ebook img

GDS: an Architecture Proposal for a Grid Data-Sharing Service PDF

23 Pages·2016·0.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GDS: an Architecture Proposal for a Grid Data-Sharing Service

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 GDS: an Architecture Proposal for a Grid Data-Sharing Service Gabriel Antoniu, Marin Bertier, Luc Boug´e, Eddy Caron, Fr´ed´eric Desprez, Mathieu Jan, S´ebastien Monnet, Pierre Sens To cite this version: Gabriel Antoniu, Marin Bertier, Luc Boug´e, Eddy Caron, Fr´ed´eric Desprez, et al.. GDS: an Architecture Proposal for a Grid Data-Sharing Service. [Research Report] RR-5593, INRIA. 2005. <inria-00071239> HAL Id: inria-00071239 https://hal.inria.fr/inria-00071239 Submitted on 23 May 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´ee au d´epˆot et `a la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´es ou non, lished or not. The documents may come from ´emanant des ´etablissements d’enseignement et de teaching and research institutions in France or recherche fran¸cais ou ´etrangers, des laboratoires abroad, or from public or private research centers. publics ou priv´es. INSTITUTNATIONALDERECHERCHEENINFORMATIQUEETENAUTOMATIQUE GDS: an Architecture Proposal for a Grid Data-Sharing Service GabrielAntoniu—MarinBertier—LucBouge´ —EddyCaron— Fre´de´ricDesprez—MathieuJan—Se´bastienMonnet—PierreSens N° 5593 June2005 The`meNUM (cid:13) G N E apport + R F 3-- de recherche(cid:13) 9 (cid:13) 5 5 R-- R A/ RI N N I R S 9 I 9 3 6 9- 4 2 0 N S S I GDS: an Architecture Proposal for a Grid Data-Sharing Service GabrielAntoniu,MarinBertier,LucBougé,EddyCaron, FrédéricDesprez,MathieuJan,SébastienMonnet,PierreSens ThèmeNUM—Systèmesnumériques ProjetGRAAL,PARIS,REGAL Rapportderecherche n°5593 —June2005— 19pages Abstract: Gridcomputinghasrecentlyemergedasaresponsetothegrowingdemandforresources (processing power, storage, etc.) exhibited by scientific applications. We address the challenge of sharing large amounts of data on such infrastructures, typically consisting of a federation of node clusters. We claim that storing, accessing, updating and sharing such data should be considered by applications as an external service. We propose an architecture for such a service, whose goal istoprovidetransparentaccesstomutabledata,whileenhancingdatapersistenceandconsistency despitenodedisconnectionsorfailures.Ourapproachleveragesonweavingtogetherpreviousresults intheareasofdistributedsharedmemorysystems,peer-to-peersystems,andfault-tolerantsystems. Key-words: Datasharing,gridcomputing,transparentaccess,mutabledata,peer-to-peersystems, faulttolerance,consistencyprotocols This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme http://www.ens-lyon.fr/LIP. Unite´ derechercheINRIARhoˆne-Alpes 655,avenuedel’Europe,38334MontbonnotSaintIsmier(France) Te´le´phone:+33476615200—Te´le´copie+33476615252 GDS: une Architecture pour le Partage de Données sur la Grille Résumé: Lecalculsurlesgrillesarécemmentémergécommeuneréponseauxdemandescrois- santesderessources(puissancedetraitement,destockage,etc.)issuesdesapplicationsscientifiques. Nousnousintéressonsiciaudéfidupartagededonnéesdansunetelleinfrastructure,quiestconsti- tuéeclassiquementd’unefédérationdenœudsprovenantdediversesgrappes. Noussouhaitonsque lestockage,l’accèsetlesmisesàjourdecesdonnéessoientconsidéréesparlesapplicationscomme un service externe. Nous proposons une architecture qui fournit un tel service, dont l’objectif est d’offrir un accès transparent aux données modifiables, disposant de mécanismes de persistance et decohérencededonnéesmêmeencasdedéconnexionoudepannes. Notreapprochevientfédérer nosprécédentsrésultatsdanslesdomainesdessystèmesdistribuésàmémoirepartagée,dessystèmes pairsàpairsetdessystèmestolérantsauxpannes. Mots-clés : Partage de données, Calcul sur grille, Accès transparent, Données modifiables, Sys- tèmespairsàpairs,Toléranceauxpannes,protocolesdecohérence GDS:anArchitectureProposalforaGridData-SharingService 3 1 Introduction Data management in grid environments Data management in grid environments is currently a topic of major interest to the grid computing community. However, as of today, no approach has been widely established for transparent data sharing on grid infrastructures. Currently, the most widely-usedapproachto data managementfor distributed grid computationrelies on explicit data transfers between clients and computing servers: the client has to specify where the input data is located and to which server it has to be transferred. Then, at the end of the computation, the results are eventually transferred back to the client. As an example, the Globus [16] platform providesdataaccessmechanismsbasedontheGridFTPprotocol[1]. Thoughthisprotocolprovides authentication, paralleltransfers, checkpoint/restartmechanisms, etc., itstillrequires explicit data localization. Ithasbeenshownthatprovidingdatawithsomedegreeofpersistencemayconsiderablyimprove the performance of series of successive computations. Therefore, Globus has proposed to provide so-calleddatacatalogs[1]ontopofGridFTP,whichallowmultiplecopiesofthesamedatatobe manuallyrecordedonvarioussites. However,theconsistencyofthesereplicasremainstheburden oftheuser. Inanotherdirection,alarge-scaledatastoragesystemisprovidedbyIBP[5],asasetofso-called buffersdistributedoverInternet. Theusercan“rent”thesestorageareasandusethemastemporary buffersforoptimizingdatatransfersacrossawide-areanetwork. Transfermanagementstillremains theburdenoftheuser,andnoconsistencymechanismisprovidedformanagingmultiplecopiesof the same data. Finally, Stork [18] is another recent example of system providing mechanisms to explicitlylocate, moveandreplicatedataaccordingtotheneedsofasequenceofcomputations. It providestheuserwithanintegratedinterfacetoscheduledatamovementactionsjustlikecomputa- tionaljobs. Again,datalocationandtransferhavetobeexplicitlyhandledbytheuser. Ourapproach:transparentaccesstodata Agrowingnumberofapplicationsmakeuseoflarger andlargeramountsofdistributeddata. Weclaimthatexplicitmanagementofdatalocationsbythe programmerarisesasamajorlimitationwithrespecttotheefficientuseofmodern,large-scalecom- putationalgrids. Suchalow-levelapproachmakesgridprogrammingextremelyhardtomanage. In contrast,theconceptofadata-sharingserviceforgridcomputing[2]opensanalternativeapproach to the problem of grid data management. Its ultimate goal is to provide the user with transparent accesstodata. IthasbeenillustratedbytheexperimentalJUXMEM[2]softwareplatform: theuser onlyaccessesdataviaglobalhandles.Theservicetakescareofdatalocalizationandtransferwithout anyhelpfromtheexternaluser.Theservicealsotransparentlyappliesadequatereplicationstrategies andconsistencyprotocolstoensuredatapersistenceandconsistencyinspiteofnodefailures. These mechanismstargetalarge-scale,dynamicgridarchitecture,wherenodesmayunexpectedlyfailand recover. Required properties The target applications under consideration are scientific simulations, typ- icallyinvolvingmultipleweakly-coupledcodesrunningondifferentsites, andcooperatingviape- RR n°5593 4 G.Antoniu,M.Bertier,L.Bougé,E.Caron,F.Desprez,M.Jan,S.Monnet,P.Sens riodic data exchanges. Transparent access to remote data through an external data-sharing service arisesasamajorfeatureinthiscontext. Suchaserviceshouldprovidethefollowingproperties. Persistence. Sincegridapplicationscanhandlelargemassesofdata,datatransferamongsitescan be costly, in terms of both latency and bandwidth. In order to limit these data exchanges, thedata-sharingservicehastoprovidepersistentdatastorage,soastosavedatatransfers. It shouldrelyonstrategiesableto:1)reusepreviouslyproduceddata,byavoidingrepeateddata transfersbetweenthedifferentcomponentsofthegrid;2)trigger“smart”pre-fetchingactions to anticipate future accesses; and 3) provide useful information on data location to the task scheduler,inordertooptimizetheglobalexecutioncost. Faulttolerance. The data-sharing service must match the dynamic character of the grid infras- tructure. In particular, the service has to support events such as storage resources joining and leaving, or unexpectedly failing. Replication techniques and failure detection mecha- nismsarethusnecessary. Basedonsuchmechanisms,sophisticatedfault-tolerantdistributed data-management algorithms can be designed, in order to enhance data availability despite disconnectionsandfailures. Dataconsistency. In the general case, shared data manipulated by grid applications are mutable: they can be read, but also updated by the various nodes. When accessed on multiple sites, data are often replicated to enhance access locality. To ensure the consistency of the differ- entreplicas,theservicereliesonconsistencymodels,implementedbyconsistencyprotocols. However,previousworkonthistopic(e.g.,inthecontextofDistributedSharedMemorysys- tems, DSM)generallyassumesasmall-scaled, stablephysicalarchitecture, withoutfailures. Itisclearthatsuchassumptionsarenotrelevantwithrespecttoourcontext. Therefore,build- ing data-sharing service for the grid requires a new approach to the design of consistency protocols. In this paper, we address these issues by proposing an architecture for a data-sharing service providinggridapplicationswithtransparentaccesstodata. Weconsiderthegeneralcaseofadis- tributedenvironmentinwhichClientssubmitjobstoaJobManager,anentityinchargeofselecting theComputingServerswherejobexecutionshalltakeplace. Whenthesamedataaresharedbyjobs scheduledondifferentservers,theData-SharingServicecanbeusedtostoreandretrievethemina transparentway. ThisgeneralorganizationschemeisillustratedonFigure1. Thepaperisorganizedasfollows. Section2firstdescribesafewmotivatingscenariosthatillus- tratethethreerequiredpropertiesmentionedabove. Section 3presentsanoverviewofaparticular gridcomputingenvironmentcalledDIET,whosearchitectureimplementsthegenericorganization schemeillustratedonFigure1. Morespecifically,wediscusstheneedsofsuchanenvironmentwith respecttodatamanagement. InSection4,the JUXMEMsoftwaredatamanagementplatformisin- troducedandweshowhowitcanbeusedasabasistofulfilltheseneeds. Severalaspectsrelatedto faulttoleranceandconsistencyarediscussedindetail. Section5providesanoverviewoftheglobal architecture. Finally,Section6concludesanddiscussesfuturedirections. INRIA GDS:anArchitectureProposalforaGridData-SharingService 5 Grid Computing Environment Client Client Job manager Computing Computing Computing server server server Data Sharing Service Persistence Fault tolerance Consistency Figure1: Overviewofadata-sharingservice. 2 Application scenarios Ourapproachcanbebestmotivatedbyagridapplicationmanaginglargedatasetsandneedingdata persistence. OnesuchprojectiscalledGrid-TLSE[11]andissupportedbytheFrenchACIGRID ResearchProgram. ItaimsatdesigningaWebportalexposingthebest-levelexpertiseaboutsparse matrixmanipulation. Throughthisportal,theusermaygatheractualstatisticsfromrunsofvarious sophisticated sparse matrix algorithms on his/her specific data. The Web portal provides an easy access to a variety of sparse solvers, and it assists the comparative analysis of their behavior. The inputdataareeitherproblemssubmittedbytheuser,orrepresentativeexamplespickedupfromthe matrixcollectionavailableonthesite. Thesesolversareexecutedonagridplatform. Sincemany sparsematricesofinterestareverylarge,avoidinguselessdatamovementisofuttermostimportance. Asophisticateddatamanagementstrategyisthusneeded. The process for solving a sparse symmetric positive definite linear system, Ax = b, can be divided into four stages as follows: ordering, symbolic factorization, numerical factorization and triangularsystemsolution. Wefocusonorderinginthisscenario. Theaimoforderingistofinda suitablepermutationP ofmatrixA.BecausethechoiceofpermutationP willdirectlydeterminethe numberoffill-inelements,theorderinghasasignificantimpactonthememoryandcomputational requirementsforthelatterstages. RR n°5593 6 G.Antoniu,M.Bertier,L.Bougé,E.Caron,F.Desprez,M.Jan,S.Monnet,P.Sens Let us consider a typical scenario to illustrate the need for threefold requirement for data per- sistence, fault tolerance and consistency. It is concerned with the determination of the ordering sensitivityofaclassofsolverssuchasMUMPS,SuperLUorUMFPACK,thatis,howperformance isimpactedbythematrixtraversalorder. Itconsistsofthreephases. Phase1exercisesallpossible internalorderingsinturn. Phase2computesasuitablemetricreflectingtheperformanceparameters understudyforeachrun: effectiveFLOPS,effectivememoryusage,overallcomputationtime,etc. Phase3collectsthemetricforallcombinationsofsolvers/orderingsandreportsthefinalrankingto theuser. If Phase 1 requires exercising n different kinds of orders with m different kinds of solvers, thenm(cid:2)nexecutionsaretobeperformed. Withoutpersistence,thematrixhastobesentm(cid:2)n times. If the server provided persistent storage, the data would be sent only once. If the various pairssolvers/orderingsarehandledbydifferentserversinPhase2and3,thenconsistencyanddata movements between servers should be provided by the data management service. Finally, as the numberofsolvers/orderingsispotentiallylarge,manynodesareused.Thisincreasestheprobability forfaultstooccur,whichmakestheuseofsophisticatedfault-tolerancealgorithmsmandatory. Anotherclassofapplicationsthatcanbenefitfromthefeaturesprovidedbyadata-sharingservice iscode-couplingapplications. Suchapplicationsarestructuredasasetof(generallydistributed)au- tonomouscodeswhichattimesneedtoexchangedata. ThisschemeisillustratedbytheEPSN[10] project,alsosupportedbytheFrenchACIGRIDResearchProgram. Thisprojectfocusesonsteer- ingdistributednumericalsimulationsbasedonvisualization.Itreliesonasoftwareenvironmentthat combines the facilities of virtual reality with the capabilities of existing high performancesimula- tions. Thegoalistomakethetypicalwork-flow(modeling, computing, analyzing)moreefficient, thanks to on-line visualization and interactive steering of the intermediate results. Possible errors can thus be detected and the the researcher can correct them on-the-fly, by tuning the simulation parameters. The application consists in a visualization code coupled with one or more simulation codes. Eachsimulationcodemaybeparallelandmaymanipulatedataaccordingtosomespecific distribution. As in the case of the Grid-TLSE application described above, a data-sharing service providingpersistent,transparentaccesstodistributeddatacansimplifythedatamovementschemes between the coupled codes. Moreover, in the case of code coupling, the basic operations consist in extracting and modifying the simulation data. As the data status alternates from consistent to inconsistent during the simulation, it is important for the visualization code to be able to obtain a consistentviewofthedata. Thiscanbeensuredthankstotheconsistencyprotocolsprovidedbythe dataservice. 3 Overview of a grid computing environment: the DIET platform TheGridRPCapproach[22]isagoodcandidatetobuildProblemSolvingEnvironments(PSE)on thecomputationalgrid. ItdefinesanAPIandamodeltoperformremotecomputationonservers. In suchaparadigm,aclientcansubmitproblemtoanagentthatselectsthebestserveramongalargeset ofcandidates,giveninformationabouttheperformanceoftheplatformgatheredbyaninformation INRIA GDS:anArchitectureProposalforaGridData-SharingService 7 service. Thegoalistofindasuitable(ifnotthebest!) trade-offbetweenthecomputationalpower of the selected server and the cost of moving input data forth and back to this very server. The choiceismadefromstaticanddynamicinformationaboutsoftwareandhardwareresources,aswell asthelocationofinputdata,whichmaybestoredanywherewithinthesystembecauseofprevious computations. Requestscanbethenprocessedbysequentialorparallelservers. TheGridRPCAPIisthegridformoftheclassicalUnixRPC(RemoteProcedureCall)approach. It has been designed by a team of researchers within the Global Grid Forum (GGF). It defines a standard client API to send requests to a Network Enabled Server (NES) system [23], therefore promoting portability and interoperability between the various NES systems. Requests are sent through synchronous or asynchronous calls. Asynchronous calls allow a non-blocking execution, thereby providing another level of parallelism between servers. A function handle represents a bindingbetweenaproblemnameandaninstanceofsuchfunctionavailableonagivenserver. Of course several servers can provide the same function (or service) and load-balancing can be done at the agent level beforethe binding. A sessionID is associatedto each non-blockingrequestand allowstoretrieveinformationaboutthestatusoftherequest. Waitfunctionsarealsoprovidedfora clienttowaitforspecificrequesttocomplete. ThisAPIisinstantiatedbyseveralmiddlewaresuch asDIET[7],Ninf[20],NetSolve[4],andXtremWeb[15]. The paradigm used in the GridRPC model is thus two-level, mixed parallelism, with different (potentially parallel) requests executed on different servers. However, the server-level parallelism remainshiddentotheclient. 3.1 Overallarchitectureof DIET Inthissection,wefocusonourGridRPC-basedmiddleware: theDIETplatform. Thevariousparts oftheDIETarchitecturearedisplayedonFigure2. TheClient isanapplicationwhichusesDIETtosolveproblems. Differenttypesofclientsshould beabletouseDIET,asproblemscanbesubmittedfromawebpage,aspecificPSEsuchas Scilab,ordirectlyfromacompiledprogram. TheMasterAgent(MA) receives computation requests from clients. A request is a generic de- scriptionoftheproblemtobesolved. TheMAcollectsthecomputationalcapabilitiesofthe availableservers,andselectsthebestoneaccordingtothegivenrequest.Eventually,therefer- enceoftheselectedserverisreturnedtotheclient,whichcanthendirectlysubmititsrequest tothisserver. TheLocalAgent(LA) transmits requests and information between a given MA and the locally availableservers. Notethat,dependingontheunderlyingnetworkarchitecture,ahierarchyof LAsmaybedeployedbetweenaMAandtheserversitmanages,sothateachLAistheroota ofsubtreemadeofitssonLAsandleafservers. EachLAstoresthelistofpendingrequests, togetherwiththenumberofserversthatcanhandleagivenrequestinitssubtree.Finally,each LAincludesinformationaboutthedatastoredwithinthenodesofitssubtree. RR n°5593

Description:
GDS: an Architecture Proposal for a Grid Data-Sharing [5] Alessandro Bassi, Micah Beck, Graham Fagg, Terry Moore, James Plank, Martin Swany,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.