ebook img

General Fractional Derivatives with Applications in Viscoelasticity PDF

447 Pages·2020·2.509 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview General Fractional Derivatives with Applications in Viscoelasticity

General Fractional Derivatives With Applications in Viscoelasticity General Fractional Derivatives With Applications in Viscoelasticity Xiao-Jun Yang Feng Gao Yang Ju AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2020ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-817208-7 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:CandiceJanco EditorialProjectManager:SaraValentino ProductionProjectManager:JoyChristelNeumarin HonestThangiah Designer:MilesHitchen TypesetbyVTeX Contents Preface ix 1 Specialfunctions 1 1.1 Eulergammaandbetafunctions 3 1.2 Laplacetransformandproperties 5 1.3 Mittag-Lefflerfunction 6 1.4 Miller–Rossfunction 12 1.5 Rabotnovfunction 16 1.6 One-parameterLorenzo–Hartleyfunction 19 1.7 Prabhakarfunction 23 1.8 Wimanfunction 47 1.9 Thetwo-parameterLorenzo–Hartleyfunction 53 1.10 Two-parameterGorenflo–Mainardifunction 56 1.11 Euler-typegammaandbetafunctionswithrespecttoanother function 59 1.12 Mittag-Leffler-typefunctionwithrespecttoanotherfunction 61 1.13 Miller–Ross-typefunctionwithrespecttofunction 64 1.14 Rabotnov-typefunctionwithrespecttoanotherfunction 66 1.15 Lorenzo–Hartley-typefunctionwithrespecttoanotherfunction 68 1.16 Prabhakar-typefunctionwithrespecttoanotherfunction 70 1.17 Wiman-typefunctionwithrespecttoanotherfunction 85 1.18 Two-parameterLorenzo–Hartleyfunctionwithrespecttoanother function 89 1.19 Gorenflo–Mainardi-typefunctionwithrespecttoanotherfunction 91 2 Fractionalderivativeswithsingularkernels 95 2.1 Thespaceofthefunctions 98 2.2 Riemann–Liouvillefractionalcalculus 100 2.3 Oslerfractionalcalculus 107 2.4 Liouville–Weylfractionalcalculus 111 2.5 Samko–Kilbas–Marichevfractionalcalculus 113 2.6 Liouville–Sonine–Caputofractionalderivatives 115 2.7 Liouvillefractionalderivatives 120 2.8 Almeidafractionalderivativeswithrespecttoanotherfunction 120 2.9 Liouville-typefractionalderivativewithrespecttoanotherfunction 122 2.10 Liouville–Grünwald–Letnikovfractionalderivatives 123 vi Contents 2.11 Kilbas–Srivastava–Trujillofractionaldifferencederivatives 127 2.12 Rieszfractionalcalculus 128 2.13 Fellerfractionalcalculus 132 2.14 Herrmannfractionalcalculus 137 2.15 Samko–Kilbas–Marichevsymmetricfractionaldifference derivative 143 2.16 Grünwald–Letnikov–Herrmann-typesymmetricfractional differencederivative 144 2.17 Grünwald–Letnikov–Feller-typesymmetricfractionaldifference derivative 144 2.18 Samko–Kilbas–Marichevsymmetricfractionaldifference derivativeonaboundeddomain 147 2.19 Grünwald–Letnikov–Herrmann-typesymmetricfractional differencederivativeonaboundeddomain 147 2.20 Grünwald–Letnikov–Feller-typesymmetricfractionaldifference derivativeonaboundeddomain 148 2.21 Erdelyi–Kober-typecalculus 150 2.22 Hadamardfractionalcalculus 160 2.23 Marchaudfractionalderivatives 171 2.24 Riemann–Liouville-typetemperedfractionalcalculus 173 2.25 Liouville–Weyl-typetemperedfractionalcalculus 175 2.26 Riemann–Liouville-typetemperedfractionalcalculuswithrespect toanotherfunction 191 2.27 Hilferderivatives 195 2.28 Mixedfractionalderivatives 198 3 Fractionalderivativeswithnonsingularkernels 209 3.1 Historyoffractionalderivativeswithnonsingularkernels 211 3.2 Soninegeneralfractionalcalculuswithnonsingularkernels 224 3.3 GeneralfractionalderivativeswithMittag-Lefflernonsingular kernel 237 3.4 GeneralfractionalderivativeswithWimannonsingularkernel 252 3.5 GeneralfractionalderivativeswithPrabhakarnonsingularkernel 263 3.6 GeneralfractionalderivativeswithGorenflo–Mainardinonsingular kernel 285 3.7 GeneralfractionalderivativeswithMiller–Rossnonsingularkernel 293 3.8 Generalfractionalderivativeswithone-parameterLorenzo–Hartley nonsingularkernel 298 3.9 Generalfractionalderivativeswithtwo-parameterLorenzo–Hartley nonsingularkernel 303 4 Variable-orderfractionalderivativeswithsingularkernels 311 4.1 Riemann–Liouville-typevariable-orderfractionalcalculuswith singularkernel 311 Contents vii 4.2 Variable-orderHilfer-typefractionalderivativeswithsingular kernel 318 4.3 Liouville–Weyl-typevariable-orderfractionalcalculus 323 4.4 Riesz-,Feller-,andHerrmann-typevariable-orderfractional derivativeswithsingularkernel 330 4.5 Variable-ordertemperedfractionalderivativeswithweaklysingular kernel 340 5 Variable-ordergeneralfractionalderivativeswithnonsingular kernels 349 5.1 Riemann–Liouville-typevariable-ordergeneralfractional derivativeswithMittag-Leffler–Gauss-likenonsingularkernel 350 5.2 Hilfer-typevariable-orderfractionalderivativeswithMittag-Leffler nonsingularkernel 357 5.3 Variable-ordergeneralfractionalderivativeswith Gorenflo–Mainardinonsingularkernel 359 5.4 Variable-orderHilfer-typefractionalderivativeswith Gorenflo–Mainardinonsingularkernel 364 5.5 Variable-ordergeneralfractionalderivativeswithone-parameter Lorenzo–Hartleynonsingularkernel 365 5.6 Variable-orderHilfer-typefractionalderivativeswith Gorenflo–Mainardinonsingularkernel 370 5.7 Variable-ordergeneralfractionalderivativewithMiller–Ross nonsingularkernel 371 5.8 Variable-orderHilfer-typefractionalderivativeswithMiller–Ross nonsingularkernel 376 5.9 Variable-ordergeneralfractionalderivativewithPrabhakar nonsingularkernel 377 5.10 Variable-orderHilfer-typefractionalderivativeswithPrabhakar nonsingularkernel 382 6 Generalderivatives 385 6.1 Classicalderivatives 385 6.2 Derivativeswithrespecttoanotherfunction 386 6.3 Generalderivativeswithrespecttopower-lawfunction 390 6.4 Generalderivativeswithrespecttoexponentialfunction 392 6.5 Generalderivativeswithrespecttologarithmicfunction 394 6.6 Othergeneralderivatives 395 7 Applicationsoffractional-orderviscoelasticmodels 399 7.1 Mathematicalmodelswithclassicalderivatives 399 7.2 Mathematicalmodelswithgeneralderivatives 400 7.3 Mathematicalmodelswithfractionalderivatives 409 7.4 Mathematicalmodelswithfractionalderivativeswithnonsingular kernels 411 viii Contents 7.5 Mathematicalmodelswithfractionalderivativeswithrespectto anotherfunction 417 References 429 Index 439 Preface The main purpose of this monograph is to provide an introduction to the newly- established fractional-order calculus operators involving singular and nonsingular kernels with applications to fractional-order viscoelastic models from the general fractional-ordercalculusoperators’view-point.Anotheraimistopresentanomalous relaxation and rheological models in the light of nature complexity. The topics are important and interesting for scientists and engineers in the fields of mathematics, physics,chemistry,andelasticity. Duetotheabove-mentionedavenuesoftheirpotentialapplicationsinwide-spread real-world phenomena in the fields of physical and engineering sciences, we sys- tematically illustrate the different calculi and the viscoelastic models with different derivatives. More specifically, we have clearly illustrated the special functions, frac- tional derivatives with singular, weakly-singular, and nonsingular kernels, variable- order fractional derivatives with singular, weakly-singular, and nonsingular kernels, andgeneralderivatives.Moreover,wehaveinvestigatedtheviscoelasticmodels,e.g., dashpot,Maxwell-like,Kelvin–Voigt-like,Burgers-like,andZener-likeelements. Themonographisdividedintosevenchapters. Chapter 1 introduces the Euler gamma and beta functions, and the families of Mittag-Leffler, Miller–Ross, Rabotnov, Lorenzo–Hartley, Kilbas–Saigo–Saxena, Gorenflo–Mainardi,Wiman,anPrabhakarfunctions,includingthesubsine,subcosine, hyperbolicsubsine,andhyperbolicsubcosinefunctions. Chapter 2 investigates the functional spaces as well as the fractional deriva- tive and integral operators with singular kernels, for example, power function, and the function related to the power-law. More specifically, we have introduced the Riemann–Liouville, Osler, Liouville–Weyl, Samko–Kilbas–Marichev fractional cal- culi, Liouville–Sonine–Caputo and Liouville fractional derivatives, Almeida and Liouville-type fractional derivatives with respect to another function, Liouville– Grünwald–Letnikov fractional derivatives, Kilbas–Srivastava–Trujillo fractional dif- ference derivatives, Riesz fractional calculus, Liouville–Sonine–Caputo–Riesz-type fractional derivatives, Feller fractional calculus, Liouville–Sonine–Caputo–Feller type-fractionalderivatives,Herrmannfractionalcalculus,Liouville–Sonine–Caputo– Herrmann-typefractionalderivatives,Samko–Kilbas–Marichevsymmetricfractional difference derivative, Grünwald–Letnikov–Herrmann-type symmetric fractional dif- ference derivative, Grünwald–Letnikov–Feller-type symmetric fractional difference derivative, Erdelyi–Kober-type calculus, Hadamard fractional calculus, Hadamard- type fractional calculus involving the exponential function, Marchaud fractional derivatives Marchaud-type fractional derivatives with respect to another function, Riemann–Liouville-typetemperedfractionalcalculus,Liouville–Weyl-typetempered fractional calculus, Liouville–Sonine–Caputo-type tempered fractional derivatives,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.