ebook img

Gaussian-type upper bound for the evolution kernels on nilpotent meta-abelian groups PDF

25 Pages·2015·0.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gaussian-type upper bound for the evolution kernels on nilpotent meta-abelian groups

Positivity(2016)20:257–281 Positivity DOI10.1007/s11117-015-0353-5 Gaussian-type upper bound for the evolution kernels on nilpotent meta-abelian groups RichardPenney1 · RomanUrban2 Received:6May2013/Accepted:6July2015/Publishedonline:5August2015 ©TheAuthor(s)2015.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract WegiveaGaussian-typeupperboundforthetransitionkernelsofthetime- inhomogeneousdiffusionprocessesonanilpotentmeta-abelianLiegroupNgenerated by the family of time dependent second order left-invariant differential operators. These evolution kernels are related to the heat kernel for the left-invariant second orderdifferentialoperatorsonhigherrank NAgroups. Keywords Left invariant differential operators · Time-dependent parabolic opearators·Brownianmotion·Evolutionkernel·Diffusionprocess·Meta-abelian nilpotentLiegroups·Borell–TISinequality Mathematics Subject Classification 43A85 · 31B05 · 22E25 · 22E30 · 60J25 · 60J60 1 Introduction Time-dependent parabolic equations and, in particular, the problem of finding the upper and lower bounds for their fundamental solutions has attracted considerable attentioninrecentyears(seee.g.[5,12–15,31]andthemonographsbyStroockand Varadhan [27], and van Casteren [4]). The aim of this paper is to get a Gaussian- B RomanUrban [email protected];[email protected] RichardPenney [email protected] 1 DepartmentofMathematics,PurdueUniversity,150N.UniversitySt,WestLafayette,IN47907, USA 2 InstituteofMathematics,WroclawUniversity,PlacGrunwaldzki2/4,50-384Wrocław,Poland 258 R.Penney,R.Urban type upper bound for the transition kernel of a particular kind of diffusion process (evolution)onanilpotentmeta-abeliangroup N.Thetypeoftheevolutionequation consideredherecomesfromthestudyoftheheatequationonaclassofsolvableLie groups,thesocalledhigherrank NAgroupswhichare,bydefinition,thesemi-direct productsofanilpotentandabelian(withdimensiongreaterthan1)groups(moreon thatinSect.1.4). 1.1 Oursetting Inwhatfollowsweassumethatthegroup N ismeta-abelian N = M (cid:2)V, where M andV areabelianLiegroupswiththecorrespondingLiealgebrasmandv. Weconsiderafamilyofautomorphisms{(cid:2)(a)}a∈Rkofn,thatleavesmandvinvariant, where a (cid:3)→ (cid:2)(a) is a homomorphism of Rk into Aut(n). Let m and v be spanned, respectively, by {Y ,...,Y } and {X ,...,X }. We use these bases to identify m 1 d1 1 d2 andvwithRd1 andRd2 respectively.Wealsousetheexponentialmappingtoidentify M andV withmandvandthuswithRd1 andRd2 respectively.Forx ∈ N wewrite x =m(x)v(x)=mv =(m,v)wherem(x)=m ∈ M andv(x)=v ∈ V denotethe componentsofx in M (cid:2)V. Now we consider the action of an Lie abelian group A = Rk on N. We have a semi-directproduct S = N (cid:2) A= N (cid:2)Rk withthemultiplicationinSgivenby (x,a)(y,b)=(xya,a+b), where,forx =expX, X ∈n,theactionofa ∈ A=expA=Rk on N isdefinedas xa =exp((cid:2)(a)X). Thegroup S isasolvableLiegroup.Therankof S is,bydefinition,equaltodimA. Similarly,forg ∈ Swewriteg = x(g)a(g)= xa =(x,a),wherex(g)= x ∈ Nand a(g)=a ∈ AdenotethecomponentsofginN (cid:2)A.Inwhatfollowsweidentifythe group A,itsLiealgebraa,anda∗,thespaceoflinearformsona,withtheEuclidean space Rk endowed with the usual scalar product (cid:6)·,·(cid:7) and the corresponding norm (cid:8)a(cid:8)=(cid:6)a,a(cid:7)1/2.By(cid:8)·(cid:8)∞wedenotethemaximumnorm(cid:8)a(cid:8)∞ =max1≤j≤k|aj|. Letσ beacontinuousfunctionfrom[0,+∞)to A=Rk,anddenote (cid:2)σ(t)=(cid:2)(σ(t)). Weassumealsothat ((AA12)) itnhethrees{tYriic}t1i≤oni≤Sd1σboafsi(cid:2)sσontomM,adcoXnissidloerweedratsriaanlginuelaarrfooprearalltoXro∈nvmanisdgivenin the{Yi}1≤i≤d1 basisbyad1×d1lowertriangularmatrix: Sσ(t)=(cid:2)σ(t)|M =[siσj]1≤i,j≤d1. Gaussian-typeupperboundfortheevolution… 259 Specifically,fori ≥ j, sσ(u)=hM(σ(u))eξj(σ(u)), ij ij wherehM ∈ R[a ,...,a ]arepolynomialsina ∈ A = Rk withhM = 1,for ij 1 k jj 1≤ j ≤d ,andξ ,...,ξ ∈ A∗ =(Rk)∗. 1 1 d1 (A3) Thematrix Tσ(t)=(cid:2)σ(t)|V =[tiσj]1≤i,j≤d2 isad ×d lowertriangularand,fori ≥ j, 2 2 tσ(u)=hV(σ(u))eϑj(σ(u)), ij ij wherehV ∈ R[a ,...,a ]arepolynomialsina ∈ A = Rk withhV = 1,for ij 1 k jj 1≤ j ≤d ,andϑ ,...,ϑ ∈ A∗ =(Rk)∗. 2 1 d2 1.2 Evolutionkernel Let,for Z ∈n, Z(t)=(cid:2)σ(t)Z. Let, (cid:2)d2 (cid:2)d1 Lσ(t)= X (t)2+ Y (t)2. N i j i=1 j=1 NowweconsidertheevolutionprocessgeneratedbyLσ(t).ByC(N)wedenote N thesetofconinuousfunctionson N.Let (cid:3) (cid:4) C∞(N)= f ∈C(N): lim f(x)exists . x→∞ Letd = dimn.For X ∈ n,welet X˜ denotethecorrespondingright-invariantvector field.Foramulti-index I = (i ,...,i ),i ∈ Z+ andabasis X ,...,X oftheLie 1 d j 1 d algebranwewrite XI = Xi1,...,Xid.Forκ,(cid:7)=0,1,2,...,∞wedefine 1 m C(κ,(cid:7))(N)={f : X˜IXJ f ∈C∞(N) forevery|I|<κ +1and|J|<(cid:7)+1} and (cid:8)f(cid:8)0(κ,(cid:7)) = sup (cid:8)X˜IXJ f(cid:8)∞, |I|=κ,|J|=(cid:7) (cid:8)f(cid:8)(κ,(cid:7)) = sup (cid:8)X˜IXJ f(cid:8)∞. |I|≤κ,|J|≤(cid:7) 260 R.Penney,R.Urban In particular C(0,2)(N) with the norm (cid:8)f(cid:8)(0,2) is a Banach space. It is known (see σ [4,19,28])thatthereexiststhe(unique)familyofboundedoperatorsUs,tonC∞which satisfies (i) Usσ,s =Id,foralls ≥0, (ii) limh→0Usσ,s+h f = f inC∞(N), (iii) Usσ,rUrσ,t =Usσ,t,0≤s ≤r ≤t, (iv) ∂sUsσ,t f =−LσN(s)Usσ,t f forevery f ∈C(0,2)(N), (v) ∂tUsσ,t f =Usσ,tLσN(t)f forevery f ∈C(0,2)(N), (vi) Usσ,t: C(0,2)(N)→C(0,2)(N)foralls ≤t. The family Usσ,t is called the evolution generated by LσN(t). By Ptσ,s we denote the correspondingkernel (cid:5) Uσ f(x)= Pσ (x;y)f(y)dy. s,t t,s N SinceLσN(t)commuteswithlefttranslation,thesameistrueforUsσ,t.Hence, Pσ (x;y)= Pσ (e;x−1y). t,s t,s Withasmallabuseofnotationwewrite Pσ (x)= Pσ (e;x). t,s t,s σ Hence,theoperatorUs,t isaconvolutionoperatorwithaprobabilitymeasure(witha smoothdensity) Ptσ,s, Uσ f = f ∗ Pσ . s,t t,s Wecall Ptσ,s(x)or Ptσ,s(x;y)theevolutionkernel.Sometimes Ptσ,s(x;y)iscalledthe transitionkernelsinceinprobabilisticterms Ptσ,s(x;y)isthetransitionkernelforthe time-dependent Markov process (or evolution), ω(t), on N defined by the operator Lσ(t). Probability that starting from x at time s the proces ω(t) is in a given set N B ⊂ N is (cid:5) Ps,x(ω(t)∈ B)= Ptσ,s(x;y)dy. B By(iii),fors ≤r ≤t, Pσ ∗ Pσ = Pσ . t,r r,s t,s Gaussian-typeupperboundfortheevolution… 261 1.3 Mainresult Our aim is to estimate the evolution kernel Ptσ,s. In order to do this, first we disin- tegratetheprocessω(t)intothecorrespondingprocesseson M and V respectively. Specifically,let (cid:2)d1 (cid:2)d2 Lσ (t)= Y (t)2 and Lσ(t)= X (t)2 (1.1) M j V j j=1 j=1 thoughtofasoperatorson M andV respectively. Forv ∈ V,let (cid:2)d1 Lσ (t)v = (Ad(v)Y (t))2. (1.2) M j j=1 ThentheoperatorLσ(t)istheskew-productoftheabovedefinedoperators,i.e., N LσN(t)f(m,v)=LσV(t)f(m,·)|v +LσM(t)vf(·,v)|m, t ∈R+. Thetime-dependentfamilyofoperatorsLσ(t)givesrisetoanevolutiononV =Rd2 V that is described by a kernel PtV,s,σ which may be explicitly computed, since V is abelian.Forη∈C∞([0,+∞),V)let (cid:2)d1 Lσ (t)η = (Ad(η(t))Y (t))2. M j j=1 Thisfamilyofoperatorsgivesrisetoanevolutionon M =Rd1 thatisdescribedbya M,σ,η kernel Pt,s whichmayalsobeexplicitlycomputed(seeSect.4). σ Oneofourmaintoolsisthefollowingskew-productformulafor Pt,s (whichcan beprovedalongthelinesof[23,Theorem1.2],wherediagonalactionof AonN was considered). Theorem1.1 Form ∈ M andv ∈ V, (cid:5) Pσ (m,v;m(cid:13),v(cid:13))f(m(cid:13),v(cid:13))dm(cid:13)dv(cid:13) t,s N (cid:5) (cid:5) (cid:6) (cid:7) = PtM,s,σ,η(m;m(cid:13))f m(cid:13),η(t) dm(cid:13)dWsV,,vσ(η) M whereWsV,,vσ istheprobabilitymeasureonthespaceC([s,+∞),V)generatedbythe diffusionprocessη(t)startingfromv ∈ V attimes,withthegeneratorLσ(t). V A difficulty in applying the above formula is that the process η(t) does not have independentcoordinates.ThisdifficultyisovercomewiththehelpofProposition3.1 262 R.Penney,R.Urban whichgivestheestimateforthejointprobabilityofsupu∈[s,t](cid:8)η(u)(cid:8)∞andtheposition oftheprocessηattimet,i.e.,η(t).Thismakesallthecomputationquiteinvolved. In order to state our main theorem we need to introduce some notation. Let, for 1≤ j ≤d , 2 V (τ,t)= max(Aσ(τ,s)− Aσ(τ,s)Aσ(τ,t)−1Aσ(τ,s)) , (1.3) j s∈[τ,t] V V V V jj where (cid:5) s Aσ(τ,s)=2 Tσ(u)Tσ(u)∗du. (1.4) V τ Set (cid:5) (cid:5) (cid:2) t (cid:8)d1 t S(τ,t)= |siσj(u)|2du, S(cid:12)(τ,t)= e2ξj(σ(u))du, τ τ i≥j j=1 (cid:5) (cid:5) (cid:2) t (cid:8)d2 t T(τ,t)= |tiσj(u)|2du, T(cid:12)(τ,t)= e2ϑj(σ(u))du, (1.5) τ τ i≥j j=1 (cid:2)d2 V(τ,t)= V (τ,t). j j=1 Themainresultisthefollowingestimate. Theorem1.2 Forevery T > 0 therearepositiveconstantsc ,c ,c andanatural 1 2 3 numberk suchthatforallT ≥t ≥τ ≥0andall(m,v)∈ N, o Ptσ,τ(m,v) (cid:9) (cid:10) ≤c (cid:13)˜(τ,t,v)−(cid:8)v(cid:8)∞+2exp −c2(cid:8)v(cid:8)2 − c3(cid:8)m(cid:8)2 1S(cid:12)(τ,t)1/2T(cid:12)(τ,t)1/2 T(τ,t) ((cid:13)˜(τ,t,v)+1)2koS(τ,t) (cid:11) (cid:12) +c (cid:8)m(cid:8)2k1o exp −c2(cid:8)v(cid:8)2 − c3(cid:8)m(cid:8)2 1S(cid:12)(τ,t)1/2T(cid:12)(τ,t)1/2 T(τ,t) ((cid:13)˜(τ,t,v)+1+(cid:8)m(cid:8)2k1o)2koS(τ,t) (cid:9) (cid:10) +c1S(cid:12)(τ,t)−1/2T(cid:12)(τ,t)−1/2V(τ,t)1/2exp −Tc2((cid:8)τv,(cid:8)t2) − 2(cid:8)Vm((cid:8)τ1,/kto) , (1.6) where (cid:13)(τ,t,v)=sm∈[aτ,xt](cid:8)AσV(τ,s)AσV(τ,t)−1v(cid:8)∞, (1.7) and (cid:2)n (cid:13)˜(τ,t,v)=(cid:13)(τ,t,v)+C V (τ,t)1/2. (1.8) j j=1 Gaussian-typeupperboundfortheevolution… 263 Remark InSect.7wegiveexplicitestimatesforthequantities(cid:13)˜(τ,t,v)andV(τ,t). Remark GaussianestimatesinRnforthefundamentalsolutionofthetime-dependent parabolic equations are usually obtained under the assumption that the operator is (uniformly)elliptic(seee.g.classicalpapersbyAronson[2]andFabesandStroock [11]). We do not require this condition and our estimate explicitly depends on the coefficientsoftheoperator. Remark IftheactionofAonN isdiagonal,i.e.,thepolynomialsinentriesofmatrices Sσ(t)andTσ(t)[seetheassumptions(A2)and(A3)]satisfyhM =hV =0fori (cid:14)= j ij ij thenallthequantitiesappearinginTheorem1.2canbeeasilycomputed.Weget (cid:5) (cid:5) t (cid:2)d1 t V (τ,t)=2 e2ϑj(σ(u))du, S(τ,t)= e2ξj(σ(u)du j τ τ j=1 and (cid:5) (cid:2)d2 t V(τ,t)=2 e2ϑj(σ(u))du T(τ,t)=V(τ,t)/2. τ j=1 Finally, (cid:5) (cid:9)(cid:5) (cid:10) s t −1 (cid:13)(τ,t,v)= max e2ϑj(σ(u))du e2ϑj(σ(u))du (cid:8)v(cid:8)∞ =(cid:8)v(cid:8)∞. s∈[τ,t] τ τ InthissettingTheorem1.2simplifiesandweobtain[23,Theorem4.1]. 1.4 Applications SincetheestimategivenbyTheorem1.2,atfirstglance,seemstobequitetechnical andcomplicateditisworthtoexplainwhythisformulaisimportantandwhereitcan beused.Firstofalltheestimatefor Ptσ,s,givenbyTheorem1.2,canbeappliedinthe analysisofleft-invariant,second-orderdifferentialoperatorsonthehigherrank NA groups,i.e.,thesemi-directproductN(cid:2)Rkasdescribedabove(atthismomentwedo notassumethatN = M(cid:2)V).Consider,forα =(α ,...,α )∈Rk,theleft-invariant 1 k differentialoperatoroftheform (cid:2)d2 (cid:2)d1 Lα = Xj(a)2+ Yj(a)2+(cid:15)α, (1.9) j=1 j=1 where (cid:2)k (cid:15)α = (∂a2j −2αj∂aj). j=1 264 R.Penney,R.Urban Inthissettingpropertiesofboundedharmonicfunctionson S iscertainlyofinterest. Undersomeassumptiononthedriftvectorα thereexistsaPoissonkernel ν forLα [6,7].Thatis,thereisaC∞ functionν on N suchthateveryboundedLα-harmonic function F on S maybewrittenasaPoissonintegralagainstaboundedfunction f onS/A= N, (cid:5) (cid:5) F(g)= f(gx)ν(x)dx = f(x)νˇa(x−1xo)dx, g =(xo,a), S/A N where νˇa(x)=ν(a−1x−1a)χ(a)−1, whereχ isthemodularfunctionforleftinvariantHaarmeasureonS,i.e., χ(g)=det(Ad(g)). ConverselythePoissonintegralofany f ∈ L∞(N)isaboundedLα-harmonicfunc- tion. ItisknownthatthePoissonkernelν isequaltolimt→∞πN(μt),whereπN(g)= x(g) is a projection from S onto N. To get some information on μ we use a well t knownformulawhichexpressT asaskew-productofthediffusionon N and A.For t f ∈C (N ×Rk)andt ≥0, c Tt f(x,a)=EaU0σ,t f(x,σt)=Ea(f ∗N Ptσ,0)(x,σt), (1.10) where the expectation E is taken with respect to the distribution of the process σ t (Brownianmotionwithdrift)inRk generated by(cid:15)α.TheoperatorU0σ,t actsonthe firstvariableofthefunction f (asaconvolutionoperator).Theideaofsuchadecom- positiongoesbackto[16,17,29].Inthecontextof NA groupswithdimA = 1this decompositionwasusedin[7–10],andlaterwasgeneralizedbytheauthorsandapplied fordimA > 1,seee.g.[20,22].NotethatTheorem1.1isageneralizationof (1.10) toevolutionoperators. EstimatesforthePoissonkernelfortheoperator(1.9)wereobtainedbytheauthors in a series of papers [20–24]. However, in all these papers the action of A on N is diagonal.ThusTheorem1.2opensthedoortoconsidernon-diagonalactions.Thisis goingtobethesubjectofourfutureresearch. 1.5 Structureofthepaper Theoutlineoftherestofthepaperisasfollows.InSect.2westatetheformulaforthe evolutionkernelinRn andrecalltheBorel(cid:6)l–TISinequalitywhichisinSect.3use(cid:7)din theproofofanappropriateestimateforP sups∈[τ,t](cid:8)η(s)(cid:8)∞ ≥u andη(t)∈ B for u ∈Rand B ⊂Rn.InSects.4and5westudyevolutionson M andV,respectively. Finally in Sect. 6 we give the proof of Theorem 1.2 and in Sect. 7 we give some estimatesforquantietiesgivenin(1.7)and(1.8). Gaussian-typeupperboundfortheevolution… 265 2 Preliminaries 2.1 Gaussianvariablesandfields We follow the presentation in [1]. For Rn-valued random variables X and Y their covariancematrixisdefinedasCov(X,Y)=E(X −EX)(Y −EY)t.AnRn-valued random variable X is said to be multivariate Gaussian if fo(cid:13)r every non-zero α = (α ,...,α )∈Rn,therealvaluedrandomvariable(cid:6)α,X(cid:7)= n α X isGaussian. 1 n i=1 i i Inthiscasethedensityof X isgivenbythemultivariatenormaldensity (2π)−n/2(detC)−1/2e−21C−1(x−m)·(x−m), where m = EX and C = Cov(X,X) is a positive semi-definite n ×n covariance matrix.Inthiscasewewrite X ∼N (m,C)orsimply X ∼N(m,C). n Lemma2.1 Let X ∼N (m,C).Assumethatd <nandmakethepartition n X =(X1,X2)=((X1,...,Xd),(Xd+1,...,Xn)), m =(m1,m2)=((m1,...,md),(md+1,...,mn)) and (cid:14) (cid:15) C C C = 11 12 , C C 21 22 whereC isad×d-matrix.Theneach Xi ∼N(mi,C )andtheconditionaldistri- 11 ii butionof Xi given Xj isalsoGaussian,withmeanvector mi|j =mi +CijC−jj1(Xj −mj) andcovariancematrix Ci|j =Cii −CijC−jj1Cji. Proof Seee.g.[1,p.8]. (cid:16)(cid:17) A random field is a stochastic process, taking values in some space, usually in a Euclidean space, and defined over a parametric space T. A real valued Gaussian processisarandomfield f onaparameterset T forwhichthe(finitedimensional) distributionsof (f ,..., f )are multivariate Gaussianfor each 1 ≤ n < +∞ and t1 tn each(t ,...,t )∈Tn. 1 n 2.2 Gaussianinequalities Thefollowingpowerfulinequalitywasdiscoveredindependently,andwasprovedin verydifferentways,byBorell[3]andTsirelsonetal.[30].Following[1]wecallthe followinginequalityBorell–TISinequality. 266 R.Penney,R.Urban Theorem2.2 (Borell–TISinequality) Let f beacenteredGaussianprocess,almost t surelyboundedonT.Write|f|T =supt∈T ft.ThenE|f|T <+∞and,forallu >0, P(|f|T −E|f|T >u)≤e−u2/2σT2, where σ2 =supEf2. T t t∈T Proof Fortheproofseetheoriginalpapers[3,30]or[1]. (cid:16)(cid:17) Immediately,wegetthefollowing Corollary2.3 Let f beacenteredGaussianprocess,almostsurelyboundedon T. t Thenforallu >E|f| , T P(|f|T >u)≤e−(u−E|f|T)2/2σT2. 2.3 EvolutionequationinRn Let (cid:2)n (cid:2)n 1 L(t)= a (t)∂ ∂ + δ (t)∂ , (2.1) ij i j j j 2 i,j=1 j=1 where∂ =∂ anda(t)=[a (t)]isasymmetric,positivedefinitematrixandthea i xi ij ij andδj belongtoC([0,∞),R).Fors > t,let Pt,s betheevolutionkernelgenerated by L(t).Let,for1≤i, j ≤n, (cid:16)(cid:5) (cid:17) t As,t =[Aij(s,t)]= aij(u)du , (cid:16)(cid:5)s (cid:17) t Ds,t =[Dj(s,t)]= δj(u)du . (2.2) s Proposition2.4 TheevolutionkernelPt,scorrespondingtotheoperatorL(t)defined in(2.1)isgivenby Pt,s(x)=(2π)−n2(detAs,t)−21e−12(A−s,t1(x−Ds,t))·(x−Ds,t). Proof Seee.g.[23,Proposition2.9] (cid:16)(cid:17) 3 Mainprobabilisticestimate Consider the operator L(t), defined in (2.1), without the drift vector δ(t) = (δ (t),...,δ (t)),i.e, 1 n

Description:
inhomogeneous diffusion processes on a nilpotent meta-abelian Lie group N generated by the family of Department of Mathematics, Purdue University, 150 N. University St, West Lafayette, IN 47907,. USA. 2 .. analysis of left-invariant, second-order differential operators on the higher rank N A group
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.