ebook img

General Linear Model and 1-Way ANOVA. - University of Illinois at PDF

119 Pages·2007·1.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview General Linear Model and 1-Way ANOVA. - University of Illinois at

The General Linear Model & ANOVA Edpsy 580 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN MultivariateRelationshipsandMultipleLinearRegression Slide1of119 Outline n Introduction u What is it the General Linear Model. TheGeneralLinearModel ExplanatoryVariables u Explanatory variables. 1–WayAnalysisofVariance u Couple (quick) examples. What&WhysofANOVA Designs ANOVATerminologyand n One-Factor ANOVA (fixed effects model) Notation LeastSquaresEstimation u Introduction. PartitioningSumsofSquares HypothesisTesting: F-test u As a linear model. ANOVA&SAS u Hypothesis testing. UnequalSampleSizes EffectSize u Example. Power ViolationsofAssumptions n More Examples MultivariateRelationshipsandMultipleLinearRegression Slide2of119 The General Linear Model n A General & unifying framework. TheGeneralLinearModel u Simple linear and multiple regression. lTheGeneralLinearModel lTheGeneralLinearModel lError,ǫi u Analysis of Variance (ANOVA). l“Linearintheparameters” lTheGeneralLinearModel u Analysis of Covariance (ANCOVA). ExplanatoryVariables 1–WayAnalysisofVariance u Other experimental designs. What&WhysofANOVA Designs n Can be extended to ANOVATerminologyand Notation u Generalized Linear model. LeastSquaresEstimation PartitioningSumsofSquares u Multivariate general linear model. HypothesisTesting: F-test ANOVA&SAS u Random coefficients linear models. UnequalSampleSizes u Random coefficients generalized linear models. EffectSize Power ViolationsofAssumptions MultivariateRelationshipsandMultipleLinearRegression Slide3of119 The General Linear Model n Basic Linear form: TheGeneralLinearModel lTheGeneralLinearModel Y = β x + β x + β x + . . . + ǫ i o io 1 i1 2 i2 i lTheGeneralLinearModel lError,ǫi l“Linearintheparameters” n Fixed: lTheGeneralLinearModel ExplanatoryVariables u x , x , x , . . . are values of the explanatory (predictor, io i1 i2 1–WayAnalysisofVariance independent) variables for individual i What&WhysofANOVA u β , β , β , . . . are population parameters o 1 2 Designs ANOVATerminologyand Notation n Random: LeastSquaresEstimation PartitioningSumsofSquares u Y is quantitative or numerical response (outcome, i HypothesisTesting: F-test dependent) variable for individual i. ANOVA&SAS u ǫ is “error” for individual i. UnequalSampleSizes i EffectSize Power ViolationsofAssumptions MultivariateRelationshipsandMultipleLinearRegression Slide4of119 ǫ Error, i n Y is random because ǫ is random. i i n Standard assumption: TheGeneralLinearModel lTheGeneralLinearModel lTheGeneralLinearModel E(ǫ ) = 0 and var(ǫ ) = σ2 lError,ǫi i i ǫ l“Linearintheparameters” lTheGeneralLinearModel and for statistical inference ǫ is normal. i ExplanatoryVariables 1–WayAnalysisofVariance n Sources of Variability— What&WhysofANOVA ǫ consists of effects due to i Designs ANOVATerminologyand u Sampling. Notation LeastSquaresEstimation u Measurement imperfections. PartitioningSumsofSquares u Individual differences. HypothesisTesting: F-test ANOVA&SAS u Uncontrolled variability. UnequalSampleSizes EffectSize u Unsystematic error. Power ViolationsofAssumptions MultivariateRelationshipsandMultipleLinearRegression Slide5of119 “Linear in the parameters” Linear or non-linear? Y = β + β x + ǫ TheGeneralLinearModel i o 1 i1 i lTheGeneralLinearModel lTheGeneralLinearModel lError,ǫi l“Linearintheparameters” lTheGeneralLinearModel 2 Y = β x + β x + β x + ǫ i o io 1 i1 2 i2 i ExplanatoryVariables 1–WayAnalysisofVariance What&WhysofANOVA Y = β + β log(x ) + ǫ i o 1 i1 i Designs ANOVATerminologyand Notation Y = e(βo+β1xi1+β2xi2+ǫi) LeastSquaresEstimation i PartitioningSumsofSquares HypothesisTesting: F-test Y = β + xβ1 + ǫ ANOVA&SAS i o i1 i UnequalSampleSizes EffectSize Power ViolationsofAssumptions MultivariateRelationshipsandMultipleLinearRegression Slide6of119 The General Linear Model n “Smoothes” the data. TheGeneralLinearModel lTheGeneralLinearModel lTheGeneralLinearModel lError,ǫi l“Linearintheparameters” n Summary, description. lTheGeneralLinearModel ExplanatoryVariables 1–WayAnalysisofVariance n Prediction. What&WhysofANOVA Designs n Better (smaller) standard errors for means. ANOVATerminologyand Notation LeastSquaresEstimation n Hypothesis testing. PartitioningSumsofSquares HypothesisTesting: F-test ANOVA&SAS UnequalSampleSizes EffectSize Power ViolationsofAssumptions MultivariateRelationshipsandMultipleLinearRegression Slide7of119 The Explanatory Variables n Quantitative, e.g. TheGeneralLinearModel u Age. ExplanatoryVariables lTheExplanatoryVariables u Grade. lQuantitativeExplanatory Variables lQualitativeExplanatory Variable:hotdogs u Pre-test score. lGLMforHotDogs lHotDogswithAlternative Coding lGLMforHotDogs n Qualitative, e.g. lExample2ofQualitative Variable lAlternativeCoding u Season (winter, spring, summer, fall). 1–WayAnalysisofVariance What&WhysofANOVA u Teaching materials (text, web, or both). Designs u Statistics text (standard, low explanation, high ANOVATerminologyand Notation explanation). LeastSquaresEstimation u Type of writing (narrative, summary, argument). PartitioningSumsofSquares HypothesisTesting: F-test ANOVA&SAS UnequalSampleSizes MultivariateRelationshipsandMultipleLinearRegression Slide8of119 EffectSize Quantitative Explanatory Variables y = β + β x + ǫ yˆ = 1.2 + 5.4x i o 1 i i i i −→ TheGeneralLinearModel ExplanatoryVariables lTheExplanatoryVariables lQuantitativeExplanatory Variables lQualitativeExplanatory Variable:hotdogs lGLMforHotDogs lHotDogswithAlternative Coding lGLMforHotDogs lExample2ofQualitative Variable lAlternativeCoding 1–WayAnalysisofVariance What&WhysofANOVA Designs ANOVATerminologyand Notation LeastSquaresEstimation PartitioningSumsofSquares HypothesisTesting: F-test ANOVA&SAS UnequalSampleSizes MultivariateRelationshipsandMultipleLinearRegression Slide9of119 EffectSize Qualitative Explanatory Variable: hot dogs Hot dog eaters who are also concerned with their health may prefer hot dogs that are lower in calories (and salt). The data used in this example consist of calories contained in each of 54 TheGeneralLinearModel major hot dog brands. The hot dogs are classified by type: ExplanatoryVariables lTheExplanatoryVariables n Beef lQuantitativeExplanatory Variables lQualitativeExplanatory n Meat (mostly pork and beef, but up to 15% poultry meat) Variable:hotdogs lGLMforHotDogs n Poultry lHotDogswithAlternative Coding Data are from Consumers Reports, June 1986, pp. 366-367. lGLMforHotDogs lExample2ofQualitative Summary statistics: Variable lAlternativeCoding Type n Sum Mean Variance Std Dev 1–WayAnalysisofVariance Beef 20 3137.00 156.85 512.66 22.64 What&WhysofANOVA Meat 17 2698.00 158.71 636.85 25.24 Designs Poultry 17 2019.00 118.76 508.57 22.55 ANOVATerminologyand Notation Total 54 7854.00 145.44 863.38 29.38 LeastSquaresEstimation PartitioningSumsofSquares Do different types of hot dogs differ in terms of calories? HypothesisTesting: F-test ANOVA&SAS UnequalSampleSizes MultivariateRelationshipsandMultipleLinearRegression Slide10of119 EffectSize

Description:
Slide 2 of 119. Outline s Introduction x What is it .. Slide 16 of 119. 1–Way Analysis of Variance q Example of a 2-Way ANOVA q Example of a 2-Way ANOVA.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.