(t(cid:6)), the integral in this equation was estimated at 491 frequen- spectrumtobethesameastheFeKα lineflux(i.e.differencein cies: ν = 10kHz with k = −5, −4.99, ..., −0.11, −0.1. These the normalization), hence the use of the constant f in the above frequenciescoverthetypicalfrequencyrangeobservedbyXMM– equation.AsweexplainindetailinSections5and7,aswellasin Newton. Note that for the integration procedure we use adaptive AppendixA,duringouranalysiswesetthisvalueto0.3.Inorder integrationmethodwhichidentifiestheproblematicintegrationar- to derive the time-lag spectrum between the s(t) and h(t) bands, eas, which in our case are usually the regions of the two peaks, weneedtoestimatethecross-covariancefunctionbetweenthetwo andconcentratethecomputationaleffort(i.e.samplingpoints)on timeseries.Thisfunctionatatime-lagτ isdefinedas them(Malcolm&Simpson1975;Krommer&Ueberhuber1998). The resulting time-lag model spectra have an almost continuous rs,h(τ)=E[(s(t)−(cid:7)s(t)(cid:8))(h(t+τ)−(cid:7)h(t)(cid:8))], (4) profile,duetotheveryfinefrequencyresolutionwehaveadopted. MNRAS439,3931–3950(2014) GRmodelling ofNXTL 3937 D o w n lo a d e d fro m h ttp s ://a c a d e Figure4. Estimationofthetime-lagspectrumforthelamp-postmodelwithα=0.676,θ=40◦andh=3.6rg,forM=5×106M(cid:4).Left-handpanel:the mic GRIRFmodelinphysicalunits(ascaledversionofFig.2,right-handpanel).Right-handpanel:thecorrespondingtime-lagspectrum. .o u p .c o Therefore,thisallowsustointerpolatelinearlyamongthevarious model. We employthe caseofthelamp-postmodel withthe fol- m frequencies without adding additional structure into the resulting lowingparameters:α=1,θ =40◦andh=26.5r ,foraforaBH /m g n time-lag spectra. These time-lag spectra (equation 8) contain the massM=2×106M(cid:4).Forthiscase,theGRIRFisshowninthe ra Tinhteugsr,ailfoofnethweaGntRsItRoFw,o(cid:8)rk(τi(cid:6)n),cionnjnuonrcmtiaolnizwedithtimreealudnaittas ((ei..eg..tfgo)r. ltewfot-htoapn-dhpaatnpealraomfFeitgri.z5atwiointhstcheenbalraiockss(boolitdhloinfet.hTehmenn,owrmeacloinzesiddetor s/artic le fitting purposes, as we are doing in Section 6) then one has to unity)torepresentthegivenGRIRF:onewithwidthdefinedtobe -a b transformthetime-lagspectraintorealphysicalunits(i.e.seconds) equaltotheseparationofthetwopeaksintherealGRIRF(Top-hat s bydividingandmultiplyingtheabscissas(frequencies,ν)andthe 1,Fig.5,left-handpanel,dottedthickgreyline)andtheotherone tra c ordinates (time-lag estimates, τν), respectively, by tg,M (equation startingatthesametimeastherealGRIRFandextendingoverthe t/43 1).Fordemonstrativepurposesintheleft-handpanelofFig.4,we full time range covered by it (Top-hat 2, Fig. 5, left-hand panel, 9 /4 showtheGRIRFinphysicaltimeunitsforaBHmassof5×106 solid thick grey line). As we can see from the right-hand panel /3 9 M(cid:4)correspondingtotheGRIRFshowninnormalizedunitsinthe of Fig. 5, the corresponding time-lag spectra of the two THIRFs 3 1 right-handpanelofFig.2(α=0.676,θ =40◦andh=3.6r ).The differgenuinelyfromthatoftheGRIRF.Thepositionoftheneg- /1 g 1 correspondingtime-lagspectrumforthisGRreflectionscenariois ative constant plateau, the position and the amplitude of the first 72 4 ingeneralanegativefunction(Fig.4,right-handpanel).Thefirst positivepeakaswellasthebehaviourishighfrequencies(above 3 1 morphological characteristic of this time-lag spectrum is that at 10−3Hz)differsignificantlyfromthoseinthetime-lagspectrumof b y lowfrequencies,10−5−10−4Hz(i.e.longtime-scales)itexhibitsa theGRIRF.Notethatsimilardiscrepanciesoccurforlowerheights g u negativetailthatformsaconstantplateauat−215s.Thisplateau oftheX-raysource.Thetop-hatparametrizationyieldsalwaystwo es definesthemostnegativetime-delayedreflectedemissionfromthe numbers:thestart-andtheend-timeoftherectangularpulse.Inboth t o n disc(i.e.itsordinate)andthecorrespondingtime-scalesthatthese scenariosthatwehaveconsidered,thestart-timeisassociatedwith 0 9 delaysoccur(i.e.10–100ks).Then,thevaluesofthetime-lagspec- the beginning of the reverberation phenomenon on the accretion A p tartum1.5in×cre1a0s−e3aHsza,fpuenacktiionngoafrofruenqdue(n2cy×an1d0−th3eHyzb,e3c0oms)e.pFoinsiatlilvye, dphisocto(finrssthpiteathkeodfitshce,GwRhIicRhF)i,si.ae.pthhyestiicmalelythraetatlhepafirrasmthetaerrdoXf-rthaye ril 20 1 thetime-lagspectraexhibitadampedoscillatingbehaviour(Fig.4, system.Theend-timecouldcorrespondeithertothesecondpeak 9 inset)aroundzero.Ingeneral,allthetime-lagspectraexhibitthese oftheGRIRFwheretheiso-delayedarcs(travellingoppositeand featuresbuttheyappearatdifferentfrequenciesdependingonthe aroundtheBH)meetforthefirsttime,(Top-hat1)ortotheoverall BHmass,theheightoftheX-raysourceandr .Notethatwhether timeofthereverberationphenomenon(Top-hat2)(seeSection3.2 in thetime-lagvaluesbecomepositiveorremainalwaysonanegative for the various peaks and times of the GRIRF). However, none leveldependsonlyontheshapeofcorrespondingGRIRF(asshown of these scenarios yield a time-lag that matches that of GRIRF. inequation8).InAppendixB1,weexplorethemodelparameter Finally, in order to retrieve the best-fitting THIRF model, which spacefordifferentconfigurationsofthelamp-postmodel. couldcorrespondtothetime-lagspectrumofthegivenlamp-post geometry,wefittothetime-lagspectralestimates(showninFig.5, right-handpanel,blackline)equation(8),using(cid:8)(τ)asatop-hat 4.1.1 GeneralrelativisticIRFversustop-hatIRF function leaving τ(cid:6) and τ(cid:6) as free parameters (i.e. start and end- 1 2 Inthissection,wecomparethephysicallyjustifiedGRIRFswiththe times) under the condition τ(cid:6) <τ(cid:6) (e.g. Emmanoulopoulos et al. 1 2 widelyused(seeforreferencesSection1)THIRFparametrization 2011;Zoghbietal.2011).Thisisdonebyfindingthepair{τ(cid:6),τ(cid:6)} 1 2 MNRAS439,3931–3950(2014) 3938 D.Emmanoulopoulos etal. D o w n lo a d e d fro m h ttp s ://a c a d e Figure5. GRIRFversusTHIRFforthelamp-postmodelwithα=1,θ =40◦andh=26.5rg,forM=2×106M(cid:4).Left-handpanel:theGRIRF(black mic solidline)andthetwotop-hatparametrizationmodelseachonedepictingthetwopeaks(dottedthickgreyline)andtheoverallshape(solidthickgreyline)of .o u theGRIRF,respectively.Right-handpanel:thecorrespondingtime-lagspectra. p .c o m /m n ra s /a rtic le -a b s tra c t/4 3 9 /4 /3 9 3 1 /1 1 7 2 4 3 1 b y g u e s t o n 0 9 A p ril 2 0 1 Figure6. Fittingthetime-lagspectrumofthelamp-postmodelwithα=1,θ=40◦andh=26.5rg,forM=2×106M(cid:4)withatime-lagspectrumcoming 9 fromaTHIRF.Left-handpanel:thebest-fittingtime-lagspectrum(thickgreyline),for{τ(cid:6),τ(cid:6)}={−4545,3108}s,andthelamp-posttime-lagspectrum(black 1 2 line,alsoshownintheright-handpanelofFig.5).Right-handpanel:thecorrespondingTHIRF,derivedfromthebest-fittingparameters(thickgreyline), togetherwiththeGRIRFofthelamp-postmodel(blackline,alsoshownintheleft-handpanelofFig.5). thatminimizesthesquaredsumofthedistanceofbetweenthetwo cannotbeassociatedwithanytime-scaleofthesystem.3Aswecan functionsestimatedoverthe491frequenciespointsofthetime-lag seefromtheright-handpanelofFig.6,thetop-hatmodel,which spectrum(Section4.2).Thebest-fittingTHIRFmodelisshownin theleft-handpanelofFig.6withthethickgreyline,togetherwith thephysicallyrealisticGRIRFmodel(blackline).Thequalityof 3Constraining the problem only to the positive domain, i.e. 0<τ(cid:6) < thefitispoor(squaredsumequalsto188288s2 for489degrees τ(cid:6), yields practically a zero-width best-fitting THIRF with {τ(cid:6),τ(cid:6)1}= 2 1 2 of freedom, d.o.f.), but more importantly, the best-fitting THIRF {1.1,1.3}×10−5s,havingaverypoorfitcharacterizedbyasquaredsum yieldsphysicallyunrealistictimes{τ(cid:6),τ(cid:6)}={−4545,3108}sthat of2.12×107s2for489d.o.f. 1 2 MNRAS439,3931–3950(2014) GRmodelling ofNXTL 3939 correspondstothebest-fittingtimes(thickgreyline),coverscom- due to the large number of averaging points, appearing statistical pletely different time-scales from the GRIRF model (black line) meaningfulevenifthereisnotarealcorrelationbetweenthephases andthuscannotbeassociatedwithanygenuinephysicalproperty and hence nomeaningful timedelay. In allouranalysis, we esti- ofthesystem. mate the time-lag spectra down to (3–5) × 10−3Hz, but for the fittingprocedureweconsideronlythetime-lagestimatesforwhich the coherence is greater than 0.15 corresponding to a physically 4.2 Observedtime-lagspectra meaningfulphasecorrelation. Inordertoestimatethetime-lagspectrabetweentwolightcurves, we use we use the standard analysis method outlined in Bendat &Piersol(1986)andNowaketal.(1999).Inbrief,considerfora 4.2.1 Selectionofenergybands given source a soft and a hard light curve, s(t) and h(t), obtained AswediscussedinSection2,forallthesourcesweextractedthe simultaneously, consisting of the same number of N equidistant lightcurvesbetween0.3–1(softband)and1.5–4(hardband)keV observationswithasamplingperiodtbin (thesearediscretizedand energybandsandthesearetheonesthatweusefortheextractionof Do finite-lengthversionsofequations3and2,respectively).Foragiven w thetime-lagspectra.Thesebandsdepictquiteaccuratelythegeneral n Fourierfrequency,fj=j/(Ntbin)forj =0,1,...,[N/2−1or(N− behaviourofthereflectioncomponent(i.e.softexcess)andthatof loa 1)/2](forevenoroddN),weestimatethecross-spectrum,C(fj),4 theX-raysource(i.e.continuum)despitethefactthatforeachsource ded (aes.g.Priestley1981)betweenthetwolightcurvesinaphasorform separatelytheexactlimitscouldbeshiftedslightlytowardshigher from orlowerenergies.Inthispaper,weactuallymodeltheresponseof h Cs,h(fj)=S∗(fj)H(fj)=|S(fj)||H(fj)|ei(φH(fj)−φS(fj)) (9) the6.4keVFeKαlineasaproxyforthesoftreprocessedemission ttp s in which S(fj) and H(fj) are the discrete Fourier transforms5 of (oSfethcteiolonw3-.2en).eGrgiyvernepthroecpeosssseidbleemuinscsieorntaainntdietshbateotwfetheen6th.4ekreesVpolinnsee, ://ac stu(td)easn|dS(hfj()t|),arnedsp|Hec(tfijv)|e,lyre,swpeitchtipvhealys.eTshφeS(afsj)tearnisdkφdHen(foj)teasncdoammpplelix- afrnodmalrseoprthoecefsascetdtheamtaisnsyiohna,rtdhebraenidswlititlllecpoonitnatininawsmoraryllicnognttoroibmutuiocnh adem conjugation. about the exact choices of soft and hard energy bands. Thus, the ic.o froTmheanl,lwtheeavoebrsaegrevathtieoncos,mopvleerxcaronsusm-sbpeerctorufmatesletiamstat1e0s,ccoonmsiencg- soeflbecottehdtheenesorgftyabnadntdhseohfafredrbueshaavsiiomuprlfeohrothmeoegnesneemobulsedoefsscoruiprtcieosn. up.com utive frequency bins, yielding m average cross-spectra estimates, /m (cid:7)Cs,h(fbin,i)(cid:8) at m new (averaged) frequency bins fbin,i for i = nra 1,2,...,m.Finally,foreachaveragecrossspectrumwederiveits 5 THE FITTING PROCEDURE s /a caolsmopalsexphaarsgeu,mφe(nfbti,n,ii.)e.aintdsawneglceonwviethrttihtetopopshiytisviecarletailmaexiusn,iktsnown mInforredqeuretnocyfitbtihnes (oSbescetrivoend4t.i2m),e-wlaegrsepqeucitrrea,twτo(fbtiinm,i)e,-lbaignnsepdecitnrtaol rticle-a τ(fbin,i)= φ2π(ffbbinin,i,i). (11) mcoomdpelonceonmt,peosnteimntast.eTdhferofimrsteqounaeticoonrr(e8s)pofonrdsatgoivtehneGGRRIRreFfl.eTctheids bstrac component carries all the physical and geometrical information t/4 Foreachtime-lagestimate,wecalculatethecorrespondingstandard 3 deviation, std{τ(fbin,i)} via equations 16 and 17 in Nowak et al. alabgosu,tptahretilcaumlapr-lpyoastttmheodloewla-nfrdeqguiveenscryisreanpgreed.oInmtiontaanlt,lwyetohnaevgea1ti7v1e 9/4/3 (1999).Atthesametimefromthecross-spectrum,weestimatethe 9 coherencebetweens(t)andh(t)asafunctionofFourierfrequency of these negative time-lag spectral models, τν(M, α, θ, h), (each 31 (Vaughan&Nowak1997) onecorrespondingtoadifferentsetof{α,θ,h}lamp-postmodel /11 7 parametersforagivenM)estimatedfortheensembleofGRIRFs 2 γs2,h(fj)= (cid:7)|S(|f(cid:7)jC)|s2,h(cid:8)((cid:7)f|Hj)((cid:8)f|2j)|2(cid:8). (12) (8S)eschtioounld4.b1e).leInftparsinacifprelee,mthoedceolnpsatraanmtefte(ar.ppHeoawrienvgeri,ngeivqeunatitohne 431 by Thisquantitytakesvaluesbetween0and1anditisameasureofthe complexity of the model fitting (as explained below), this would gue resultinaprohibitivelylargenumberofmodelspectratocompareto s wlfeirnnehceqoeausreevncadocluiyrfre.feesAlracetonviorecrnreeyssbpiaemortewnpdoeaecrttntoaunatuhtlnlecycaotduwretroiepolilnaciatgteerhdydtppcbhuoyarinvtshteeessi,sφaφtt(hSfaa(tfgj)sivm)aen(anadlvlFeφcoroHauhg(rfeiejer)d-r, awallleiemfinxieterfgdtiones0u,.m3is,b3seo0ropthfearotcbteshneertvttohetadatlpoeofmitnhitsessifinooprnuefltauXcxh-rooafbyjtehcceotn.FtFeinoKuruαthmilsinsrpeee,acostvorenarl, t on 09 Ap hovaseraararathnegreuonfifforermqudeinsctrieibsu).tiTohnuisn,tfhoerruanncgoerr(e−laπte,dπp]bih(nd,aiuseest,oφp(hfbains,ei-) flthuex.reTphriosciesssininrgoucgohmapgorneeenmteflnutxtootvheerotbhseercvoendtiflnuuxumratfliouxbeattwseoefnt ril 201 energies(e.g.Crummyetal.2006).Theeffectoff,intheresulting 9 wrapping)thataveragesalwaystozero.Thatmeansthatforsmall time-lagspectra,isdiscussedinSection7andinAppendixA.The coherencevalueswegetatime-lagof0thathassmalluncertainties, secondcomponentconsistsofasimplepowerlaw,PLν(A,s)=Aν−s, providing us with positive time-lags. Thus, we deal with a five- 4Thisisanaturalestimatorofthecontinuouscross-spectrumequation(7). dimensionalmodelparameterspaceconsistingofmodelparameter 5The discrete Fourier transform for the soft light curve, s(t), at a given vectorsoftheform,v={M,α,θ,h,A,s}.Inthisframework,the Fourierfrequency,fj,isdefinedasfollows: overalltime-lagspectralmodelatagivenfrequency,ν,isgivenby thesumofthetwocomponents (cid:8)N DFTs(j)= s(tk)e−2πi(k−1)j/N (10) TLν(v)=τν(M,α,θ,h)+PLν(A,s). (13) k=1 forj=0,1,...,[N/2−1or(N−1)/2](forevenoroddN).Notethatthe Then, we transform each one of the 171 GR reflected model exponentialfunctioncontainsasarunningindexk−1insteadofk,since components into physical time units (using equation 1) for an thedatastartfork=1andnotk=0. ensemble of 12 BH masses: (0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, MNRAS439,3931–3950(2014) 3940 D.Emmanoulopoulos etal. D o w n lo a d e Fpaigraumreet7e.rsDAi=scr0e.t2izaantidons=an0d.8a.vTerhaegcinognteinffueocutssfmoordtheelslaarmepsh-poowsntcwaistehmthoeddeolttwedithlinαes=an0d.6t7h6e,cθor=re2sp0o◦n,hdi=ng3d3is.1crregt,efoesrtiMma=tes2(×ave1r0a6geMd(cid:4)overanthdepforewqeure-lnacwy d from rangesindicatedbythehorizontallines)withthefilledcircles.Left-handpanel:theGRreflectedcomponent.Middlepanel:Thepower-lawcomponent. h Left-handpanel:theoveralltime-lagmodel. ttp s ://a 50, 100, 200, 500) × 106 M(cid:4), yielding a grid of 2052 cells, minimization, we use the classical Levenberg–Marquardt method ca d each one corresponding to a given set of parameter values {M, (Bevington & Robinson 1992). After localizing the vgbf, we esti- em α, θ, h}. For each grid-cell, we treat the model (i.e. equation matethe68.3percentconfidencebandsforeachbest-fittingmodel ic .o 13) in exactly the same way as the observed time-lag spectra, parameter intheusualway, i.e.byvaryingitsvalue overagiven u p i.e. we discretize it and average it over exactly the same number range and deriving each time for the rest model parameters their .c o oe1rf,a2gf,ree.q.vu.a,elunmec.yFoofbritnhdsee.mToovhneissratrylaliteitvlidmesep-fulorarpgoesmaecsoh,dienflr,eFq(cid:7)igTu.eLn7fcwbyin,e,i(fsbvhin)o,(cid:8)iw,foathrneiaev=f-- bDχek2us(rtvi-nfi)gtstpitnahgceeveaarlrruooeurntehdsatititmysiaBetliFdonbae(cid:14)psrtχ-ofic2tet=sins,g1wfgrreoidmcuptbahirecaammllieynteiimrntvueamrlpuoχelks2a(tivengbtthhf)ee. m/mnras fmecotdseolfTthLeνd(2is×cre1t0iz6aMtio(cid:4)n,a0n.d67a6v,er2a0g◦i,n3g3o.1nrtgh,e0c.o2nst,in0u.8o)uasntdimoen-laitgs hfoelilgohwticnegllswaabyo:vtewaondBHbelmowasshgcbeflalsndabaollvteheansdpinbeplaorwamMetgebrf,stawnod /article twocomponents.Forthediscretization,weassumeanobservational viewing angles (each one consisting of three cells). This yields a -a b TdatahtFeanos,uerttiheoersffer8e0bqiunkensnebcdiienmsneobddeteiwnlee2es0ntims(1,a.yt2ei5esl×dairn1eg0−a2v50ea0rna0dgme2d.o5do×evle1re0s1t−i6m2)afHtreezs-. cmeorronodtrieneluspotaiumrasamvtieeortnesirwosnceoouvfseeχritkn2h(gev5χ)ka×2(rvo5u)×nspd3avc×gebfa3,ro=χun22(d2v5t)h.geTribhdeu-scste,-lfidlstut,rilniengagvgitrnhigde stract/43 quencybinswhoseoverallrangeisshownwiththehorizontalline. thepower-lawmodelparameters{A,s}tovaryfreely.Sincevgbf 9/4 Theleft-handpanelofFig.7showstheGRreflectedcomponent, hasbeenderivedfromthegrid-cells(i.e.fixedvalues),duringthe /39 vcτieνer(ss2i(o×4n×a10g16r0eM−a3t(cid:4)−de,2a0×l.o6f17‘06o−,s22c)0ilH◦la,zt3,o3wry.h1-irscgtrh)u,acertxeuhrseiubspi’tptionrewgsasinreddtshdheuigrcihonngfrtetihnqeuuoeaunvs-- tfiehrtretoinirngteesprtamimraeamdtiieaottneergprrreiodgc-iecosensl.lnTveahwleuevqsau,lauχne2tsi(tvyobffχ)χ,2w2(v(ivtbhf))inairntehdeeicmsaeteelresgcittnehgdebffireonsmat-l 31/11724 eragingprocess.ThemiddlepanelofFig.7showsthepower-law best-fittingparametervaluesthatwekeepfromourfittingprocess, 31 mcreotdeeelsctoimmaptoensednift,fePrLfrνo(m0.2thse,a0c.8tu),alincownhtiincuho,uosncpeowagera-ilna,wthmeoddies-l vvibsfu=ali{zMebthf,eαibnft,eθrbpfo,lhabtef,dAχb2f,(vsb)fs}.paDceesdpuiteettoheitsfahcitgthhadtimweensciaonnnaol-t by gu e epsrtoicmeasste.sT,haetmthoestcporroremsipnoenndtidnigffefrreeqnuceenscaireesa,tdtuheeltoowtehsetfarveeqruaegnincgy iintyte(rspioxl-adtiemdevnesrisoinosn)sionfAthpepernefldiexctBed2c(oFmigpsoBne4n–tBs,6τ),νw(Me,sαh,owθ,thh)e, st on bins, particularly the first one at 10−4Hz. Finally, the right-hand which are the actual discrete components that we interpolate in 09 pthaeneplreovfioFuisg.tw7osmhoowdseltchoemopvoenraelnlttsi.mTeh-eladgismcroedteela,vie.era.gthedevsuermsioonf eimqupaotritoannt(p1o4i)ntwshoifchtheapopveeararllvpiaroTceLdfubrine,i(avre) a(esqfuoalltoiowns.13). Some April 2 oftheoveralltime-lagmodelcarriesallthepreviouslymentioned 01 9 differences with respect to its continuous version. Then, for each averaged discretized overall time-lag spectral model, within each (i) Thebest-fittingvaluesderivedfromthegridparameterspace, grid-cell,k,weestimatethesquareddifferencesbetweenthemodel v ,are,infact,veryclosetothebest-fittingvaluesderivedfrom gbf andthedatausingthefollowingχ2indicator the interpolated parameter space, v . All the v lie within the bf gbf (cid:9) (cid:10) 86.6percent confidence intervals (1.5 standard deviations) of the χ2(v)=(cid:8)m (cid:7)TLfbin,i(v)(cid:8)−τ(fbin,i) 2, (14) best-fitting values of vbf. Note that the only reason that we per- k i=1 std{τ(fbin,i)}2 f6o8r.m3ptehreciennttercpoonlfiatdieonncienbtahnedfisrsatnpdlathceevisfoisrtahenadteurriavlaptiroonduocftthoef bf andforeachgrid-cellweminimizethisquantitywithrespecttothe thisprocess. twopower-lawmodelparameters,{A,s}.Finally,weendupwith (ii) Weleavethepower-lawparametersfreesincetheirvaluesfix anensembleof2052globalminimumvaluesofχ2(v)fromwhich thenormalizationoftheoverallmodel.Notethatforagivensetof k thesmallestonecorrespondstothesetofthebest-fittinggridmodel physicallamp-postmodelparameterthenegativereflectedcompo- parameter values vgbf ={Mgbf,αgbf,θgbf,hgb,Agbf,sgbf}. For the nent,τν(M,α,θ,h)isabsolutelyfixed.Thus,boththenormalization MNRAS439,3931–3950(2014)

Description:
We present the first systematic physical modelling of the time-lag spectra between the soft. (0.3–1 keV) and the hard (1.5–4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM–Newton. We concentrate particularl
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.