Mon.Not.R.Astron.Soc.000,1–18(2012) Printed26July2012 (MNLATEXstylefilev2.2) Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN driven outflow in NGC1266 Timothy A. Davis,1⋆ Davor Krajnovic´,1 Richard M. McDermid,2 Martin Bureau,3 4 5 6 2 6 Marc Sarzi, Kristina Nyland, Katherine Alatalo, Estelle Bayet, Leo Blitz, Maxime 7 8 2 9 2 Bois, Fre´de´ric Bournaud, Michele Cappellari, Alison Crocker, Roger L. Davies, P. T. de Zeeuw,1,10 Pierre-Alain Duc,8 Eric Emsellem,1,11 Sadegh Khochfar,12 Harald 2 Kuntschner,13 Pierre-Yves Lablanche,1,11 Raffaella Morganti,14,15 Thorsten Naab,16 Tom 1 Oosterloo,14,15 Nicholas Scott,17 Paolo Serra,14 Anne-Marie Weijmans,18† and Lisa M. 0 2 Young5‡ l u 1EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garching,Germany J 2GeminiObservatory,NorthernOperationsCentre,670N.A‘ohokuPlace,Hilo,HI96720,USA 3Sub-Dept.ofAstrophysics,Dept.ofPhysics,UniversityofOxford,DenysWilkinsonBuilding,KebleRoad,Oxford,OX13RH,UK 4 4CentreforAstrophysicsResearch,UniversityofHertfordshire,Hatfield,HertsAL19AB,UK 2 5PhysicsDepartment,NewMexicoInstituteofMiningandTechnology,Socorro,NM87801,USA 6DepartmentofAstronomy,CampbellHall,UniversityofCalifornia,Berkeley,CA94720,USA ] O 7ObservatoiredeParis,LERMAandCNRS,61Av.del‘Observatoire,F-75014Paris,France 8LaboratoireAIMParis-Saclay,CEA/IRFU/SAp–CNRS–Universite´ParisDiderot,91191Gif-sur-YvetteCedex,France C 9UniversityofMassachussets,Amherst,USA . 10SterrewachtLeiden,LeidenUniversity,Postbus9513,2300RALeiden,theNetherlands h 11Universite´ Lyon1,ObservatoiredeLyon,CentredeRechercheAstrophysiquedeLyonandEcoleNormaleSupe´rieuredeLyon,9avenueCharlesAndre´, p F-69230Saint-GenisLaval,France - o 12Max-PlanckInstitutfu¨rextraterrestrischePhysik,POBox1312,D-85478Garching,Germany r 13SpaceTelescopeEuropeanCoordinatingFacility,EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garching,Germany st 14NetherlandsInstituteforRadioAstronomy(ASTRON),Postbus2,7990AADwingeloo,TheNetherlands a 15KapteynAstronomicalInstitute,UniversityofGroningen,Postbus800,9700AVGroningen,TheNetherlands [ 16Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Str.1,85741Garching,Germany 17CentreforAstrophysics&Supercomputing,SwinburneUniversityofTechnology,POBox218,Hawthorn,VIC3122,Australia 1 18DunlapInstituteforAstronomy&Astrophysics,UniversityofToronto,50St.GeorgeStreet,Toronto,ONM5S3H4,Canada v 9 9 Accepted2012July23.Received2012July5;inoriginalform2012June13 7 5 . 7 0 2 1 : v i X r a (cid:13)c 2012RAS 2 TimothyA. Daviset al. ABSTRACT WeusetheSAURONandGMOSintegralfieldspectrographstoobservetheactivegalactic nucleus(AGN)poweredoutflowinNGC1266.Thisunusualgalaxyisrelativelynearby(D=30 Mpc),allowingustoinvestigatetheprocessofAGNfeedbackinaction.Wepresentmapsof thekinematicsandlinestrengthsoftheionisedgasemissionlinesHα,Hβ,[OIII],[OI],[NII] and[SII],andreportonthedetectionofSodiumDabsorption.Weusethesetracerstoexplore the structure of the source,derive the ionised and atomic gas kinematics and investigatethe gasexcitationandphysicalconditions.NGC1266containstwoionisedgascomponentsalong mostlinesofsight,tracingtheongoingoutflowandacomponentclosertothegalaxysystemic, the origin of which is unclear. This gas appears to be disturbed by a nascent AGN jet. We confirm that the outflow in NGC1266 is truly multiphase, containing radio plasma, atomic, molecularandionisedgasandX-rayemittingplasma.Theoutflowhasvelocitiesupto±900 kms−1awayfromthesystemicvelocity,andisverylikelytoberemovingsignificantamounts of cold gas from the galaxy. The LINER-like line-emission in NGC1266 is extended, and likely arises fromfast shockscaused by the interactionof the radio jet with the ISM. These shockshavevelocitiesofupto800kms−1,whichmatchwellwiththeobservedvelocityof the outflow. Sodium D equivalent width profiles are used to set constraints on the size and orientationoftheoutflow.Theionisedgasmorphologycorrelateswith thenascentradiojets observedin1.4Ghzand5Ghzcontinuumemission,supportingthesuggestionthatanAGN jetisprovidingtheenergyrequiredtodrivetheoutflow. Keywords: galaxies:individual:NGC1266–ISM:jetsandoutflows–galaxies:jets–galax- ies:ellipticalandlenticular,cD–galaxies:evolution–galaxies:ISM 1 Introduction OurrecentCombinedArrayforResearchinMillimetre-wave Astronomy (CARMA) and Sub-Millimetre Array (SMA) obser- In recent years the idea feedback from an active galac- vations of the nearby lenticular galaxy NGC1266 suggest that tic nucleus (AGN; e.g. Springel,DiMatteo&Hernquist 2005; it harbors a massive AGN-driven molecular outflow, providing Crotonetal.2006) couldberesponsible for thequenching of star an excellent local laboratory for studying AGN-driven quenching formation has grown in popularity. Such quenching seems to be (Alataloetal.2011,hearafterA2011). NGC1266isanearby(D= required to create the red-sequence galaxies we observe today 29.9Mpc;derivedfromrecessionvelocityinCappellarietal.2011; (e.g. Baldryetal. 2004). There is circumstantial evidence to sup- hereafterATLAS3DPaperI),early-typegalaxy(ETG)inthesouth- portAGN-drivenquenching,suchasthestudybySchawinskietal. ern sky (δ = −2◦), which was studied as part of the ATLAS3D (2007)suggestingthatAGNarepredominantlyfoundingreenval- project.Athreecolourimageofthisgalaxy(fromKennicuttetal. ley galaxies, but direct evidence for removal/heating of cold star- 2003) is presented in Figure 1. While typical CO spectra from forminggasisrare. early-type galaxies reveal the double-horned profile characteris- The physical mechanism by which an AGN could drive tic of gas in a relaxed disk with a flat rotation curve, the spec- molecular gas out of a galaxy is still debated. Radiation pres- trum of NGC1266 shows a narrow central peak (FWHM ≈120 sure is thought to be important in star formation-driven outflows km s−1) with non-Gaussian wings out to at least ±400 km s−1 (e.g. Murray,Quataert&Thompson 2005), and is potentially im- withrespecttothesystemicvelocity(Youngetal.2011).Imaging plicatedinAGN-powered‘quasarmode’outflows(e.g.Aravetal. of thehigh-velocity components usingtheSMA revealed thatthe 1999; Kurosawa&Proga 2009). Kinetic feedback from an AGN wingsresolveintoredshiftedandblueshiftedlobes(A2011),coin- jet can provide sufficient power todirectlypush through the ISM cident withHαemission(Kennicuttetal.2003),1.4GHzcontin- of a galaxy and entrain or destroy it (e.g. Rosarioetal. 2010; uum (Baan&Klo¨ckner 2006), and thermal bremsstrahlung emis- McNamara&Nulsen 2012), but it is unclear if the geometry of sion (detected with Chandra; A2011; Fig. 3). Molecular gas ob- a bipolar jet, which often emerges perpendicular to the nuclear disk, will allow the jet to remove the ISM from an entire galac- servations suggest that 3×108 M⊙ of molecular gas is contained within the central 100 pc of NGC1266, and that at least 5×107 ticdisk. Broad-linewinds candeposit significant momentum into gas surrounding an AGN, which could also lead to large out- M⊙ofthisgasisinvolvedinamolecularoutflow(A2011).Thisis thusthefirstobservedlarge-scaleexpulsionofmoleculargasfrom flows (e.g. Ostrikeretal. 2010). Alternatively, heating by X-rays a non-starbursting ETG in the local universe, and this presents a and cosmicrayscould destroy/alter themolecular clouds close to uniqueopportunitytostudythispowerfulprocessinaction. an AGN, removing the need to expel them from the galaxy (e.g. Begelman,deKool&Sikora1991;Ferlandetal.2009).Thesepro- In this paper we present SAURON (Spectrographic Areal cessesshouldbedistinguishableifwecanidentifyandstudylocal Unit for Research on Optical Nebulae) and Gemini Multi-Object galaxieswhereAGNfeedbackisongoing. Spectrograph(GMOS)integral-fieldunit(IFU)observationsofthe ionised gas in NGC1266. By investigating the ionised gas kine- maticsandlineratioswehopetoconstraintheoutflowparameters ⋆ E-mail:[email protected] † DunlapFellow andionisationmechanisms andthusshed lightonthemechanism ‡ AdjunctAstronomerwithNRAO drivinggasfromthegalaxy.InSection2wepresentthedata,and (cid:13)c 2012RAS,MNRAS000,1–18 IFU observationsoftheAGNdrivenoutflowin NGC1266 3 izedpixelfittingroutine(Cappellari&Emsellem2004),providing parametric estimates of the line-of-sight velocity distribution for eachbin.Duringtheextractionofthestellarkinematics,theGAN- DALFcode(Sarzietal.2006)wasusedtosimultaneouslyextract theionisedgaslinefluxesandkinematics.ThestandardGANDALF reductioncompletedinthepipeline(usingasinglegaussianforthe lines)isinsufficientinthissource,duetothecomplexstructureof theionisedgasoutflow(seeFigure2).Wehavereanalyzedthedat- acubeusingamulti-gaussiantechnique(asdescribedbelow)after thesubtractionofthestellarcontinuum. 2.1.1 Emissionlinefitting TheSAURONspectraincludetheHβ,[OIII]and[NI]ionisedgas spectrallines.AscanbeseeninFigure2someofthebinnedspax- elsshow clear signs of havingtwoionised gascomponents along thelineofsightwithdifferentvelocities.Inordertofitthesepro- fileswecreatedanIDLprocedurebasedontheNon-LinearLeast SquaresFittingcodempfit(Markwardt2009).Inthisprocedurewe perform two fits, and compare the chi-square to determine if two componentsareneededateachposition. In the first fit, we assume a single ionised gas component is present,andfittheHβ,[OIII]and[NI]lineswithsinglegaussians. Figure1.SINGs(Kennicuttetal.2003)B,V andRbandcompositethree Thesegaussiansareconstrained tohavethesamekinematics(ve- colourimageofS0galaxyNGC1266.Thewhitebarshowsalinearscale of1Kpc(6′.′94atanadopteddistance of29.9Mpc;ATLAS3D PaperI). locityandvelocitydispersion).Additionally,weconfinetheveloc- OverlaidarethetotalfieldofviewofourSAURONIFU(red)andGMOS ity of the lines to be within 1000 km s−1 of the galaxy systemic IFU(blue)observations. (2170kms−1;ATLAS3DPaperI),andtohaveavelocitydispersion greaterthantheinstrumentalresolution,andlessthanaconvolved velocitydispersionof≈200kms−1.Initialguessesattheionised describeourreductionprocesses.Wethenpresentthederivedmaps gaskinematicsweremadebyassumingtheionisedgasco-rotates of thegaskinematicsandlinefluxes.InSection3wediscussthe withthestars,withavelocitydispersionof120kms−1.Wecon- kinematicstructureof thesystem, gasexcitationmechanisms and strainthefittingbyforcingeachgaussiantohaveapeakatleast3 thedrivingforcebehindtheoutflow.Finallyweconcludeanddis- timeslargerthanthenoiseinthecontinuum,ortobezero.Anyflux cussprospectsforthefutureinSection4. whichhada1σerrorbarthatincludedzerowassettozero.Initial guesses ofthelinefluxeswereestimatedbytakingthemaximum 2 DataReductionandResults fluxwithintheallowedvelocityrangeofeachline.Thetwo[OIII] 2.1 SAURONdata linesinourspectralrangehaveafixedlineratiodeterminedbythe SAURONisanintegral-fieldspectrograph builtat LyonObserva- energy structure of theatom, and wefixed thelineratioassumed toryandmountedattheCassegrainfocusoftheWilliamHerschel inourfittoagreewiththeobservedlineratio(F5007=2.99×F4959: Telescope(WHT).ItisbasedontheTIGERconcept(Baconetal. Storey&Zeippen2000;Dimitrijevic´etal.2007). 1995), using a microlens array to sample the field of view. De- Inthesecondfitweassumetwo,independentionisedgascom- tails of the instrument can be found in Baconetal. (2001). The ponentsarepresentineachbin,andfiteachcomponentwithitsown SAURON data of NGC1266 was taken at the William Herschel setofindependentlinkedgaussians.Asbefore,itisassumedthatthe Telescope(WHT),onthenight of 10-11 January 2008, aspartof linesineachcomponenttracethesamekinematics(velocityandve- theATLAS3Dobservingcampaign(ATLAS3DPaperI).Thegalaxy locitydispersion).Onceagainweconfinethevelocityofeachofthe wasobservedwiththelow-resolutionmodeofSAURON,covering componentstobewithin1000kms−1ofthegalaxysystemic,and afieldofviewofabout33′′×41′′with0′′94×0′′94lenslets.The tohaveavelocitydispersiongreater thantheinstrumental resolu- . . fieldofview(FOV)ofourobservationsisshowninredonFigure tion.Weusedifferentupper bounds for thefirstand secondcom- 1.SAURONcoversthewavelengthrangefrom4810-5350A˚ witha ponentsofthegasdistribution.Componentoneisforcedtohavea spectralresolutionof105kms−1. velocitydispersionlessthan200kms−1,asbefore.Ingeneralthe ThebasicreductionoftheSAURONobservationwasaccom- second component is needed where the outflow is present, and is plishedusingthestandardATLAS3D pipeline.Detailsofthispro- thusallowedtohaveahighervelocitydispersion.Weallowedthe cess, including extraction of the stellar kinematics are presented linesinthesecondcomponenttohaveamaximumvelocitydisper- in ATLAS3D Paper II (Krajnovic´etal. 2011). In brief, the two sionof360kms−1.Inpracticehowevergoodfitswerefoundwith observed datacubes were merged and processed as described in velocity dispersions <300km s−1. The same limitswere used on Emsellemetal. (2004), using the Voronoi binning scheme devel- thelinefluxesasdescribedabove. oped by Cappellari&Copin (2003). This binning scheme max- Oncethetwofitsdescribedabovewerecompleteforeachbin, imisesthe scientific potential of the data by ensuring a minimum we tested (using an F-test, as implemented in the mpfit package signal-to-noiseratioof40perspatialandspectralpixel.Thisdoes Markwardt 2009) if adding the additional free parameters to our however result in an non-uniform spatial resolution, here varying modeloftheemissionlinesproducedasignificantlybetterfit,over from 0′.′8 × 0′.′8 for unbinned spaxels in the central regions, to and above the improvement expected when one adds free param- 10′′×7′′inthelargestouterbin. eters. The F-test can be used as an indicator of where fittingtwo TheSAURONstellarkinematicswerederivedusingapenal- componentsproducesbettermodels,butthebestthresholdtotake (cid:13)c 2012RAS,MNRAS000,1–18 4 TimothyA. Daviset al. should be determined by visually inspecting the fits obtained (as thevaluestestedforareattheextremeedgeofthepossibledistri- bution).Inthisworkwevisuallychoseathresholdthatcorresponds to an improvement in the chi-square of 60% when adding in the additionalparameters.Whenaspaxeldidnotsatisfythiscriterion thenthevaluesfromthesinglegaussianfitwereused,andthesec- ondcomponentsettozero.Wheretwocomponentswerefoundto benecessarywedenotedthecomponent closesttothegalaxysys- temicascomponent one, and thefaster component as component two. Inanattempttoensurethatthefitswererobust,andspatially continuous, we implemented an iterative fitting regime where the fittingprocesses described above were performed for each spaxel inturn.Thentheresultingtwodimensionalfluxandvelocitymaps were smoothed using a gaussian kernel, and then these smoothed values used as the initial guesses for the next iteration of the fit- tingprocedure.Usingthisprocedurewefoundthattheparameters usuallyconvergedwithinthreeiterations,withverylittlevariance between fitting attempts. Figure 2 shows SAURON spectra from a single bin, overlaid with the two component fit. The top panel showsthespaxelwiththelargestlineflux,themiddlepanelshows thespaxelwiththebiggestdifferenceinthefittedvelocitiesandthe bottompanelshowsthelowestfluxregionwhereatwocomponent fitcanbeconstrained.Clearlyinthelowfluxregionsofthecubethe fittedvelocitiesaredrivenbythe[OIII]5007line,andtheparameters havecorrespondinglyhigheruncertainties. InFigure3weshowtheobservedkinematicsforcomponent one(panelsa&b)andcomponenttwo(panelsc&d).Theveloc- itydispersionmapshavehadtheinstrumentaldispersionquadrati- callysubtracted.Wealsoshowthestellarvelocityfieldderivedfrom theseSAURONobservations(panele)forreference,aspresentedin PaperII.InFigure4weshowthefittedlinefluxes. 2.2 GeminiGMOSdata InadditiontotheSAURONdata,weobtainedGeminiGMOS-IFU observations of the central parts of NGC1266, providing higher spatial resolution and a longer wavelength coverage. The GMOS IFU uses a lenslet array of 1500 elements to feed individual po- sitions on the sky to optical fibres (Allington-Smithetal. 2002; Hooketal.2004).ThetotalfieldofviewoftheIFUis5′′×7′′,with a spatial sampling of 0′.′2. The Gemini GMOS-IFU observations ofNGC1266weretakenoverthenightsof24th,26thand27thof January2009attheGeminiNorthtelescope(programGN-2008B- DD-1).Weusedafourpointditherpatterntoextendourcoverage to a total field of view of ≈9′.′1×12′.′5, around the optical centre of the galaxy. The resultant field of view (FOV) of our observa- tionsisshowninblueonFigure1.ThelowresolutionR150grat- Figure2.StellaremissionsubtractedSAURONspectrumfromsinglebins ingwasused,resultinginaspectralresolutionof≈185kms−1(at (blacksolidline)withlineidentifications.Thetoppanelshowsthespaxel 6500A˚)over thewavelengthrange5000-7300 A˚.Twodifferent withthelargestlineflux(x=0′′,y=-4′′),themiddlepanelshowsthespaxel blazewavelengths(688and700nm)wereusedondifferentexpo- withthebiggestdifferenceinthefittedvelocities(x=0′.′8y=-5′.′17)andthe surestoallowcontinuousspectralcoveragebyaveragingoverchip bottompanelshowsthelowestfluxregionwhereatwocomponentfitcanbe gaps/bridges. constrained(x=-4′.′0y=-5′.′17).Overlaidisthetwocomponentfitproduced InordertoreducetheGMOSIFUdataweutilizedadatare- byoutfittingroutine,asdescribedinSection2.1.1.Componentone(nearest ductionpipeline,asusedinvandeVenetal.(2010).Thispipeline thegalaxysystemic)isshowninorange,whilecomponenttwoisshownin calibratesandflatfieldsthedata,before itistrimmedandresam- blue.Thereddashedlineshowsthesumofcomponentoneandtwo,which pledintoahomogeneousdatacube.Thiscubewasbinnedusingthe closelymatchestheobserveddata. VoronoibinningtechniqueofCappellari&Copin(2003),ensuring asignal-to-noise ratioof 40per spatial and spectral pixel.Due to thelow spectral resolutionand thedepthof theexposures wede- tect lineemission to high significance over almost the entire IFU cube, butwereunabletodetect stellarabsorption featurestohigh significance.Asweareinterestedintheionisedgaskinematicsin (cid:13)c 2012RAS,MNRAS000,1–18 IFU observationsoftheAGNdrivenoutflowin NGC1266 5 (a) (b) (c) (d) (e) Figure3.IonisedgaskinematicsderivedfromtheSAURONIFUdatareductionprocessdiscussedinSection2.1.1.Inthetoprow(panelsaandb)wedisplay thekinematicsofcomponentone(confinedtobeclosesttothegalaxysystemicvelocity).Binswhereonlyoneionisedgascomponentisrequiredarealsoshown incomponentone.Thekinematicsofthefastercomponentisshowninthemiddlerow(panelscandd).Theionisedgasvelocityisdisplayedintheleftpanels (a,c),andthevelocitydispersionintherightpanels(b,d).ThestellarvelocityfieldofthisgalaxyderivedfromthesesameobservationinATLAS3DPaperIIis shownasacomparisoninpanele,withstellarcontinuumfluxcontoursoverlaid.TheseplotsarecentredaroundthegalaxypositiongiveninATLAS3DPaper I. this work we simply wish to remove the (relatively smooth) stel- kinematics when measuring the fluxes of weaker lines. Example larcontinuum.Wedothisbyfittingthestellarcontinuumwiththe specta extracted from the cube are shown in Figure 5. We show penalizedpixelfittingroutineofCappellari&Emsellem(2004),as here the region around the Hα, [NII] and [SII] lines only. These usedforourSAURONdata.Wewereabletoconstrainthenumber specta wereselected tolieat thespatial positionwiththe highest ofstellartemplatesrequiredusingourbestfittotheSAURONdata. lineflux(toppanel),thespaxelwiththelargestdifferencebetween Oncethestellarcontinuumwassuccessfullyremovedwewereleft the two fitted velocities (middle panel) and at the lowest flux bin withacubecontainingtheionisedgasemissiononly. in which we can constrain two components (bottom panel). With thelowspectralresolutionofthisdatathelinesareblended,how- The spectral range of our cube includes various ionised gas everweclearlyrequiretwocomponentstofitthelineemission.We emissionlines.The[OIII]and[NI]areincludedinourGMOSspec- alsodetectSodiumD(NaD)absorptionagainstthestellarcontin- trumintheregionwhichoverlapswiththeSAURONspectralrange. uum(anexamplespectrumisshowninFigure6).Wedescribethe Theselineshoweverappearveryweakbecausetheyareattheedge fittingprocedureusedforthegasemissionlinesindetailinSection of our band pass, where the throughput is low. The main strong 2.2.1,andtheprocedureusedtomeasuretheparametersoftheNaD lineswedetectareHα,[NII]6548,6583 and[OI]6300,whileHeIand absorptioninSection2.2.2. [NII]5754 aredetectedmoreweakly.Wechoosetofitthekinemat- icsofthegasemissiononthestronglinesonly,andimposethese (cid:13)c 2012RAS,MNRAS000,1–18 6 TimothyA. Daviset al. (a) (b) (c) (d) (e) (f) Figure4.IonisedgaslinefluxesderivedfromtheSAURONIFUdatareductionprocessdiscussedinSection2.1.1.Intheleftcolumnwedisplaythefluxof componentone(confinedtobeclosesttothegalaxysystemic).Binswhereonlyoneionisedgascomponentisrequiredarealsoshownincomponentone.The fluxofthefasterout-flowingcomponentisshownintherighthandcolumn.ThetoprowshowstheHβlinefluxes(panelsa&b),thesecondrowthe[OIII] linefluxes(panelsc&d),andthethirdrowthe[NI]fluxes(panelse&f).Fluxesareinunitsof10−16ergs−1cm−2arcsec−2ineachSAURONbin. 2.2.1 Emissionlinefitting againnotethatgoodfitswerefoundinmostbinswithvelocitydis- persions<300kms−1. AsfortheSAURONdata,toensurethatthefitswererobust, GMOSemissionlinefittingwascarriedoutasdescribedinSection andspatiallycontinuousweimplementedaniterativefittingregime 2.1.1, with some modifications, described below. We fit here the wherethefittingprocessesdescribedabovewereperformedmulti- Hα, [NII], [SII] and [OI] lines with single and double gaussians. pletimes,usingasmoothedversionoftheoutputfromtheprevious Initialguesses forthevelocityandvelocitydispersion weremade runastheinitialconditions.Herewefoundthattheparametersusu- using the derived kinematics from the SAURON cube. The two allyconvergedwithinfouriterations,againwithverylittlevariance [NII]linesintheHαregionofthespectrumhaveafixedlineratio betweenfittingattempts.Figure5showstheGMOSspectrafroma determinedbytheenergystructureoftheatom,andweforcedthe singlebin(fromthesamespatialregionasselectedbefore),overlaid line ratios to the theoretical line ratio (F6584=2.95×F6548: Acker withthetwocomponentfit,asfoundbythisprocedure. 1989). The [SII] doublet is an electron density tracer, with the InFigure7weshowtheobservedkinematicsforcomponent lineratioF6731/F6717 varyingfrom0.459inthehighdensitylimit one(panelsa&b)andcomponenttwo(panelsc&d).Thevelocity to 1.43 at the low density limit (e.g. DeRobertis,Dufour&Hunt dispersionmapshavehadtheinstrumentaldispersionquadratically 1987). Here we constrain the [SII] lines ratio to lie somewhere subtracted.InFigure8weshowthefittedlineequivalentwidthsfor within this region. We here allowed the lines in the second com- thestronglines,withfittedcomponentoneinthetoprowandcom- ponenttohaveamaximumvelocitydispersionof500kms−1,but ponenttwointhebottomrow.Wecalculatetheequivalentwidthin (cid:13)c 2012RAS,MNRAS000,1–18 IFU observationsoftheAGNdrivenoutflowin NGC1266 7 Figure6.GMOSspectrumoftheNaDregionfromasinglebin(x=-1′.′0, y=-1′.′8;blacksolidline).Overlaidisthetwocomponentfitproducedbyour fittingroutinefortheemissionlines,asdescribedinSection2.2.Component one(nearestthegalaxysystemic)isshowninorange,whiletheout-flowing componenttwoisshowninblue.Theredlineshowsthesumofcomponent oneandtwo(and ourfittotheNaIskyline), whichclosely matches the observeddata.ShowningreenisourfittotheNaDabsorptiontrough. thestandardwaybyfindingthewidthofarectangle,withaheight whichisthesameastheaveragestellarcontinuumfluxintheregion ofthelines,whichhasthesameareaastheobservedlines.Asthe GMOSdataweretakeninnon-photometricconditions,wewilluse onlyratiosofthelinefluxesfromthispointon. 2.2.2 Absorptionlinefitting The sodium absorption lines at 5890 A˚ and 5896 A˚ are detected in our GMOS IFU data (Figure 6). This feature is unlikely to be duetoanimperfectstellartemplateleavingnegativeresidualsafter subtractionfromtheGMOSspectrum,asthefittedvelocitiesofthe absorptionfeaturedonotmatchthestellarvelocitiesassumedwhen fittingthetemplate. In order to extract the absorption depths, and determine the neutralgaskinematicswejointlyfittheabsorptiondoublet,andthe neighbouring HeI emission line(and NaIskyline). Wefixtheve- locityandvelocitydispersionoftheHeIlineusingthebestsolution for each bin derived fromthestronger lines(asdescribed inSec- tion2.2.1).Wethenfitthislinewithtwogaussiancomponents,as Figure5.StellarsubtractedGMOSspectrum(blacksolidlines)fromsingle before,todeterminethelinefluxes. bins with line identifications. Shown in the top panel is the bin with the SimultaneouslywefittedtheNaDabsorptiondoublet(whichis spaxelwiththepeaklineflux(x=0′.′91,y=-2′.′08),themiddlepanelisthe blendedinourdata),assumingagaussianprofileforbothlines.For- spaxelwiththelargestdifferencebetweenthetwofittedvelocities(x=-0′.′2, mallyanabsorptionlineshouldbefittedwithaVoigtprofile,asthe y=-4′.′29),andthebottompanelshowsthebinwiththelowesttotalfluxin absorptionhasanintrinsicLorentzianshape,whichhasbeencon- whichweareabletofittwocomponents(x=-1′.′85,y=-5′.′73).Overlaidisthe volvedwiththeinstrumentalgaussianresponse.Inthelowspectral twocomponentfitproducedbyoutfittingroutine,asdescribedinSection resolutiondatawepresentherehoweverwefitgaussianprofiles,as 2.2.Componentone(nearestthegalaxysystemic)isshowninorange,while theinstrumentresponsefunctionismuchbroaderthantheintrinsic thefastercomponenttwoisshowninblue.Thereddashedlineshowsthe absorption.IfonefitsaVoigtprofiletoourdata,thebestfitprofiles sumofcomponentoneandtwo,whichcloselymatchestheobserveddata. alwaystendtowardsapuregaussian,withaLorentzianwidth(Γ) ofzero,validatingsuchanapproach.WedonotfixtheNaDveloc- ityandvelocitydispersion,astheabsorptionarisesfromadifferent gasphase,whichmayhavedifferentkinematics(seeSection3.2). ThevelocitiesoftheNaDhostinggasareconstrainedinourfitto lie within 1000 km s−1of the systemic velocity, and the velocity (cid:13)c 2012RAS,MNRAS000,1–18 8 TimothyA. Daviset al. dispersionof thiscomponent isconstrainedtobegreaterthanthe deedobservingunrelatedcloudsalongthelineofsight,whichare instrumental, but less than 500km s−1. At the spectral resolution not dynamically linked. A2011 estimate the age of the molecular of our data weonly require asingle neutral gas component inall outflow in thisobject as ≈2.6Myr, so a recent cause of this fea- spaxelsinordertofittheabsorptionprofileswell. tureisnotcompletelyruledout.Alternativelyiftheseareunrelated InFigure9weshowtheobservedabsorptionequivalentwidth, cloudslongthelineofsight,thebluefeaturessouthofthenucleus and the kinematics for the NaD absorbing gas. We calculate the may be directly related to the outflow. Close correlation between equivalentwidthinthestandardway,asabove. someofthesefeaturesandtheradiojetsupportthisconclusion(see Section3.5).Higherspatialresolutionobservationswouldallowus 3 Discussion todisentanglethesetwopossibilities. Panel c of Figure 3 shows the global SAURON view of the 3.1 Ionisedgasemissionlinekinematics gaskinematicswhereasecondcomponent wasrequired.Thisgas Figures3and7showtheionisedgaskinematicsderivedfromour appears to be in a two lobed structure, orientated approximately multi-gaussian fitting procedure. The SAURON data has a much North-South (misaligned from the kinematic axis of the stars by widerfieldofview,providinginsightintothelargescalekinematics ≈70◦ (Krajnovic´etal.2011)).Thegasinthiscomponent hasve- ofthisobject.TheGMOSIFUdatazoomsintothecentralportions locitiesup to≈800 kms−1 awayfromthesystemicvelocity. We ofthisobjecttorevealtheinnerregions. denote this component as the outflow from this point. Panel c of PanelaofFigure3showstheSAURONionisedgaskinemat- Figure7showsthiscomponent inmoredetail.Withthefinerspa- icsforthecomponentnearestthegalaxysystemicvelocity(which tialsamplingoftheGMOS-IFUmapweareabletodetectgaswith wewillhereaftercallthesystemiccomponent).Thiscomponentin- velocities up to ≈900km s−1away from the systemic. As argued cludesgasouttoaradiusof≈10′′(1.5Kpc).A2011discussedthe inA2011theescapevelocityinthecentreofthisobjectisatmost moleculargasdistribution,andfindevidenceforarotatingmolecu- ≈340km s−1 supporting the idea that the outflow in this system lardisk,aswellasamolecularoutflow.Theoriginofthissystemic allowsmaterialtoescapethegalaxy.Themoleculargasintheout- component, and itsrelation tothe molecular disk is unclear. This flowofthisobjectreachesvelocitiesofupto≈480kms−1,with component could beduetounrelated gascomponents atdifferent aslightlysmallerspatialextent(seeFigure10).Thiscouldsuggest locationsalongthelineofsight,oritmaybeacoherent structure moleculargasisdestroyedasitflowsoutofthegalaxy,orthatour whichhasbeendisturbed. observationswerenotsensitivetodetectemissionfromthemolec- Somedegreeofsymmetryappearstoexistinthegasdistribu- ulargasatthehighestvelocities. tionaroundalineinclined≈20◦fromEast.Thismaysuggestsome Themolecular gasinNGC1266 dominatesthetotalmassof bulkrotation,withakinematicpositionangleof≈30◦.Ifthiscom- theISM(withamassof≈2×109M⊙),andiscontainedwithinthe ponentisrotating,thencomparisonwiththestellarrotation(shown innermost≈100pcofthegalaxy(A2011).Itisveryhardtoexplain inthebottomrowofFigure3)showsthatitismisalignedfromthe how this gas lost its angular momentum if it was already present stellarrotationby≈90◦,suggestingitcouldbeinthepolarplane. withinthegalaxy.Deepopticalimagingshowssomeminorsigna- Intheinner≈6′′howeverthevelocityfieldchangessign,andisdis- turesthatcouldbeduetorecentdisturbances,butnosignaturesof turbed. astellarbar(Ducetal.,inprep).Aminormergercouldexplainthe Figure 7 shows the GMOS zoomed in view of the centre of compactnessofthegas,ifthemergerhappenedwiththecorrectini- NGC1266. The same disturbed features present in the SAURON tialparameterstoleavethegaswithlittleornoangularmomentum. data are observed in the GMOS velocity field (Panel a of Figure Thedynamicalmass(M1/2)ofNGC1266withinasphereofradius 7). Thesefeatures persist whatever our choice of initialvelocities r1/2(containinghalfofthegalaxylight)is1×1010M⊙(Cappellari for thefittingprocedure, andarelocatedat thesamespatialloca- etal.,inprep).Aminormergerwithasmallergalaxycouldprovide tionasthemostblue-andred-shiftedgasincomponenttwo.When thegaswesee,andwithastellarmassratioof≈5:1(assumingthe fittingmultiplecomponentstoobservedvelocityprofilesitsalways smaller galaxy was gas rich, with a gas fraction of one) may not possible that such reversed signvelocity structures arearesult of leavevisibletracesintheluminosityweightedgalaxykinematics. amis-fittingorover-fittingof thelinecomponents. Herehowever InDavisetal.(2011)weanalyzedthekinematicmisalignment wefindthesamestructurefromboththeSAURONandGMOSdata of the ionised gas in ATLAS3D galaxies (extending the work of independently.OuriterativefittingproceduredescribedinSections Sarzietal.2006)inordertogaincluesabouttheoriginofthegas. 2.1.1and2.2.1isdesignedtoavoiddiscontinuousfits,andthustries Inthatworkwesuggested thatgaswithkinematicmisalignments toremovesuchdisturbedstructures,butisunabletofindbetterfits >30◦almostcertainlyhaveexternallyaccretedgas.Ifthesystemic in these spaxels. The middle panel of Figures 2 and 5 show the component is rotating (and its misalignment from the stellar ro- emissionlinespectruminthebinwiththelargestblue-shiftedve- tation axis is not caused by orbit branching or similar; Pfenniger locityineachdataset(wherethedisturbedsystemiccomponent is 1985;Contopoulos&Magnenat1985)thenthiswouldonceagain alsodetected).Clearlytheouteredgesofeachblendedlineorline- argueforarecentminormerger/accretion. complex(whichdriveourdeterminationoftherelativevelocitiesof thetwocomponents)arewellfit,increasingourconfidencethatthis 3.2 NaDabsorption structureisreal. If the systemic component is a misaligned rotating structure Thesodiumabsorption doublet at5890 A˚ and 5896A˚ provides a then we speculate that the disturbed structure visible in the inner goodprobeofthecoldISMintheoutflow.Theionisationpotential partscouldbewherethemolecularoutflowdetectedinA2011has of NaI is lower than that of hydrogen, at only 5.1 eV. The pho- punchedthrough,andmaterialisflowinginwardtofillthevacuum. tonsthationizeNaIarethusinthenear-UV(λ ≈2420A˚).These Giventhedynamicaltimescaleofgasatthisradius(≈30-40Myr; linesprimarilyprobetheISMinthewarmatomicandcoldmolecu- A2011) itisdifficulttoimaginethatthedisturbed gasinthecen- larphases,wherethereissufficientdustextinctiontoallowneutral tre of this object could exist for long without being smeared out. sodium to survive (Spitzer 1978). For NaD lines to be observed, This suggests that either this feature isvery young, or we are in- onlyrelativelymodest opticaldepthsandHIcolumndensitiesare (cid:13)c 2012RAS,MNRAS000,1–18 IFU observationsoftheAGNdrivenoutflowin NGC1266 9 (a) (b) (c) (d) Figure7.Ionised gaskinematics derived fromtheGMOSIFU datareduction process discussed inSection 2.2.Inthe toprow(panels a&b)wedisplay thekinematicsofcomponentone(confinedtobeclosesttothegalaxysystemic).Binswhereonlyoneionisedgascomponentisrequiredarealsoshownin componentone.Thekinematicsofthefasterout-flowingcomponentareshowninthebottomrow(panelsc&d).Theionisedgasvelocityisdisplayedinthe leftpanels,andthevelocitydispersionintherighthandpanels. required,whichmakestheselinesasensitiveprobeoftheoutflow- 1989 extinction law) and to a HI column density of >∼8×1020 ing(orinflowing)neutralISM. cm−2.TheNaDlinesweobservearelikelytobeassociatedwith As shown in Figure 9 we detect NaD only in the central re- the HI in this source, which is detected in absorption by A2011. gions, and southern part of the galaxy. As absorption lines are TheyfindatotalHIcolumndensityofNHI =2.1×1021 cm−2 in frontofthecontinuumsourceinNGC1266, andestimatethatthe viewedagainstthestellarcontinuum, ifblueshiftedvelocitiesare observed it is clear that the gas is outflowing, rather than inflow- HI column depth in the outflow is ≈ 8.9×1020 cm−2, consistent withourdetectionofNaD. ing.Thegaskinematicsshowthatitislikelycaughtintheoutflow, withtypical blueshiftedvelocities of ≈-250km s−1 and extreme Our observations provide an alternative way to estimate the velocitiesdetectedoutto−500kms−1(whichiswellbeyondthe reddening,andthustheatomicgascolumndensityineachspaxel. Theequivalent width(EW)of theNaD absorption lineshas been escapevelocity).ThepositionangleoftheoutflowtracedinNaD shown to correlate with reddening. Here we use the relation of (and molecular gas; see Figure 10) is slightly different than that tracedbytheionisedgas,by≈35±5◦.Itisunclearifthedifference Turatto,Benetti&Cappellaro(2003),derivedfromlowresolution spectroscopicobservationsofsupernovae: betweenthetwogasphasesissignificant.Wediscussthisfurtherin Section3.5. E(B−V) =−0.01+0.16×EW(NaD), (1) ThepresenceofNaDintheoutflowprovidesfurtherevidence mag that NGC1266 hosts a multi-phase outflow, and that cold gas is whereE(B-V)isthestandardcolourexcess.Thiscanbecombined being removed from the galaxy. As discussed above, the outflow withtherelationbetweenE(B-V)andHIcolumndensity,suchas extendstohighervelocitieswhentracedbyionisedgasthanwhen thatderivedbyBohlin,Savage&Drake(1978): usingadensegastracer.Eitherthegasisdissociatedfurtheroutin theoutflow,orwenolongerhavethesensitivitytodetectit. N(HI) E(B−V) = . (2) cm−2 0.2×10−21 ToobservetheNaDlines,theextinctionmustbesufficientfor theoptical depth (τ)to be >∼ 1at 2420 A˚ whichcorresponds to UsingtheserelationswefindthattheaverageHIcolumndensityin anAv>∼ 0.43magintheV-band(foraCardelli,Clayton&Mathis theoutflowofNGC1266,asderivedfromtheNaDEW(displayed (cid:13)c 2012RAS,MNRAS000,1–18 10 TimothyA. Daviset al. (a) (b) (c) (d) (e) (f) Figure8.IonisedgaslineequivalentwidthsderivedfromtheGMOSIFUdatareductionprocessdiscussedinSection2.2.InthefirstrowwedisplaytheEW ofcomponentone(confinedtobeclosesttothegalaxysystemic).Binswhereonlyoneionisedgascomponentisrequiredarealsoshownincomponentone. TheEWofthefasterout-flowingcomponentisshowninthesecondrow.TheHαlineEWsareshowninpanelsaandd,the[NII]lineEWsinpanelsbande, andthe[SII]EWsincolumnscandf. (a) (b) (c) Figure9.NaDatomicgaskinematicsderivedfromtheGMOSIFUdatareductionprocessdiscussedinSection2.2.2.Inpanelawedisplaytheequivalent widthoftheabsorptionline.Panelbshowsthederivedgaskinematics,andpanelcthederivedvelocitydispersion. (cid:13)c 2012RAS,MNRAS000,1–18
Description: