ebook img

Gaussification and entanglement distillation of continuous variable systems: a unifying picture PDF

0.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gaussification and entanglement distillation of continuous variable systems: a unifying picture

GaussificationandEntanglementDistillationofContinuous-VariableSystems: AUnifyingPicture Earl T. Campbell and Jens Eisert DahlemCenterforComplexQuantumSystems, FreieUniversita¨tBerlin, 14195Berlin, Germanyand Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany DistillationofentanglementusingonlyGaussianoperationsisanimportantprimitiveinquantumcommu- nication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols forcontinuousdegreesoffreedomareonlyknowntoconvergetoaGaussianstatewhenmeasurementsyield preciselythevacuumoutcome. Insharpcontrast,non-Gaussianstatescanbedeterministicallyconvertedinto Gaussian states while preserving their second moments, albeit by usually reducing their degree of entangle- ment. Inthiswork–basedonanovelinstanceofanon-commutativecentrallimittheorem–weintroducea picturegeneralenoughtoencompasstheknownprotocolsleadingtoGaussianstates,andnewclassesofpro- tocolsincludingmultipartitedistillation. Thisgivestheexperimentaloptionofbalancingthemeritsofsuccess 2 probabilityagainstentanglementproduced. 1 0 PACSnumbers:03.67.Bg,42.50.Ex 2 n a Entangled quantum states are the fundamental resources J that enable quantum key distribution, quantum communica- (i) 5 tion, and instances of distributed quantum computing. Real 2 physical systems are affected by decoherence and non-ideal apparatusthatdegradesthequalityofexperimentallyprepara- ] h ble quantum states. However, entanglement distillation pro- p tocols provide a means of converting many copies of par- (ii) (iii) (iv) (v) - tially entangled states into a smaller number of more entan- t n gledstates[1]. Whenentanglementisrequiredoververylong a distances,distillationcanbeimplementedatregularintervals u called repeater nodes [2–4]. Photonic systems that carry en- q [ tanglement in continuous degrees of freedom are difficult to manipulate arbitrarily. However, so-called Gaussian opera- FIG.1: (i)Asinglestepofthegeneralclassofprotocols(GG)con- 2 sidered,illustratedforthreeparties.ThisembodiestheknownGaus- tionsaremoreeasilyimplementedbyacombinationofbeam- v sifier (GP) entanglement distillation schemes based on projections splitters, phase shifters and squeezers. Furthermore, prepa- 6 ontothevacuum,ortheextremalityprotocol(EP)mappingunknown rationofGaussianstatesisroutineinmanylaboratories, and 0 statesontoGaussianoneswiththesamesecondmoments.TheGaus- 4 suchstatesareespeciallyusefulfornumerousquantuminfor- sian projection can be arbitrary (including (ii) vacuum projection, 1 mationtasks. (iii)homodyning,(iv)eight-porthomodyning,(v)tracingout); and . Unfortunately, Gaussian operations are quite limited in schemeswithfinitewidthsofacceptance. 7 0 their capacity to distill entanglement. In particular, a series 1 of no-go theorems have shown that with only Gaussian re- 1 sources, itisimpossibletoincreaseentanglement[5]. These formingeight-porthomodynedetection[9]andpostselecting : resultscanbecircumventedwhennon-Gaussianresourcesare on the vacuum outcome achieves the same projection, but v i available.Givenanappropriateresource,Gaussianoperations thiswillhavezerosuccessprobabilitywhenpostselectingex- X can simultaneously increase the entanglement and make the actly on the vacuum measurement outcomes. In this work, r state more Gaussian, a process we refer to as the “Gaussi- we prove Gaussification for a wide class of truly Gaussian a fication protocol” (GP) [6] (for steps towards experimental protocolswithnonzero,andtunable,successprobabilitiesfor realization of this and related protocols, see Refs. [7]). Al- multimode states. All known feasible distillation protocols, ternatively, the theorem can also be circumvented by using including our protocols, are iterative and consume a num- a non-Gaussian operation implemented by photon detectors. berofcopiesexponentialintheiterationsrequired. Assuch, Entanglement distillation can be achieved by a combination our scheme’s capability to increase success probability sig- ofphotonsubtraction,ade-Gaussifyingoperation,andGaus- nificantly improves the prospects of distillation and repeater sification[6,8]. implementationswithonlymodestresources. Ourtechniques Whilethesetechniquesgivehopeforsimplerealizationsof also open up the perspective of directly distilling into multi- quantum information protocols, they do not exploit the rich- partiteGaussianstates. ness of Gaussian operations. Specifically, GP utilizes only In addition to the practical applications of our results, our projections onto the vacuum. These projections are feasible analysisprovidesamoreintuitiveexplanationofthephenom- if reliable detectors are available that distinguish zero from enaofGaussification.Intheoriginaldistillationprotocols[6], oneormorephotons. However,strictlyspeakingthesedetec- theprocessofGaussificationisquitemysterious,butitisvery tors do not fall within the realm of Gaussian devices. Per- apparent in the protocol of Ref. [10] which provides an al- 2 ternative method that uses no measurements, referred to as cases,suchasGP,EPandprotocolsusingprecisehomodyne the“extremalityprotocol”(EP),asitisusedtoshowtheex- detectionareincludedaslimitswithinthisfamilyoffilters,so tremality of Gaussian states with respect to several proper- keepingfullgenerality. Withthisnotation ties.YetEPcanconvertmanynon-Gaussianstatesintoamore Gaussianstatewhileconservingtheexpectationvalueofob- ρn+1 ∝tr2[U(ρn⊗ρn)U†(1l⊗Π)]. (4) servablesquadraticinpositionandmomentum. Althoughthe EPdoesGaussify,itscapacityforincreasingentanglementis Phasespace. Beforewegiveourresults,wereviewphase restrained by its deterministic nature. The proof of EP ele- spacerepresentationsforthepositionandmomentumobserv- gantlyemploysthecentrallimittheorem[11]thatexplainsthe ablesofanm-modesystem,labeledas ubiquity of Gaussian distributions in classical statistics and natureitself. OurapproachunifiesGPandEPwithinacom- Rˆ =(Rˆ1,Rˆ2,...,Rˆ2m−1,Rˆ2m)=(Xˆ1,Pˆ1,...,Xˆm,Pˆm), prehensivetheoryof“generalGaussification”(GG)founded √ √ on a non-commutative central limit theorem and so provides where Xˆj = (aˆ†j + aˆj)/ 2 and Pˆj = i(aˆ†j − aˆj)/ 2 for an intuitive mechanism for Gaussification. In addition to bi- j = 1,...,m. Thecanonicalcommutationrelationsbetween partite entanglement distillation, our approach reveals whole thecoordinatesareembodiedinthesymplecticmatrixΣ. The newclassesofprotocolsthatwediscuss. covariance matrix of an operator A records the second mo- We consider GG protocols that can be implemented itera- mentsoftheseobservables. tively,withthe(n+1)thiterationasfollows: (Γ ) =tr({Rˆ −(d ) ,Rˆ −(d ) } A), (5) A j,k j A j k A k + 1. Taketwocopiesofanm-modestateρ sharedbetween n mparties; where {.,.} denotes the anticommutator and first moments + 2. Eachpartyappliesa50:50beam-splittertransformation are (d ) = tr(Rˆ A). Furthermore, we make use of char- A j j betweentheirpairofmodes; acteristic functions, χ : R2m → C, that encode all the in- A 3. EverypartymakesaGaussianmeasurementontheout- formation of A as χ (r) = tr(D(r)A), where D(r) is the A putofonebeam-splitterport; displacementoperator,D(r) = exp(ir·Rˆ). Suchafunction 4. The parties compare measurement results and postse- issaidtobeGaussianwhen lectsuchthattheoperationimplementedisGaussian; 5. Theoutputstateρn+1isusedforthenextiteration. χA(r)=exp(ir·dA−rTΓAr/4). (6) FormaldescriptionofGGprotocols. Thereare2mmodes IftheoperatorAisaphysicalstate,itscovariancematrixwill involvedintheprotocol,andwelabelannihilationoperators, bereal. However, aninstrumentaltoolinouranalysisisthat aˆ , with two indices; The index j = 1,2,...,m labels the j,k weworkwithA = σ = ρ Π/tr(ρ Π). Indeed,wewillnot n n n respective party and k = 1,2 the copy at a particular node. employ characteristic functions of states satisfying the con- Thebeam-splitters,intheHeisenbergpicture,perform ditions of Bochner’s theorem [11, 12], but of more general √ objects,henceleadingtomoregeneralcomplex-valuedfunc- Uaˆ U† =(aˆ +(−1)kaˆ )/ 2. (1) j,k j,1 j,2 tions. Since Π is invertible, σ uniquely defines a quantum n stateρ . Themeasurementsatstep3canbehomodyne,eight-portho- n A new non-commutative quantum central limit theorem. modyne,oranyotherGaussianmeasurementsprojectingonto With these definitions at hand we can state our first result, a state Π for measurement outcome m. We are interested m withastrongerformofconvergencedemonstratedlater. inGaussianprotocolsthatpostselectonasetofmeasurement outcomes,andmixoverallacceptingoutcomes, Theorem1(ConvergenceofgeneralGaussifierprotocols) (cid:90) Consider an initial state ρ = ρ , with associated operator ρ ∝ dmP(m)tr2[U(ρ ⊗ρ )U†(1l⊗Π )] (2) 0 n+1 n n m σ = ρΠ/tr(ρΠ) such that the following conditions are satisfied: (i) d = 0; (ii) |χ (r)| ≤ 1 for all r; (iii) the σ σ where tr2 denotes a partial trace over the second copy, with covariancematrix k = 2. Theintegralovermeasurementoutcomesisweighted by P(m). The weights P(m) = 0 and P(m) = 1 corre- Γρ∞ =(ΓΠ−iΣ)(ΓΠ−Γσ)−1(ΓΠ+iΣ)−ΓΠ, (7) spond to a rejection and an acceptance, respectively, but we also allow for probabilistic strategies where P(m) gives the exists and is positive definite. Let ρ∞ denote the Gaussian probabilityofacceptance. Theprotocolisdescribedbyasin- statewithcovariancematrixΓρ∞. GGwithfilterΠcausesρn gleoperatorwecallthefilter to weakly converge to ρ∞ in the following sense: If |x(cid:105) and |y(cid:105)areeigenvectorsofΠ,thenforall(cid:15) > 0thereexistsan (cid:15) (cid:90) suchthatforalln>n Π= dmP(m)Π . (3) (cid:15) m |(cid:104)x|ρ |y(cid:105)/tr(ρ Π)−(cid:104)x|ρ |y(cid:105)/tr(ρ Π)|<(cid:15). (8) n n ∞ ∞ We allow for arbitrary Gaussian filters, Π, that are invertible andproportionaltoafullyseparableGaussianstatewithvan- Proof of the statement. Much of the basic structure of the ishing first moments and finite energy. Certain interesting proof follows an argument of a non-commutative quantum 3 central limit theorem for quantum states [10–13]. The prob- (i) ∆0.5 1 (ii) ∆ 0.5 1 lem once one allows for Gaussian measurements is that the 0 0 3 6 characteristic function of the output is unwieldy indeed. We 2 4 circumvent this problem by a bold step: We put in an addi- E 1 E 2 tionalfilterΠattheoutput“byhand”,inordertoexploitsym- 0 0 0 0 ombejtercyt,s,atσth.eTexhpisenwsiellotfhehnavlienagdttooctohnesdideesrirχedσnreosfuldt.iffFerroenmt λ 0.5 1 µ 0.25 0.5 n Eq.(4)wehave, FIG.2: Thedegreeofentanglementoftheinitialstateρintermsof χ (r)∝tr[(D(r)⊗1l)U(ρ ⊗ρ )U†(Π⊗Π)]. (9) thelog-negativityversusthetargetGaussianρ∞for(i)bipartitestate σn+1 n n vectors|Ψ (cid:105)and(ii)tripartitestatevectors|Φ (cid:105).Inbothfiguresthe λ µ UsingthecyclicityofthetraceandEq.(1) variable0<∆<1controlsthedegreeofpostselection. Thecurve √ varyingwith∆istheentanglementofρ∞,andthecurveconstantin χ (r)∝tr[D(r/ 2)⊗2ρ⊗2U†Π⊗2U]. (10) ∆istheinitialentanglementofρ. σn+1 n Next we recall that Gaussian states with zero first moments commutewithbeam-splitters,UΠ⊗2 =Π⊗2U,suchthat For Gaussian χ and χ , the integral is a multi-variate Π ρ∞ √ √ Gaussianintegralthatevaluates(seeApp.C)toanotherGaus- χσn+1(r) ∝ tr{[D(r√/ 2)ρnΠ]⊗2}√∝tr[D(r/ 2)σn]2, sian with the covariance matrix taking the form of a Schur = χ (r/ 2)2 =χ (r/ N)N, (11) complement[15], σn σ where in the last equality N = 2n+1, iterating the formula. Γσ =ΓΠ−(ΓΠ+iΣ)(Γρ∞ +ΓΠ)−1(ΓΠ−iΣ), (16) Thekeytothesimplicityofthisformulaistoconsiderconver- RearrangingthisformulaforΓ givesusthecovariancema- genceofσn ratherthandirectlyρn. Byintroducinganaddi- trix for the convergent state ρρ∞in terms of Γ and Γ as in tionalprojectorwithinthetrace,symmetryallowsustocom- ∞ σ Π thetheorem. mute through the beam-splitter unitaries, which is the essen- Examples. We have introduced a broad class of protocols tialsimplifyingstep. Tofindthelimitingcharacteristicfunc- forwhichourtheoremindicatesGaussification. However,for tion,weconsideragivenphasespacepointr andthefunction 0 concretenessitishelpfultokeepinmindasimpleclassofpro- f : R → C defined as f (t) = χ (tr ). In σn+1,r0 σn+1,r0 σn+1 0 tocols. Considerwheneachpartyperformseight-porthomo- thespiritofaclassicalcentrallimittheorem[10,11,13]but dynemeasurementsthatprojectontoacoherentstate. When fornon-Hermitianoperatorswewrite the kth party obtains outcome α projecting onto coherent k (cid:18) t (cid:19)N (cid:18) rTΓ r (cid:18)t2(cid:19)(cid:19)N statevector|αk(cid:105),wedeclaretheiterationasuccesswithprob- f √ ∝ 1−t2 0 σ 0 +o ,(12) abilityP = exp(−|α|2/2c2). Thedegreeofpostselectionis σ,r0 N 4N N quantifiedbyarealvariancec. Itfollowsthatthefilterisin- which converges assuming that second moments are finite, deedproportionaltoaGaussianstatewithcovariancematrix f(0) = 1 and |f(t)| ≤ 1 for all t. This last condition, ΓΠ = ∆−11l,with∆ = (1+c2)3/2. Thisclassofprotocols whichisalwayssatisfiedforclassicalcharacteristicfunctions, is important as it contains GP and EP as limits ∆ → 1 and may be violated for non-Hermitian σ . However, provided ∆→0,respectively. n |χ (r)| ≤ 1 for all r, we find (see App. A) in the limit of We now consider the degree of entanglement that is σ largenthat achievedbyapplyingourprotocolwitheight-porthomodyne measurements. First we consider the well-studied bipartite nl→im∞fσn+1(t) ∝ exp(−t2rT0Γσr0/4), (13) state vector |Ψλ(cid:105) ∝ |0,0(cid:105) + λ|1,1(cid:105), and present the log- negativity [16] of the convergent Gaussian in Fig. 2. Vary- pointwiseint. Settingt=1showspointwiseconvergenceof ing the parameter ∆ interpolates between the entanglement χσn+1 foreachphasespacepointr0. Furthermore,following achievedbyGPandEP,withincreasedyieldcompensatingfor the reasoning of Refs. [12, 13], this entails that any operator reductionsinentanglement. Wealsoanalyzedatripartiteen- (cid:82) B that is absolutely integrable such that |χB(r)|dr < ∞, tangledstatevector|Φµ(cid:105)∝|0,0,0(cid:105)+µ(|1,1,0(cid:105)+|1,0,1(cid:105)+ hasaconvergentexpectationvaluetr(Bσn)→tr(Bσ∞)(see |0,1,1(cid:105)), having up to two photons in three modes, and for App. B). Setting B = λ−y1|y(cid:105)(cid:104)x| where Π|y(cid:105) = λy|y(cid:105), then the log-negativity summed over all 3 bipartitions. In fact, in forlargen thisway,onecanstraightforwardlyengineermulti-partitehy- brid distillation protocols for quantum networks, giving rise (cid:104)x|ρ |y(cid:105) (cid:104)x|σ |y(cid:105) (cid:104)x|σ |y(cid:105) (cid:104)x|ρ |y(cid:105) n = n → ∞ = ∞ . (14) to primitives in repeater architectures where entanglement is tr(ρnΠ) λy λy tr(ρ∞Π) shared across many repeater nodes. These would overcome theknownlimitationsprovidingaroad-blockagainstentirely AllthatremainsistoshowthatGaussianσ entailsaGaus- ∞ Gaussiancontinuous-variablerepeaternetworks[17]. sian ρ . First we observe (see App. C) that the product of ∞ Strong convergence. Our previous theorem proves a con- twooperatorshasacharacteristicequation vergenceresultidenticaltothatofRef.[6]andGP.However, (cid:90) itwouldoftenbepreferabletohaveconvergenceof(cid:104)x|ρ |y(cid:105) χ (q)∝ χ (r)χ (q−r)exp(−irTσq/2)dr. (15) n σ∞ ρ∞ Π to (cid:104)x|ρ∞|y(cid:105) in a stronger sense (without the addition factors 4 oftr(ρ Π)−1 andtr(ρ Π)−1 andasaconvergenceintrace- assumptions, converges to tr(Πρ ). As such (cid:104)x|ρ |y(cid:105) con- n ∞ ∞ n norm). For most physically relevant (see App. D) instances verges to (cid:104)x|ρ |y(cid:105), and as is well known this entails trace ∞ ofinitialquantumstates,wenowshowthatthisisindeedthe normconvergence(SeeRef.[12]andAppF). case. Wewillmakeuseofexpectationvaluesofnormallyor- Summary. Wehaveintroducedaframeworkforconstruct- deroperators, ingarangeofnewprotocolsforentanglementdistillationand manipulation. Atthesametime,thisworkprovidesaunified αnx,y =tr[V(⊗mk=1aˆxkk)†(⊗mj=1aˆyjj)V†σn], (17) framework for existing protocols leading to Gaussian states: Notably,themysteriousemergenceofGaussianstatesindis- where x,y ∈ Nm and V is the Gaussian unitary such that tillationschemesisonceagainrelatedtoaninstanceofaquan- VΠV†isathermalstate. tum central limit theorem, albeit for a much more broader classofprotocolsthanpreviouslyconsidered.Thisframework Theorem2(Strongconvergence) InadditiontoTheorem1, alsoallowsustolookatGaussificationinexperimentallyreal- if for all x,y ∈ Nm the expectations values of normally or- isticacceptancewindows,andtotrade-offdifferentfiguresof deredoperatorssatisfy, |αx,y| ≤ αx,y forαx,y = |αx,y|. It meritagainsteachother. Suchtrade-offcontrolisessentialas 0 ∞ ∞ ∞ follows that for all (cid:15) > 0 there exists an n such that for all previousproposalsaresoheavilypostselectivethatoversev- (cid:15) n>n ,wehave(cid:107)ρ −ρ (cid:107)<(cid:15),where(cid:107).(cid:107)isthetracenorm. eral iterations the success probability would reduce dramati- (cid:15) n ∞ cally, whereas our protocols offer an arbitrarily good chance Theconditionsofthetheoremarestatedtechnically,butphys- success.Potentialforfutureresearchisbroadasauniquepro- icallypreventoverpopulationofhigherFocknumbers. E.g.,it tocol is defined by every separable Gaussian state. For ex- iseasytochecktheseconditionsaremeetinallthelowpho- ample, ourtechniquescanbeappliedtohomodynedetection ton examples analyzed in Fig 2. We begin by first showing protocols for either multimode entanglement distillation, or tr(Πρn)convergestotr(Πρ∞),whichintermsofσis singlemodesqueezingenhancement. Acknowledgements. We would like to thank the EU tr(Π−1σ)=tr(Π−1ρΠ)/tr(ρΠ)=tr(ρΠ)−1. (18) (QESSENCE, MINOS, COMPAS), the BMBF (QuOReP), and the EURYI for support, and thank A. Mari, C. Gogolin, The inverse filter, Π−1, has an exponential form that can be V.Nesme,D.E.BrowneandM.Ohligerforvaluablediscus- Taylorexpandedand,usingthebosoniccommutationrelation, sions. normally ordered such that tr(Π−1σ ) = (cid:80) q αx,y, n x,y x,y n where q ≥ 0. Hence, when the conditions of our theo- x,y rem hold, we conclude tr(Π−1σ0) ≤ tr(Π−1σ∞), and we AppendixA:Centrallimittheoremsreviewed proceedbyshowingthisholdsforallσ . Iterativelywehave n (detailsinApp.E) Here we present additional details on the convergence of (cid:88) characteristic functions to a Gaussian function. Our proof αnx,+y1 = Cux,,vyαnu,vαnx−u,y−v, (19) follows the classical proofs, such as in Ref. [14], but since u≤x,v≤y σ = ρΠ/tr(ρΠ) is generally neither positive nor Hermitian there are some notable subtleties and technicalities involved. where Cx,y is a combinatorial quantity that is non-negative u,v Ultimately,weaimtoprovethefollowing. andreal. Underourassumptionstheabsolutevaluesobey |αnx,+y1|≤ (cid:88) Cux,,vyα∞u,vα∞x−u,y−v =α∞x,y, (20) sTahtiesofireesm|f3σ,(rG0(etn)|er≤al1qfuoarnatlulmt ∈ceRntrthaelnthineotrheemli)mIiftfoσf,lra0r(gte) u≤x,v≤y N √ soinitiallysatisfyingourconditionsentailssatisfactionforall f (t/ N)N →e−νt2/4, (A1) n. Hence,forallnwededucetr(Π−1σ )≤tr(Π−1σ )and σ,r0 n ∞ equivalently tr(ρnΠ) ≥ tr(ρ∞Π). Next we bound tr(ρnΠ) pointwise in t, with ν as the appropriate second moment. fromabove. ConsiderafiniterankprojectorP thatcommutes Specifically, pointwise convergence means that for all t ∈ R with Π, then B = Π−1P has an absolutely integrable char- andall(cid:15) > 0thereexistsaN suchthatforallN > N we (cid:15) (cid:15) acteristic function. Hence, for arbitrarily small δ > 0 there have existsannδ suchthatforn>nδ √ |f (t/ N)N −e−νt2/4|≤(cid:15). (A2) tr(Pρ ) tr(Pρ ) σ,r0 tr(Bσ )−tr(Bσ )= n − ∞ ≥−δ. (21) n ∞ tr(Πρ ) tr(Πρ ) Setting t = 1 directly entails pointwise convergence of the n ∞ characteristic function χ , and furthermore this is uniform σn Since tr(Pρ ) ≤ 1, and P can be chosen so tr(Pρ ) = oncompactregions,suchasaballinphasespace. n ∞ 1−δ(cid:48) isarbitrarilyclosetounity,weconcludetr(Πρ )−1− n tr(Πρ )−1 ≥−(cid:15)where(cid:15)=δ+δ(cid:48)tr(ρ Π)−1isagainsmall. Corollary1(Convergenceincompactregions) Within any ∞ ∞ Thisinequalityrearrangestotr(Πρ )≤(tr(Πρ )−1−(cid:15))−1, compact region R, χ converges uniformly to χ . That n ∞ σn σ∞ givinganarbitrarilytightboundfromabove. Combinedwith is, for any (cid:15) > 0 there exists an n such that for all n > n (cid:15) (cid:15) our lower bound we conclude that tr(Πρ ), under the stated andallr∈R,wehave|χ (r)−χ (r)|≤(cid:15). n σn σ∞ 5 Pointwiseconvergenceisuniformoncompactregionswhen- Lemma2(Expansionoffunctions) For a given unit vector ever the gradient is bounded within R for all n. To prove a r andanoperatorσthatisunittraceandzerodisplacement 0 gradient bound for all n, we first observe that for n = 0 a d =0,theabovefunctionf canbeexpressedas σ σ,r0 bounded continuos function always has a gradient bound on 1 compactsets. Thatis,anη canalwaysbefoundsuchthatfor f (t)=1− νt2K(t) (A8) σ,r0 4 allr ∈ RwehaveG (r) = (cid:107)∇χ (r)(cid:107) < η|r|,where(cid:107).(cid:107) 0 σ0 2 2 denotesthe2-norm. Thispropertyisiterativelypreservedfor whereK(t)→1ast→0. allσ ,since n Thislemmaassertsthathigherordermomentsdropoffsuf- √ G (r) = (cid:107)∇χ (r/ N)N(cid:107) , ficientlyquicklyforthepurposesofestablishingacentrallimit n σ0 √ 2 √ theorem.Wemakeuseofthefollowingformulationoftheex- = N(cid:107)[∇χ (r/ N)].[χ (r/ N)N−1](cid:107) , √ σ0 √ σ0 2 ponentialfunction ≤ NG (r/ N)≤η|r|. 0 1 eitx =1+itx− t2x2L(x,t) (A9) 2 Using the point in the compact region that gives the largest value|r|givingthedesiredgradientboundforallr ∈ Rand where alln. ThiscorollarywillproveusefulinApp. B. (cid:90) 1 Weproveseveralusefullemmasbeforedirectlyaddressing L(x,t)=2 (1−u)eiutxdu, (A10) thisproof. Firstweobserve, 0 satisfying f (t) = tr[D(tr )σ], (A3) σ,r0 0 |L(x,t)|≤1 (A11) (cid:90) ∞ = dxeixtFσ,r0(x), forx,t∈R. Furthermore,foranyfinitexinterval,eiutx →1 −∞ as t → 0 uniformly in x. Consequently, we also have L(x,t)→1ast→0uniformlyonanyfinitex-interval.Mul- whereF (x)istherepresentationofσalongalineinphase σ,r0 tiplying Eq. (A9) by F and integrating w.r.t. x and using space defined by the unit vector r0 (e.g., the position or mo- σ,r0 theunittraceofσandvanishingfirstmomentswehave mentumrepresentationincaseofaunitvectorpointingalong theaxisofphasespace). Thisissimilartoaprobabilityden- 1 (cid:90) ∞ sityformeasurementofaparticularquadrature;however,be- fσ,r0(t)=1− 2t2 x2L(x,t)Fσ,r0(x)dx, (A12) causeσisneitherpositivenorHermitian,thefunctionF is −∞ σ,r0 notgenerallypositiveorreal,whichisthemaincauseforcau- whichwecanrewriteas tion.Yetitissufficientlywellbehaved,withthetwofollowing 1 lemmasprovinguseful. fσ,r0(t)=1− 2t2νK(t)dx, (A13) whereν isthesecondmomentdefinedby Lemma1(Convergenceofabsoluteintegrals) The abso- luteintegralsatisfies(cid:82)∞ x2|F (x)|dx<∞. (cid:90) ∞ −∞ σ,r0 ν =2 x2Fσ,r0(x), (A14) −∞ Nowclearly(Π−iρ)(Π+iρ)≥0,suchthat andK(t)isthequantitysatisfying Π2+ρ2 ≥iρΠ−iΠρ (A4) (cid:90) ∞ νK(t)=2 x2L(x,t)F (x). (A15) σ,r0 and(Π−ρ)(Π−ρ)≥0,sothat −∞ IfwesubtractEq.(A14)fromtheabove,wehave Π2+ρ2 ≥Πρ+ρΠ. (A5) (cid:90) ∞ ν(K(t)−1)=2 x2(L(x,t)−1)F (x). (A16) Similarly,Π2+ρ2 ≥−iρΠ+iΠρandΠ2+ρ2 ≥−Πρ−ρΠ. −∞ σ,r0 Onefindsafterafewstepsthat,foranyvector|ψ(cid:105),wehave Theabsolutevaluesatisfies √ (cid:90) ∞ |(cid:104)ψ|ρΠ|ψ(cid:105)|≤|(cid:104)ψ|(ρ2+Π2)|ψ(cid:105)|/ 2. (A6) ν|K(t)−1|≤2 x2|(L(x,t)−1)F (x)|. (A17) σ,r0 −∞ Hence,usingthetriangleinequality, Notingthat|L(x,t)−1|≤2since|L(x,t)|≤1,anddividing theintegralintotwopartsoversomefiniteintervalRandthe |F (x)|+|F (x)| |F (x)|≤ Π2,r0√ ρ2,r0 . (A7) complementR⊥wededucethat σ,r0 2|tr(ρΠ)| (cid:90) ν|K(t)−1| ≤ 2 x2|(L(x,t)−1)F (x)| Thatistosay,wheneverthesecondmomentsofΠ2andρ2are R σ,r0 finite,theabsoluteintegralconvergestoafinitevalue. (cid:90) + 4 x2|F (x)|. (A18) Thesecondlemmawerequireisasfollows. σ,r0 R⊥ 6 WenowmakeuseofLem.(1)whichtellsusthatthesecond the expectation value of operators, B, with absolutely inte- integralalwaysconvergestoafinitevalue. Therefore,forany grable characteristic functions. Here we prove the relevant (cid:15) > 0 the region R can be choose sufficiently large that the lemma, andalsoshowthatitsconditionsaremeetforopera- secondintegralisboundedsuchthat tors of the form B = |x(cid:105)(cid:104)y| where |x(cid:105) and |y(cid:105) are, up-to a Gaussianunitary,multimodeFockstates. Notethat,whenσ (cid:90) n ν|K(t)−1| ≤ 2 x2|(L(x,t)−1)F (x)|+((cid:15)A. 19) arepositiveHermitianoperators,strongerconclusionscanbe σ,r0 reachedbyasimilarmeansasshowninRef.[11]. R Recallthatforfinitexinterval,suchasR,(L(x,t)−1)uni- Lemma3(Convergenceofexpectationvalues) Consider a formly goes to zero with vanishing t. Hence, for any (cid:15) > 0 sequence of trace class m-mode operators σ and a limit- n andx∈Rthereexistsat suchthatforall|t|<t wehave (cid:15) (cid:15) ing operator σ , such that (i) |χ (r)| ≤ 1 for all r ∞ σn,∞ and(ii)Foranycompactregion,R,χ convergesuniformly ν|K(t)−1| ≤ 2(cid:15). (A20) σn to χ . Consider also a trace class operator B satisfying (cid:82) σ∞ |χ (r)|dr < ∞ and any (cid:15) > 0. There exists an n such WeconcludethatK(t)convergesto1withvanishingt,prov- B (cid:15) thatforalln <n ingourlemma. (cid:15) We now employ the above lemmas to demonstrate point- |tr(Bσ )−tr(Bσ )|≤(cid:15). (B1) wiseconvergence. Wewishtoboundthequantity n ∞ √ Forthesequenceofcharacteristicfunctionsconsideredinthe δ(t,N)=|fσ,r0(t/ N)N −e−νt2/4|, (A21) letter,property(i)isaprerequisiteandproperty(ii)wasshown in Cor. (1). We state these properties again here for clarity. whichcanbeexpandedas First we note that for any two m-mode trace class operators, BandA,thecharacteristicfunctions,χ andχ ,satisfy νt2 √ B A δ(t,N) = |(1− K(t/ N))N −e−νt2/4|.(A22) 4N (cid:90) drχ (r)χ (r)=(2π)mtr(BA). (B2) B A InthelimitoflargeN wehavethat (cid:12) (cid:12) Thisentailsthat (cid:12)(cid:18) νt2 √ (cid:19)N (cid:18) νt2(cid:19)N(cid:12) δ(t,N) = (cid:12) 1− K(t/ N) − 1− (cid:12). (cid:12) 4N 4N (cid:12) D = (2π)m|tr(Bσ )−tr(Bσ )| (B3) (cid:12) (cid:12) n n ∞ (cid:90) (A23) = | χ (r)[χ (r)−χ (r)]dr|. (B4) B σn σ∞ Foranyaandbsatisfying|a|,|b|≤1itiswellknownthat (cid:82) Nextweobservethatforanyχ satisfying |χ (r)|dr<∞, B B |aN −bN|≤N|a−b|. (A24) and for any (cid:15) > 0 we can find a function h with compact supportsuchthat Applyingthisinequalitytoourproblemgives (cid:90) νt2 √ νt2 |χB(r)−h(r)|dr≤(cid:15). (B5) δ(t,N) ≤ N|(1− K(t/ N))−(1− )|, 4N 4N √ That is, the set of functions with compact support are dense ≤ |νt2(K(t/ N)−1)|/4. (A25) inthesetofabsolutelyintegrablefunctions. Definingη(r) = √ χ (r)−h(r)and∆ (r)=χ (r)−χ (r),wehave For fixed t, the argument of K(t/ N) vanishes as N in- B n σn σ∞ creases, entailing pointwise convergence. Consider a point (cid:90) t, for any (cid:15) > 0 we can always find a u(cid:15) such that |K(u)− Dn = | [η(r)−h(r)]∆n(r)dr|, (B6) 1| ≤ 4(cid:15)/(νt2) for all |u| ≤ u . The variable u defines a √(cid:15) (cid:15) (cid:90) (cid:90) N =t2u2,suchthat|u|=|t/ N|≤u wheneverN >N ≤ | η(r)∆ (r)dr|+| h(r)∆ (r)dr|, (cid:15) (cid:15) (cid:15) (cid:15) (cid:15) n n andso (cid:90) (cid:90) ≤ sup(|∆ (r)|) |η(r)|dr+| h(r)∆ dr|, δ(t,N >N ) ≤ (cid:15). (A26) n n (cid:15) (cid:90) HencewehaveshownThm.3.Furthermore,thisconvergence ≤ 2(cid:15)+| h(r)∆ndr|. isuniformonfiniteintervalsoft. The third line uses a Ho¨lder’s inequality. The final line uses Eq. (B5) and |∆ (r)| ≤ 2. For sufficiently large n, the sec- n AppendixB:Convergenceofexpectationvalues ond term can also be made arbitrarily small because h has compactsupportand∆ vanishesuniformlyonanycompact n Intheletterwestatethatconvergenceofχ toaGaussian set, asrequiredbyproperty(ii). Thiscompletestheproofof σn functionwithcovariancematrixΓ entailsconvergencefor thelemma. σ∞ 7 Furthermore,anyoperatorB =|x(cid:105)(cid:104)y|willsatisfythecon- NotingthatrTΣr=0forallreliminatespartoftheexponent. ditions of the lemma when |x(cid:105) and |y(cid:105) are eigenvectors of a NextweobservethatthishastheformofEq.(C1)andsowe Gaussian density operator. That is, there exists a Gaussian candeducethatthecharacteristicfunctionis unitarysuchthatU|x(cid:105)andU|y(cid:105)areFockstates. ClearlyB is (cid:90) i traceclass,andsoweonlyneedshowabsoluteconvergenceof χ (q)∝ drχ (r)χ (q−r)exp(− rTΣq). (C6) χ . Fora1-modeelementintheFockbasis|n(cid:105)(cid:104)m|thechar- AB A B 2 B acteristicfunctionwillbeaproductofarealpolynomialinr SettingA=ρ andB =ΠprovidesEq.15oftheletter. offinitedegreeandadecayingGaussianin|r|.Suchfunctions ∞ UntilnowwehavenotusedanypropertiesofAorB, but areeasilyseentoabsolutelyconverge,andsotooshallaprod- hereinassumetheyareGaussianwithcovariancematricesΓ uctofmsuchfunctions.AGaussiandisplacementonlyaddsa A andΓ . Hence phasefactortothecharacteristicfunction,andnon-displacing B Gaussianunitariesareequivalenttoaunitarychangeofvari- (cid:90) (cid:18) rTΓ r(cid:19) ablesintheintegral. Hence,Gaussianunitarieswillnotalter χ (q) ∝ drexp − A (C7) the value of the absolute integral. Indeed, most trace class AB 4 operatorsareeasilyseentohaveabsolutelyintegrablecharac- (cid:32) (q−r)TΓ (q−r) i (cid:33) teristicfunctions. However, wedonotcurrentlyknowifthis × exp − B − rTΣq . 4 2 isgenerallytrue. Thiscanbeexpressedmorecompactlyusingasinglematrix AppendixC:GaussianintegralsandtheSchurcomplement (cid:90) χ (q) ∝ exp(−(q,r)TM(q,r)/4)dr, (C8) AB The product of two operators, e.g., ρΠ has a characteris- tic function that equals an integral involving the characteris- whereM istheBlockmatrix ticfunctionsforρandΠasexpressedbyEq.(15)ofthelet- ter. Furthermore, for Gaussian states this integral is solved (cid:18) Γ −Γ (cid:19) M = B B . (C9) bytakingtheSchurcomplementofanappropriatematrix(see 2iΣ−Γ Γ +Γ B A B Eq.(16)oftheletter). Thesetechniquesarestandard,butfor thepurposeofcompletenessweshallreviewthemhere. ObservingthatrΣq=−qΣrallowsexplicitsymmetrization, As a side remark, note that an alternative strategy to- wards formulating generalized quantum central limit the- (cid:18) Γ −Γ −iΣ(cid:19) M = B B , (C10) orems would have been to consider objects of the form iΣ−Γ Γ +Γ B A B Π1/2ρΠ1/2/tr(Πρ) instead of Πρ/tr(Πρ). While this con- stitutes an alternative in principle, the resulting Schur com- suchthatnowM = MT. TheSchurcomplementsarisesby plementexpressionsbecomemuchmoreinvolved,motivating decomposingthematrixasM =NDNT,with thepathtakenabove. WebeginbynotingthatforanytraceclassoperatorA,the (cid:18)Sc(M) 0 (cid:19) formula for the characteristic function can be inverted such D = 0 Γ +Γ , (C11) A B that (cid:18)1l −(Γ +iΣ)(Γ +Γ )−1 (cid:19) (cid:90) N = A A B , (C12) 0 1l A∝ drχ (r)D(−r). (C1) A whereSc(M)denotestheSchurcomplementofM, Hence,theproductoftwooperatorssatisfies (cid:90) (cid:90) Sc(M)=Γ −(Γ +iΣ)(Γ +Γ )−1(Γ −iΣ). (C13) B B A B B AB ∝ drdr(cid:48)χ (r)χ (r(cid:48))D(−r)D(−r(cid:48)). (C2) A B This decomposition requires only that M is symmetric and TheCampbell-Baker-Haussdorfformulaentailsthat thatΓA+ΓBisinvertible.ReturningtoourGaussianintegral, achangeofvariables(q,r)NT (cid:55)→(q,r)gives D(−r)D(−r(cid:48))=D(−(r+r(cid:48)))exp(−irTΣr(cid:48)/2), (C3) (cid:90) andso χAB(q) ∝ exp(−(q,r)TD(q,r)/4)dr, (C14) (cid:90) AB ∝ drdr(cid:48)χA(r)χB(r(cid:48))D(−(r+r(cid:48)))exp(−irTΣr(cid:48)/2). andsotheqandrvariablesdecouple,andtheintegralevalu- atestosomenumberand (C4) Changingvariablestoq=r+r(cid:48)andr=ryields, χ (q) ∝ exp(−qTSc(M)q/4)dr. (C15) AB (cid:90) i AB ∝ drdqχ (r)χ (q−r)D(−q)exp(− rTΣ(q−r)). A B 2 Hence,wehavethatΓAB =Sc(M). BysubstitutinginΓA = (C5) Γ andΓ =Γ weobtainEq.(16)oftheletter. ρ∞ B Π 8 AppendixD:Notionsofweakconvergence Cx,y. The exact value of these numbers are unimportant to u,v ushere.Wesubstitutethisexpressionfortheconjugatedanni- Here we briefly discuss technicalities related to notions of hilation/creationoperatorsintothatforαnx,+y1. Evaluatingthe weakconvergenceversusconvergenceintrace-norm.Interest- trace,wereplacetheoperatorsontherighthandsidewiththe ingly,thesedifferentnotionscanhaveaphysicalimplication. variablesoftheformαnu,v andarriveatthedesiredformula. While in many experimentally relevant examples the condi- tions of Thm. (2) of the letter are satisfied, one can concoct AppendixF:Tracenormconvergence exotic instances for which strong convergence fails. For ex- ample,ifweconsiderthe2-modestatevector Here we give our own version of the well known proof of |ψ (cid:105)∝|0,0(cid:105)+0.1|1,1(cid:105)+6|2,2(cid:105) (D1) tracenormconvergenceofρ toρ frompoint-wiseconver- 0 n ∞ gence of the density matrix elements. First we note that for and apply the GP protocol, then Thm. (2) of the letter holds any (cid:15) > 0 there exists a projector P of finite rank that com- foratargetGaussian mutes with Π, such that tr(Pρ ) > 1 − (cid:15). It is useful to ∞ (cid:80) denote P = |x(cid:105)(cid:104)x| where X is a finite set of eigen- (cid:88) x∈X |ψ (cid:105)∝ (1/10)n|n,n(cid:105). (D2) vectorsofΠ. Furthermore,wecanfindann suchthatforall ∞ (cid:15) n n>n(cid:15)wealsohave However, once correctly normalized, straightforward numer- tr(Pρ )−tr(Pρ )<(cid:15). (F1) ∞ n ics show the state diverges with fidelity (cid:104)ψ |ψ (cid:105) vanishing n ∞ with n. This highlights the importance of proving more ro- Combiningthiswithtr(Pρ )>1−(cid:15),gives ∞ bustconvergenceresults. Strongerconvergencehasonlybeen establishedforEP,wheretriviallytr(ρnΠ) = tr(ρ∞Π)since tr(Pρn)>1−2(cid:15). (F2) Π=1l. Onatheoreticallevel,itiscompellingtoaskwhatthe Next we observe that the trace norm can be bounded as fol- necessaryandsufficientconditionsareforstrongconvergence lows, ofGG. ||ρ −ρ || n ∞ 1 = ||(P(ρ −ρ )P +(ρ −Pρ P)−(ρ −Pρ P)|| n ∞ n n ∞ ∞ 1 AppendixE:Iterativeformula ≤ ||P(ρ −ρ )P|| +||ρ −Pρ P|| n ∞ 1 n n 1 +||ρ −Pρ P|| ∞ ∞ 1 Here we go through the details of the iterative formula of (F3) Eq. (19). For brevity, we assume Π is diagonal in the Fock Letusconsiderthefirstterm,whichsatisfies basis, and so V = 1l, though the more general case can be (cid:88) provenbythesamemethodbutmoreclutterednotation. For ||P(ρ −ρ )P|| ≤ |(cid:104)y|ρ |x(cid:105)−(cid:104)y|ρ |x(cid:105)|. (F4) n ∞ 1 n ∞ the(n+1)throundwehavethatthestatesatisfies x,y∈X tr2[U(ρ ⊗ρ )U†(Π⊗Π)] Byourpreviouslyestablishedresults,foreverypair|x(cid:105),|y(cid:105)∈ σx,y = n n n+1 tr[U(ρn⊗ρn)U†(Π⊗Π)] X,thereexistsann(cid:15),x,y suchthatforalln>n(cid:15),x,y,wehave = tr2[U(ρn⊗ρn)U†(Π⊗Π)] |(cid:104)y|ρn|x(cid:105)−(cid:104)y|ρ∞|x(cid:105)|<(cid:15)/|X|2 (F5) tr[ρ Π]2 n Hence,foralln>n∗wheren∗=max{n ,n }wehave (cid:15),x,y (cid:15) andsotheexpectationvaluessatisfy ||P(ρ −ρ )P|| <(cid:15). (F6) tr[(⊗ aˆxk)†(⊗ aˆyj )U(ρ ⊗ρ )U†(Π⊗Π)] n ∞ 1 αnx,+y1 = k k,1 j jt,1r[ρ Π]n2 n WenextconsiderthethirdtermofEq.(F3),notingthat n = tr[U†(⊗kaˆxk,k1)†(⊗jaˆyj,j1)U(σn⊗σn)]. ||ρ∞−Pρ∞P||1 ≤ 2||Pρ∞(1−P)||1, (F7) +||(1−P)ρ (1−P)|| . Next we must find the effect of conjugating the unitary ∞ 1 throughtheannihilation/creationoperators. The later term is simply ||(1−P)ρ (1−P)|| = tr((1− ∞ 1 P)ρ )<(cid:15). Sinceρ isHermitianandpositivewededuce U†(⊗ aˆxk)†(⊗ aˆyj )U ∞ ∞ k k,1 j j,1 =(cid:16)⊗m (cid:16)aˆk,1√+aˆk,2(cid:17)xk(cid:17)†(cid:16)⊗m (cid:16)aˆj,1√+aˆj,2(cid:17)yj(cid:17) ||Pρ∞(1−P)||1 ≤ (cid:112)||Pρ∞P||1||(1−P)ρ∞(1−P)||1, k=1 2 j=1 2 =(cid:80)Cux,,vy(⊗kaˆuk,k1)(⊗kaˆxk,k2−uk)(⊗jaˆvj,j2)(⊗jaˆjy,j2−vj) which easily shown to be an equality when ρ∞ is pure, with the inequality following for mixed states. Noting where in the last line we have simply n√oted that all the bi- ||Pρ∞P||1 ≤1andagain||(1−P)ρ∞(1−P)||1 <(cid:15)gives nomial factors and contributions of 1/ 2 are non-negative √ and real numbers, and so sum to a non-negative number ||Pρ (1−P)|| < (cid:15), ∞ 1 9 andso Hence, for any desired trace norm accuracy, and hence also √ fidelity,therealwaysexistsanumberofiterations,n∗,above ||ρ∞−Pρ∞P||1 < 2 (cid:15)+(cid:15). (F8) whichtheprotocolachievesthisaccuracy. Byasimilarargumentwecanalsoshowthatforalln>n , (cid:15) √ ||ρ −Pρ P|| < 2(cid:15)+2(cid:15). (F9) n n 1 Puttingthesepiecestogetherentailsthatforalln>n∗, √ √ ||ρ −ρ || <4(cid:15)+(2+ 2) (cid:15). (F10) n ∞ 1 [1] C.H.Bennett,G.Brassard,S.Popescu,B.Schumacher,J.A. J.Fiurasek, andR.Schnabel, arXiv:1007.1508; J.Wenger, R. Smolin,andW.K.Wootters,Phys.Rev.Lett.76,722(1996). Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 [2] W.Du¨r,H.J.Briegel,J.I.Cirac,andP.Zoller,Phys.Rev.A59, (2004). 169(1999);L.Childress,J.M.Taylor,A.S.Sørensen,andM. [8] J.Fiurasek,Phys.Rev.A82,042331(2010). D.Lukin,Phys.Rev.A72,052330(2005). [9] U.Leonhardt,Measuringthequantumstateoflight(Cambridge [3] P.vanLoocketal.,Phys.Rev.Lett.96,240501(2006). UniversityPress,1997). [4] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. [10] M.M. Wolf, G. Giedke, and J. I. Cirac, Phys. Rev. Lett. 96, Mod.Phys.83,33(2011);N.Sangouard,C.Simon,N.Gisin, 080502(2006). J.Laurat,R.Tualle-Brouri,andP.Grangier,J.Opt.Soc.Am.B [11] C.D.CushenandR.L.Hudson,J.Appl.Prob.8,454(1971). 27,A137(2010);R.Kaltenbaek,R.Prevedel,M.Aspelmeyer, [12] E. B. Davies, Commun. Math. Phys. 15, 277 (1969); E. B. andA.Zeilinger,Phys.Rev.A79,040302(R)(2009). Davies,Commun.Math.Phys.27,309(1972). [5] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89, [13] M.CramerandJ.Eisert,NewJ.Phys.12,055020(2010). 137903(2002);J.Fiurasek,ibid.89,137904(2002);G.Giedke [14] P.A.Moran,Anintroductiontoprobabilitytheory(OxfordUni- andJ.I.Cirac,Phys.Rev.A66,032316(2002). versityPress,2002). [6] J.Eisert,D.E.Browne,S.Scheel,andM.B.Plenio,Ann.Phys. [15] R.HornandC.Johnson,Matrixanalysis(CambridgeUniver- 311,431(2004);D.E.Browne,J.Eisert,S.Scheel,andM.B. sityPress,1985). Plenio,Phys.Rev.A67,062320(2003);J.Eisert,M.B.Plenio, [16] J.Eisert,PhDthesis(Potsdam,February2001);G.VidalandR. D. E. Browne, S. Scheel, and A. Feito, Opt. Spec. 103, 173 F.Werner,Phys.Rev.A65,032314(2002);M.B.Plenio,Phys. (2007). Rev.Lett.95,090503(2005). [7] B. Hage, A. Samblowski, J. DiGuglielmo, A. Franzen, J. Fi- [17] M.Ohliger,K.Kieling,andJ.Eisert,Phys.Rev.A82,042336 urasek,andR.Schnabel,NaturePhys.4,915(2008);R.Dong (2010). etal.,NaturePhys.4,919(2008); H.Takahashietal.,Nature Phot.4,178(2010);B.Hage,A.Samblowski,J.DiGuglielmo,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.