ebook img

Gauge-Fixing and Residual Symmetries in Gauge/Gravity Theories with Extra Dimensions PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gauge-Fixing and Residual Symmetries in Gauge/Gravity Theories with Extra Dimensions

KOBE-TH-07-09 Gauge-FixingandResidual Symmetries inGauge/GravityTheories withExtra Dimensions C. S.Lim,1, TomoakiNagasawa,2,† SatoshiOhya,3,‡ KazukiSakamoto,3,§ andMakotoSakamoto1,¶ ∗ 1Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan 2Anan National College of Technology, 265 Aoki, Minobayashi, Anan 774-0017, Japan 3Graduate School of Science, KobeUniversity, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan (Dated:February2,2008) Westudycompactifiedpuregauge/gravitationaltheorieswithgauge-fixingtermsandshowthatthesetheories possessquantum mechanical SUSY-likesymmetriesbetween unphysical degreesof freedom. Theseresidual symmetriesareglobalsymmetriesandgeneratedbyquantummechanicalN =2supercharges. Also,wees- tablishnewone-parameterfamilyofgaugechoicesforhigher-dimensionalgravity,andcalculateasacheckof itsvalidityonegravitonexchangeamplitudeinthelowesttree-levelapproximation. Weconfirmthattheresult isindeedx -independent andthecancellationofthex -dependenceisensuredbytheresidualsymmetries. We alsogiveasimpleinterpretationofthevDVZ-discontinuity,whicharisesinthelowesttree-levelapproximation, 8 fromthesupersymmetricpointofview. 0 0 PACSnumbers:11.30.Pb,11.10.Kk 2 n a I. INTRODUCTION KK-mode has its own superpartner. These functions are de- J fined as eigenfunctions of 2 2 matrix super-Hamiltonian. 6 Therefore it can be explained×that nth KK-mode of the 4d One of the salient features in compactified higher- component of the gauge field can absorb as its longitudinal ] dimensional field theories is the geometric “Higgs” mecha- h degreesoffreedomitspartnernthKK-modeoftheextracom- nismresultingfromthedimensionalreduction. Ifgaugepar- t ponentof the field, andthen nth gaugebosonbecomesmas- - ticles can propagate to extra dimensions, the corresponding p sive. higher-dimensionalgauge fields should be decomposed into e In ordinary spontaneously broken gauge theories such as h normal modes of extra dimensions and then, from the four- [ dimensionalpointofview, theycanberecastintoaninfinite the Abelian Higgs model, if we work in the Rx gauge it is inevitabletointroducethefictitiousparticles,i.e. thewould- towerofmassivegaugebosonswhoselongitudinaldegreeof 1 beNambu-Goldstone(NG)bosons,soastomaintaintheuni- freedomisprovidedbyabsorbingoneofextraspatialcompo- v tarity of the S-matrix. The scalar componentof the massive 5 nentsofthefield. Thisgaugebosonmassgenerationisreal- gaugefield,thewould-beNGboson,theFaddeev-Popov(FP) 4 izedwithoutinvokinganyscalarHiggsfields;itisessentially ghostandtheantiFPghostareallindegeneratewiththesame 8 geometricalin nature. It also occursin compactifiedhigher- 0 dimensionalgravitytheoriesthesamemassgenerationmech- mass-squaredx m2. These spuriousdegreesof freedomcon- . sistofamultiplet,knownastheBRS quartet[9], anddonot 1 anismwithoutinvokinganyfundamentalHiggsfields. There, contributetothephysicalamplitudebycancelingeachother, 0 itseemsthatthereisnoexplicitsymmetrybreaking.However, andthentheunitarityoftheS-matrixismaintained. 8 itwasshownintheKaluza-Klein(KK)theorythatthespon- 0 However,thereisnosuchscalarHiggsfieldsinpuregauge taneous symmetry breaking certainly occurs [1, 2, 3, 4, 5]: : theory with extra compact dimensions, nor in compactified v thereexistsaninfinite-dimensionalKac-Moody-likesymme- i tryatthe4dLagrangianlevel,butitisbrokendowntothe4d higher-dimensionalpure gravity. Thus the unphysicalpolar- X izationstatesofhigher-dimensionalgauge/gravitationalfields translation and internal U(1) symmetry by the vacuum con- r figurationM4 S1,andthenthenon-zerogravitonmodesbe- must be canceled among themselves. Furthermore, in order a × to realize this cancellation these spurious degrees of free- comemassive.Thoughitwouldbethebesttodescribethege- dom must be in degenerate with the same gauge-dependent ometric“Higgs”mechanismbytheargumentalongthisline, mass-squared. In view of this, we have to guaranteeat least itseemstobehardtoextendtheanalysistoothermorecom- two things: the first is the same number of degrees of free- plicatedcompactifiedgravitytheories. Itislessobvioussuch domfortheunphysicalcomponentsof4dgauge/gravitational analysisisapplicabletocompactifiedgaugetheories. field and the would-be NG bosons. These degrees of free- Recently,analternativeviewofthismassgenerationmech- dom have to appear in pairs. The second is the degeneracy anism is given by [6, 8]: it is best described by using the of mass, that is, the same x -dependentpole of the propaga- hiddenquantummechanicalsupersymmetryin4dmassspec- tors between these pairs. In view of this, it is sufficient to trum. Thepointisthatmasseigenfunctionforeachnon-zero considerpuregauge/gravitationaltheoriesuptoquadraticor- der and computethe propagatorsin Rx gauges. It should be notedatthisstagethat,fromtheknowledgeofthesupersym- metricstructureinthe4dmassspectrum,themassmatricesof ∗Electronicaddress:[email protected] thesepairsshouldbegivenbytheN =2super-Hamiltonians. †Electronicaddress:[email protected] Therefore it is reasonable to expect that these free field the- ‡Electronicaddress:[email protected] §Electronicaddress:[email protected] ories would be invariant under some SUSY-like transforma- ¶Electronicaddress:[email protected] tionsgeneratedbysuperchargestorotatetheseunphysicalde- 2 grees of freedomwith differentspins. This is the main sub- Theactionweconsideris ject of this paper. We study the compactified pure Abelian 1 gauge theory and pure gravity to quadratic order of gravita- S= d4x dDy√ G GMKGNLF F , (2) MN KL tionalfluctuations. We showthatthesefreefieldtheoriesex- ZM4 ZK − (cid:26)−4 (cid:27) hibit residual global SUSY-like symmetries between the un- whereF =¶ A ¶ A andG=det(G )(= g). The physicalcomponentsof4dgauge/gravitationalfieldsandthe MN M N− N M MN − actionisinvariantundertheU(1)gaugetransformation would-beNambu-Goldstonebosons,whichareoneoftheex- twraesepsatacbelicsohmnpeowneRnxtsgoafutgheeshinigfihvere--ddiimmeennssiioonnaallfigerladvsi.tyA. lWsoe, AM(x,y)7→A′M(x,y)=AM(x,y)+¶ Me (x,y), (3) checkitsvaliditybycomputingthelowesttree-levelgraviton wheree isanarbitraryfunction.Forthefollowingdiscussion exchangeamplitude. Ofcoursetheresultdoesnotdependon itishighlyconvenienttousetheelegantmathematicaltoolof thegaugeparameterx . Notethatwewillnotarguewithuni- thedifferentialforms.NoticethatontheD-dimensionalmani- tarityboundsofsomespecificmodelsasdiscussedin[10,11]. foldK,Am andAibehaveasascalarandvectorfieldssuchthat Inthispaperwewillrestrictourselvestofreefieldtheories. they can be regardedas 0-formsand a 1-form on K, respec- The rest of this paper is organized as follows. In Sec- tively.Forfurtherdiscussionitisalsoconvenienttointroduce tion II we study the pure Abelian gauge theory with extra theinnerproductofdifferentialformsonthemanifoldK. The D-dimensions compactified on a Riemannian manifold and innerproductoftwok-formsonK isdefinedby show that in the Rx gaugethe scalar componentof the four- dimensionalgaugefieldandthewould-bescalarNGbosonare w (k),h (k) := w (k) h (k)= dDy√g 1w (k)gIJh (k), in degeneratewith the same gauge-dependentmass-squared, K ∧∗ K k! I J and they form a multiplet under the SUSY-like transforma- (cid:0) (cid:1) Z Z (4) tion generated by the supercharge found in the analysis of where istheHodgestaroperatorand ∗ the 4d mass spectrum. In Section III we extendthe analysis 1 1 to five-dimensionalgravity with the Randall-Sundrumback- w (k):= w (k) dyi1 dyik =: w (k)dyI, (5a) ground and obtain the similar results. In this section we es- k! i1···ik ∧···∧ k! I tablishtheone-parameterfamilyofgaugechoicesanalogous gIJ :=gi1j1 gikjk. (5b) ··· totheRx gaugeinspontaneouslybrokengaugetheories.Asa I and J denote k-tuples of indices. With this definition, (2) checkofvalidityofthisRx gauge,wecomputetheonegravi- and(3)canbewrittenasthefollowingform: tonexchangeamplitudeinthelowesttree-levelandshowthat the result is indeedx -independent. From the resultobtained S= d4xL , (6a) by this computation, we give a simple interpretation of the K M4 Z appearance of the van Dam-Veltman-Zakharov(vDVZ) dis- 1 1 continuityfromsupersymmetricviewpoint. Sinceitseemsto LK = Fmn ,Fmn ¶ m A(1) dAm ,¶ m A(1) dAm −4 −2 − − beunfamiliartoparticletheorists,wedevoteAppendixAtoa briefreviewofthevDVZ-discontinuity. WeconcludeinSec- 1(cid:0)dA(1),dA(cid:1)(1) , (cid:0) ((cid:1)6b) −2 tionV. (cid:0) (cid:1) and II. PUREABELIANGAUGETHEORYWITHEXTRA Am A′m =Am +¶ m e , (7a) 7→ DIMENSIONS A(1) A(1) =A(1)+de , (7b) ′ 7→ Inthissectionwe showthatanycompactifiedpureAbelin whereA(1)=Adyiandd=dyi¶ . i i gaugetheoriesintrinsicallypossesshiddenquantummechan- Toclarifythesupersymmetricstructure,wewillfollowthe ical SUSY-like symmetry between a scalar component of methodofref.[6]. TheHodgedecompositiontheoremtellsus 4d gauge field and one of scalar components of higher- that any k-form on K can be uniquely decomposed into the dimensional gauge field, which should be regarded as a sumoftheharmonick-form,theexactk-formandthecoexact would-bescalarNGboson. k-form on K. Noting that there is no exact 0-form, we can LetusconsiderthepureAbeliangaugetheorywithextraD- write dimensionscompactifiedon a RiemannianmanifoldK with- outboundary.Wedenotethe(4+D)-dimensionalgaugefield A(m0)=Am ,0(x)h (0)+(cid:229) Am ,n(x)w n(0), (8a) byAMm (x,y)= Am (x,y),Ai(x,y) (m =0,1,2,3;i=5,···,D+ n6=0 4), x are the coordinates of the ordinary four-dimensional A(1)=j +h+F Minkowskispa(cid:0)cetimeM4andyi(cid:1)arethecoordinatesofK.The bulkmetricisgivenby =(cid:229)b1 j (x)h (1)+(cid:229) h (x)f (1)+ (cid:229) F (x)w (1), (8b) ds2=GMNdxMdxN =h mn dxm dxn +gij(y)dyidyj, (1) i=1 i i n6=0 n n n′6=0 n′ n′ where h mn is the flat spacetime metric whose signature is where h (0) = KdDy√g −1/2 and b1 is the first Betti num- ( ,+,+,+). ber. Aswe shallseeimmediately,b givesthenumberof4d − (cid:2)R (cid:3) 1 3 massless scalar bosons, which are identified as Higgs fields d h =m(0)e and the others are equal to zero. Hence, from n n n inthegauge-Higgsunificationscenario. Forexample,b1=1 thehigher-dimensionalgaugeinvariantpointofview,hnhasto for K =S1, b1 =0 for K =S2, b1 = n1 =n for K =Tn = appeartoLK inthecombinationAm ,n (1/m(n0))¶ m hn,which S1 S1(Ku¨nnethformula),etc. is realized in (13) as it should be. B−y (partially) fixing the ×···× (cid:0) (cid:1) w n(k) andf n(k+1) (k=0,1)arecoexactk-formandexactk+ gaugeen= (1/m(n0))hn(withe0leftarbitrary)allthewould- 1-formanddefinedastheorthonormalsetsoftheeigenmodes beNGboso−nsh aregaugedaway. Thisistheunitarygauge n ofthepositivesemi-definiteisospectralHamiltoniansd†dand of the theory. The four-dimensional particle content of the dd†: theoryisnowobvious: themasslessphotonAm ,0,theinfinite (0) d0†d d0d† fw(kn(+k)1) = m(nk) 2 fw(kn(+k)1) , (9) tmowasesrleossf mscaaslsairvebogsaoungsefbioasnodnsthAem ,innfiwniitthemtoawssermonf m, tahsesivbe1 (cid:20) (cid:21)" n # " n # scalarbosonsF withmassm(1). (cid:0) (cid:1) n′ n′ wheretherelativephaseischosentobe 0 d† w n(k) =m(k) w n(k) . (10) A. Gauge-FixingandResidualSymmetry d 0 f (k+1) n f (k+1) (cid:20) (cid:21)" n # " n # As already mentioned in Section I, in this paper we are Nowweintroducethefollowing2 2matrixoperators interested in the Rx gauge. Since there is an undesirable × d†d 0 0 d† 1 0 quadratic term mixing Am and A(1) in (6b) (or Am ,n and hn H= , Q = , ( 1)F = , in (13)), we have to get rid of this mixing term by correctly 0 dd† 1 d 0 − 0 1 choosinga gauge-fixingfunction. Sucha gauge-fixingfunc- (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) − (cid:21) (11) tion is already introduced, for example, in [7] in the context whichsatisfytheN =2supersymmetryalgebra offive-dimensionalgaugetheory.TheD-dimensionalversion ofsuchagauge-fixingfunctionshouldbechosenas Q ,Q =2d H, [H,Q ]=[H,( 1)F]=0, a b ab a { } − ( 1)F,Qa =0, a,b=1,2, (12) F[A]=¶ m Am x d†A(1)=¶ m Am x d†h. (14) { − } − − whereQ2=i( 1)FQ1. ( 1)F isthe“fermionic”numberop- Byaddingagauge-fixingterm (1/2x )F[A]2 to(6b)andin- erator which a−ssigns to t−he “bosonic” state w (k) a quantum tegratingbypartsweobtainthe−gauge-fixedLagrangian n number+1andtothe“fermionic”statef (k) aquantumnum- n 1 berF−ro1m. theorthonormalityoftheeigenmodes1 ,itiseasyto L = 2 Am ,[h mn ((cid:3)−d†d)−(1−1/x )¶ m ¶ n ]An writedownthe4dreducedLagrangian +(cid:0)1 j ,(cid:3)j +1 F ,[(cid:3) d†d]F (cid:1) 2 2 − LK = 1 Fmn ,0 2 +1(cid:0)h,[(cid:3) (cid:1)x dd†(cid:0)]h , (cid:1) (15) −4 2 − (cid:0) (cid:1) 2 (cid:0) (cid:1) +n(cid:229)6=0−41(cid:0)Fmn ,n(cid:1)2−21(cid:0)m(n0)(cid:1)2 Am ,n−m1(n0)¶ m hn!  twaihnertehe(cid:3)g=au¶gme¶bmo.soInnv(Ae0)rmt,in2ngprtohpeakgianteotriccotenrtmainoipnegraatoterrwmeporbo-- +i(cid:229)=b11(cid:26)−21 ¶ m j i 2(cid:27)  t−piookrn2tio=ofnxathletmow(n0ko)muk2lnd,/-wb(cid:0)hemicNnhG(cid:1)isbeowxsiaotchnt’ltsyh(ethhge’assu)a,gmaees-dsietipmsehpnoldeuelpndot.lpeIonpleoansaiy-t + (cid:229) 1(cid:0) ¶ m F (cid:1) 2 1 m(1) 2F 2 , (13) freefield(cid:0)theor(cid:1)ieswhentwodifferenntfieldsareindegenerate −2 n′ −2 n′ n′ andhavethesamedegreesoffreedom,thereobviouslyexists n′6=0(cid:26) (cid:0) (cid:1) (cid:0) (cid:1) (cid:27) asymmetrytorotatethem. Nowthisisindeedthecase. The whereFmn ,n=¶ m An ,n ¶ n Am ,n. Itisworthmentioningatthis termproportionaltokm kn / m(n0) 2 withthegauge-dependent point that each KK-m−ode transforms under the U(1) gauge pole at k2 =x m(0) 2 in the gauge boson propagatorsug- transformation (7a) (7b) as d Am ,0 = ¶ m e0, d Am ,n = ¶ m en, geststha−tthescalarcnompon(cid:0)entof(cid:1)thegaugefieldhasthesame mass-squaredx (cid:0)m(0) (cid:1)2 tothewould-beNGboson’s. Indeed, n ifwedecomposeAm intothetransverseandlongitudinal2(or (cid:0) (cid:1) 1 Theeigenmodesarenormalizedas w n(k),w m(k) =dnm, fn(k+1),fm(k+1) =dnm, (cid:0)h i(1),h (j1)(cid:1)=dij. (cid:0) (cid:1) 2iWs,etrhaenrsevuersseethmeetaenrsmpsetrrpaennsvdeicruselaarntdol¶omng(iotrudkimn)alanindalocnogviaturidainntalwpaayr,atlhlealt (cid:0) (cid:1) to¶m (orkm ). 4 puregauge)part H iswrittenbyproductofthesupercharges,itisquitenatural thesespuriousdegreesoffreedomaremutuallyrelatedbythe Am =A(mT)+¶ m A(L), (16) globaltransformationgeneratedbyQ1. (3)Sincetheresidualsymmetry(20)isaspacetimesymme- theLagrangianbecomes trybetweenaspin-1andaspin-0particle,onemightsuspect that(20)wouldconflictwith the Coleman-Mandulatheorem 1 1 L = 2 A(mT),[(cid:3)−d†d)]A(T)m −2x A(L),(cid:3)[(cid:3)−x d†d]A(L) [12]. However, the residual symmetry rotates only the un- physicaldegreesoffreedom.Hencethisisnotthecase. +(cid:0)1 j ,(cid:3)j +1 F ,[(cid:3)(cid:1) d†d]F(cid:0) (cid:1) (4) This residual symmetry can be regarded as a relic 2 2 − of higher-dimensional gauge symmetry by using the gauge- +1(cid:0)h,[(cid:3) (cid:1)x dd†(cid:0)]h . (cid:1) (17) fixing condition F[A]= 0. It is easy to see that the trans- 2 − formation(20)isindeedthehigher-dimensionalgaugetrans- (cid:0) (cid:1) formationwithanidentificatione =q d†h=q (1/x )¶ m Am = TocanonicalizetheLagrangianweredefinethefieldas3 q ((cid:3)/x )A(L). Inviewofthisfact,onemightexpectthatcom- pactifiedgaugetheorieswithgaugeinvariantinteractionterms (cid:3) A(L) A˜(L):= A(L), (18) would also possess some residual symmetries such as (20). 7→ sx However,thisisanopenquestion. so that (A˜(L),h)-sector can then be recast into the following 2 2matrixform III. 5DGRAVITYWITHRANDALL-SUNDRUM × BACKGROUND t 1 A˜(L) 1 0 d†d 0 A˜(L) , − (cid:3) x . (19) 2 (cid:20) h (cid:21) (cid:20) 0 1(cid:21)(cid:18) − (cid:20) 0 dd†(cid:21)(cid:19)(cid:20) h (cid:21)! We would like to further extend the previous analysis to compactifiedhigher-dimensionalpuregravitytoquadraticor- We have thus separated the Lagrangian into the gauge- der of gravitationalfluctuations. Because of authors’ inabil- independentand-dependentparts. Thegauge-dependentpart itytoanalyzethegravityingeneraldimensionswith general canbewrittenintermsof2 2matrixformandthemassma- backgroundmetric,weshallrestrictourselvestoconsiderthe × trixisexactlytheHamiltonianin(11),asexpected. Itisnow perturbationtothewell-knownRandall-Sundrummetric[13] obvioustheLagrangianisinvariantunderthetransformation asalesstrivialexample. Letusconsiderthefive-dimensionalgravitywithsingleex- A˜(L) A˜(L)′ =q 0 d† A˜(L) . (20) tra dimension compactified on an interval (0,p R) with two h 7→ h′ d 0 h 3-branes which are located at the end points of the interval. (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:20) (cid:21) Theactionrespectingthisconfigurationis Thissymmetrytransformationisgeneratedbythesupercharge Q in(11),andhenceSUSY-like. p R 1 S= d4x dy √ G(M3R L )+√ g ( s )d (y) Severalcommentsarenowinorder: 0 − − − UV − UV Z Z (cid:26) (1) This is a symmetry between the scalar component of thegaugefieldAm andthewould-beNGbosonh,bothareun- +√ gIR( s IR)d (y p R) , (21) − − − physicaldegreesoffreedomofthetheory. Thusifweaddto (cid:27) theLagrangianthegaugeinvariantinteractiontermsorextend whereM is the five-dimensionalPlanck mass, R is the Ricci tonon-Abeliangaugetheories,andthencalculatetheS-matrix scalar4 evaluatedbythe5dmetricGMN andgUmn V (gImnR)isthe elements,thesespuriousdegreesoffreedommustbecanceled metricinducedontheUV(IR)brane. Thebulkcosmological soastomaintaintheunitarityoftheS-matrix.Wemaythere- constantL andthebranecosmologicalconstantss ands UV IR foreconcludethatthesecancellationsarecompensatedforthe aretunedtogiveawarpedbackgroundsolutionwithasliceof symmetry(20),thoughitismuchlessobviouswhetherresid- AdS : 5 ual symmetry such as (20) might exist in a fully interacting theory. ds2= e−2kyh mn dxm dxn +dy2, (physicalcoordinate) (2)AsalreadymentionedinSectionI,(20)isanexpected ( 1 2(h mn dxm dxn +dz2), (conformalcoordinate) 1+kz symmetry. From the unitarity point of view, these unphys- (22) (cid:0) (cid:1) ical gauge-dependent part must have its partners to ensure the cancellation of each contributions to the S-matrix ele- ments. In view of this, these partnersmust be in degenerate with the same x -dependent mass-squared. Since the super- 4Inthispaperweusetheconventions: HamiltonianH isonlythecandidateforthemass-matrixand 1 G AMN:= 2GAB(¶NGBM+¶MGBN−¶BGMN), RKLMN:=¶MG KLN−¶NG KLM+G ALNG KAM−G ALMG KNA, 3Thedefinition(18)iswell-definedonlyintheregioninside(outside)the RMN:=RAMAN=¶AG AMN−¶NG AMA+G AMNG BAB−G BMAG ANB. light-coneandx >0(x <0.) 5 wcuirthvastuUrVes=ca1le2kdMefi3naenddass kIR==−(12LkM)/31,2wMh3e.rIetkisijsusthteamAadtS- Kmn ;r 5=−21(h mr ¶ n +h nr ¶ m −2h mn ¶ r )(¶ z+3A′), (27b) ter of choice which coordinateps(−physical or conformal)one Kmn ;f = 3h mn (¶ z+3A′)(¶ z+2A′), (27c) will use, however, the conformal coordinate will turn out to 2 beadvantageoustoevaluatevariousquantities,especiallythe 1 gravityactionbecauseitutilizestheveryusefulformulaofthe Km 5;rs =−2(h mr ¶ s +h ms ¶ r −2h rs ¶ m )¶ z, (27d) conformaltransformation. Thusin whatfollowswe will use 1 theconformalcoordinatezforcomputationalconvenience. Km 5;r 5=−2(¶ m ¶ r −h mr (cid:3)), (27e) We investigate the gravitational fluctuations around the 3 background Km 5;f =−2¶ m (¶ z+2A′), (27f) 3 GMN =e2A(z) h MN+h¯MN(x) , A(z)= ln(1+kz). (23) Kf ;rs = 2h rs (¶ z+A′)¶ z, (27g) − 3 It should be no(cid:2)ted that the ex(cid:3)plicit expression for the warp Kf ;r 5=−2¶ r (¶ z+A′), (27h) f(a1c/tko)r(eAp(kzR) i1s):valid on the open interval 0 < z < zc := Kf ;f = 23(cid:3)−3(¶ z+A′)(¶ z+2A′). (27i) − A (A)2=2keA[ d (z)+d (z p R)], (24) Theseexpressions5 arealsofoundin[15,16]andconsistent ′′ ′ − − − withtheEinsteinequations[17]. One can easily verifythatthe action is invariantunderin- where prime () indicatesthe derivativewith respectto z. In ′ finitesimalgeneralcoordinatetransformations the following analysis, however, the delta functions on the right hand side of Eq.(24) can safely be ignored because of xM xˆM=xM+x M, (28) theboundaryconditionsforthemetricfluctuationsconsistent 7→ withthegeneralcoordinateinvariance.Thereforewewilluse whichtransformthefluctuationsatthelinearizedlevelas therelationA′′ (A′)2=0inthewholeofthispaperinstead − of(24). hmn hˆmn =hmn ¶ m x n ¶ n x m h mn (¶ z+3A′)x 5, (29a) Thefluctuationsh¯ shouldbeparameterizedas 7→ − − − MN hm 5 hˆm 5=hm 5 ¶ zx m ¶ m x 5, (29b) 7→ − − h¯MN = hmn −(h1n/52)h mn f hfm 5 , (25) f 7→fˆ=f −2(¶ z+A′)x 5. (29c) (cid:20) (cid:21) SupersymmetricStructure:Forthelaterdiscussionwehere briefly summarize the quantum mechanical supersymmetric which enables us to identify the spectrum of the linearized theory. Noticethatthe limitL 0givesk=0 andz =p R structure of the theory. As shown in ref.[8] the fluctuations c andhencethebackgroundgeom→etry(22)justreducestoM4 areexpandedas (0,p R),asitshould. × ¥ Thequadraticactiontakestheform hmn (x,z)= (cid:229) h(mnn)(x)f(n)(z), (30a) n=0 ¥ S(2)=M3Z d4xZ0zcdze3A41hMNKMN;KLhKL hm 5(x,z)=n(cid:229)=1h(mn5)(x)g(n)(z), (30b) zc ¥ =M3 d4x dze3A f (x,z)= (cid:229) f (n)(x)k(n)(z), (30c) 0 Z Z 1 n=0 hmn Kmn ;rs hrs +2hmn Kmn ;r 5hr 5+hmn Kmn ;f f ×4 where we have excluded the vector zero-modeg(0) from the (cid:26) +2hm 5Km 5;rs hrs +4hm 5Km 5;r 5hr 5+2hm 5Km 5;f f expansion(30b),sinceasweshallseeimmediatelyitwillbe incompatiblewiththesupersymmetricstructure. +f Kf ;rs hrs +2f Kf ;r 5hr 5+f Kf ;f f , (26) (cid:27) where 1 Kmn ;rs = (h mr ¶ n ¶ s +h ms ¶ n ¶ r +h nr ¶ m ¶ s +h ns ¶ m ¶ r ) −2 +h mn ¶ r ¶ s +h rs ¶ m ¶ n 1 + (h mr h ns +h ms h nr 2h mn h rs ) 2 − ((cid:3)+(¶ +3A)¶ ), (27a) 5Thenormalizationisdifferentfrom[8]by1/2tocanonicalizetheoperator × z ′ z Kmn ;rs . 6 The orthonormal sets f(n) ¥ g(n) ¥ and k(n) ¥ tions { }n=0 { }n=1 { }n=0 aredefinedastheeigenfunctionsoftheSchro¨dinger-likeequa- (¶ +3A)¶ 0 f(n) f(n) − z 0 ′ z ¶ z(¶ z+3A′) g(n) =m2n g(n) , (31a) (cid:20) − (cid:21)(cid:20) (cid:21) (cid:20) (cid:21) (¶ +2A)(¶ +A) 0 g(n) g(n) − z 0′ z ′ (¶ z+A′)(¶ z+2A′) k(n) =m2n k(n) , (31b) (cid:20) − (cid:21)(cid:20) (cid:21) (cid:20) (cid:21) withtheboundaryconditions whereQ =i( 1)FQ andQ¯ =i( 1)F¯Q¯ . 2 1 2 1 − − ¶ f(n)(z)=0, g(n)(z)=0, (¶ +2A)k(n)(z)=0, (32) We emphasizethat(32)istheuniqueboundaryconditions z i i z ′ i toensuretheHamiltoniansH andH¯ tobeisospectral(except wherez =0orz . Notethatthebackgroundsolutionenables i c forthezeromodes),orthesupersymmetriesinthemassspec- ustofactorizetheHamiltonianforthevector-modeg(n)intwo trum. Indeedthe hermiticity of the Hamiltoniansand super- different ways (except on the boundaries); ¶ (¶ +3A)= (¶ +2A)(¶ +A). − z z ′ chargesisensuredifandonlyiftheboundaryconditions(32) − z ′ z ′ areimposed(seeref.[8]). Theseeigenfunctionsaremutuallyrelatedthrough 0 (¶ +3A) f(n) f(n) ¶ z − z0 ′ g(n) =mn g(n) , (33a) UthneitthaeroyrGy.aTuogeth:iNseexntdwweewfiilrlstidneontteiftyhathteuspianrgticthleecmonotdeentdoef- (cid:20) (cid:21)(cid:20) (cid:21) (cid:20) (cid:21) 0 (¶ +2A) g(n) g(n) compositions(30a)– (30c) the linearized generalcoordinate ¶ z+A′ − z0 ′ k(n) =mn k(n) . (33b) transformations(29a)–(29c)read (cid:20) (cid:21)(cid:20) (cid:21) (cid:20) (cid:21) Nowitisclearthatthereisnonontrivialsolutionofthevector dzeifrfoe-rmenotdiaelgeq(0u)awtiohnicsh has to satisfy the two different linear d h(mnn)=−¶ m x n(n)−¶ n x m(n)+mnh mn x 5(n), n∈Z≥0, (38a) (¶ z+3A′)g(0)=0=(¶ z+A′)g(0). (34) d h(mn5)=−mnx m(n)−¶ m x 5(n), n∈Z>0, (38b) − df (n)= 2m x (n), n Z , (38c) Wehavealreadyincludedthisfactintotheexpansion(30b). − n 5 ∈ ≥0 Itshouldbenotedthattheeigenfunctionssatisfy theiden- tity wherethegaugefreedomx areassumedtobeexpandedas M 2A(z)g(n)(z)=m f(n)(z)+k(n)(z) , n Z , (35) ′ n >0 − ∈ which plays an essen(cid:0)tial role in the(cid:1) proof of gauge- ¥ ¥ independenceof one graviton exchangeamplitude in the Rx x m (x,z)= (cid:229) x m(n)(x)f(n)(z), x 5(x,z)= (cid:229) x 5(n)(x)g(n)(z). gauge;seeSectionIV.Nowweintroducethefollowing2 2 n=0 n=1 matrixoperators × (39) Ifwemoveontothecoordinateframebychoosing (¶ +3A)¶ 0 H= − z 0 ′ z ¶ (¶ +3A) , z z ′ (cid:20) − (cid:21) Q1= ¶0z −(¶ z+0 3A′) , (−1)F = 10 01 , (36a) x 5(n)= 2m1nf (n), x m(n)= m1nh(mn5)−2m12n¶ m f (n), n∈Z>0, (cid:20) (cid:21) (cid:20) − (cid:21) (40) (¶ +2A)(¶ +A) 0 H¯ = − z 0′ z ′ (¶ +A)(¶ +2A) , z ′ z ′ (cid:20) − (cid:21) Q¯1= ¶ z+0A′ −(¶ z+0 2A′) , (−1)F¯ = 10 01 , (36b) f (n) andh(mn5)withn>0areallgaugedaway,leavingonly (cid:20) (cid:21) (cid:20) − (cid:21) whichsatisfythetwoN =2superalgebras 1 Qa,Qb =2d abH, [H,Qa]=[H,( 1)F]=0, hˆ(mnn)=h(mnn) ¶ m hn(n)+¶ n h(mn) { } − −mn {Q(¯−,1Q)¯F,Q=a}2=d 0H,¯, [H¯,Q¯ ]=[H¯,( 1)F¯]=0, (37a) +21 h mn (cid:0)+2¶mm ¶2n f (n),(cid:1) n∈Z>0, (41a) { a b} ab a − (cid:18) n (cid:19) ( 1)F¯,Q¯a =0, a,b=1,2, (37b) hˆ(mn0)=h(mn0), fˆ(0)=f (0), (41b) { − } 7 sothatthequadraticactionbecomes6 notstraightforwardtofindsuchagaugeduetotheappearance ofthreeundesirablequadraticmixingterms. ¥ S(2)=MP2lZ d4x(n(cid:229)=014hˆ(n)mn Kmn(n);rs hˆ(n)rs +38fˆ(0)(cid:3)fˆ(0)), tioOnusrimstirlaatregtoytthoefiRnxdgoauutgtheeinapspproonptrainaeteougsaluygbe-rfioxkeinnggfauungce- theoriesisbasedontheobservations: (43) (1) In 4d general relativity the so-called harmonic gauge, whereM isthe(5daveraged)4dPlanckmassscaledefined which is the counterpart of the Lorentz gauge in ordinary Pl as unbroken gauge theories, is just the linearized version of ¶ m (√ ggmn )=0. Therefore we could expect that the har- M2 =M3 zcdze3A= M3(1 e 2p kR), (44) monic−gauge conditions for the warped Randall-Sundrum Pl 0 2k − − metricwould also be givenbysomethinglike the conditions Z ¶ (√ GGMN)=0tolinearorderofh¯ . whichreducestoMP2l−L−→−→0 p RM3asitshould,and M(2)−In order to fix the gauge arbitraMriNness x M we have to impose five independentconditions. The gauge-fixingfunc- 1 Kmn(n);rs =+−h2m(nh ¶mrr ¶¶sn ¶+s h+rsh ¶msm ¶¶nn ¶ r +h nr ¶ m ¶ s +h ns ¶ m ¶ r ) stthiaoamnteffoobrroxxumndmmauruyssttcbboeenedexixtpipoaannnddteoeddxbmbyy,thi.eeg.o(nr){t(hzfo)(nn)o¥(rzm)}.a¥nl=As0es,twwwehitehsrhetahalesl 1 5 { }n=1 +2(h mr h ns +h ms h nr −2h mn h rs )((cid:3)−m2n). saedeapimtabmleedtioatetlhye,tghaisugise-afikxeinygobfusnercvtiaotnionfrtoomsetlheectltihneeatreirzmeds (45) ¶ (√ GGMN). M − Notice thatthe gravitonmass appearsas the so-calledFierz- Inwhatfollowswefirstinvestigatetheharmonicgauge(or Pauli[14]form,whichistheonlyformthatdoesnotintroduce ’t Hooft-Feynman gauge from the four-dimensional sponta- ghosts[18]. Thefour-dimensionalfieldcontentsarenowob- neouslybrokenpointofview)forthewarpedgravityandthen vious: the massless graviton h(mn0), the infinite tower of mas- establish the one-parameter family of gauge choices analo- goustotheRx gaugeinspontaneouslybrokengaugetheories. (n) ¥ sive gravitons hmn with increasing masses {mn}n=1 and the The analysis presented below is based on the knowledge of massless scalar boson f (0) known as the radion. It is worth gauge-fixingin4dgeneralrelativity,whichisbrieflysumma- mentioningatthispointthatM isnotdirectlyrelatedtothe rizedinAppendixAtogetherwithabriefreviewofthevDVZ- Pl NewtonconstantG ;M isjustintroducedasthecoefficient discontinuity. N pl of the massless graviton Lagrangian, whereas G has to be N determinedasthecoefficientoftheinversesquarelawpartof ’t Hooft-Feynman Gauge: As in 4d general relativity, we thestaticgravitationalforce,whichnowincludesthemassless willfirstcalculate¶ M √ GGMN tolinearorder: − radion’scontributionaswellasthemasslessgraviton’sone. (cid:0) (cid:1) 1 ¶ M √ GGMn =e3A ¶ m hmn + ¶ n h ¶ z+3A′ hn 5 − − 2 − A. Gauge-FixedActiontoQuadraticOrder (cid:16) (cid:17) +O(cid:20)(h¯2), (cid:0) (cid:1)(46(cid:21)a) 3 1 Oncefixedtheactiontotheunitarygauge,allthefictitious ¶ M √ GGM5 =e3A 3A′+ A′(h f )+ ¶ zh ¶ m hm 5 massive vector- and scalar-modes would disappear from the − 2 − 2 − (cid:16) (cid:17) (cid:20) dimensionalreducedactionsothatwecouldnotseethecan- 3 celation mechanism of the would-be NG bosons which ap- −2 ¶ z+2A′ f +O(h¯2), (46b) (cid:21) pear in the other gauges, nor the expected SUSY-like sym- (cid:0) (cid:1) metries between the unphysicaldegreesof freedom with the where h=h mn hmn . First look at the right hand side (RHS) samegauge-dependentmass-squared.Inviewofthiswehave of Eq.(46a). The three terms in the brace can be expanded toestablishtheone-parameterfamilyofgaugechoicesanalo- inonly f(n)-modessothatitseemstobeadoptedasagauge- gousto the Rx gaugein the previoussection. However, it is fixingterm. NextlookatRHSofEq.(46b). Sincewearenow interestedingauge-fixingforquadraticpartoftheaction,the firstterm3A shouldbeignored,becauseitgives0thand1st ′ order of the fields. The last three terms in the brace can be 6Theeigenfunctionsarenormalizedas expanded in g(n)-modes, however, the second term can not. M3 zcdze3Af(n)(z)f(m)(z)=MP2ldnm, Tfohrugsa,ufgoer-tfihxeinpgreasnendte,xwaemwiniellwadhoetphteornitlywtohrekslawstetlhlroerentoetr.ms Z0 M3 zcdze3Ag(n)(z)g(m)(z)=MP2ldnm, Ourmodifiedharmonicgaugeconditionsaretherefore Z0 M3Z0zcdze3Ak(n)(z)k(m)(z)=MP2ldnm. Fm [h]=−¶ l hlm +21¶ m h− ¶ z+3A′ hm 5=0, (47a) (42) F5[h]= 1¶ zh ¶ m hm 5 3 (cid:0)¶ z+2A′(cid:1)f =0. (47b) 2 − −2 (cid:0) (cid:1) 8 Letusfirstexaminehowtoimplementthesegauge-fixingcon- ThesearetheanalogueofEq.(A8). Noticethatwhenoneim- ditions. To see this, it is sufficient to calculate d Fm [h] and pose the gauge-fixing conditions (47a) and (47b), however, d F [h]. Using the transformation law of the fluctuations at there still remains gauge freedom generated by on-shell pa- 5 KK-modelevelweget rameters x m(n) and x 5(n) which satisfy ((cid:3)−m2n)x m(n) =0 and ¥ ((cid:3) m2)x (n) =0. This is also the analogue of residual on- d Fm [h]= (cid:229) (cid:3)−m2n x m(n) f(n), (48a) shel−lganuge5freedomin4dgeneralrelativity. n=0 ¥ h(cid:0) (cid:1) i d F [h]= (cid:229) (cid:3) m2 x (n) g(n). (48b) 5 − n 5 Addingtotheaction(26)agauge-fixingterm n=1 h(cid:0) (cid:1) i Itisobviousthatonecanalwaysimposetheconditions(47a) and(47b)bychoosingx Masoneofsolutionstothefollowing differentialequationsforeachn: ((cid:3)−m2n)x n(n)=¶ m h(mnn)−12¶ n h(n)−mnhn(n5), n∈Z≥0, LGxF=1=M3e3A(cid:26)−12 Fm [h] 2−12 F5[h] 2(cid:27), (50) (49a) (cid:0) (cid:1) (cid:0) (cid:1) 1 3 ((cid:3) m2)x (n)= m h(n)+¶ m h(n) m f (n), n Z . − n 5 −2 n m 5−2 n ∈ >0 (49b) weget Sx(2=)1=M3 d4x 0zcdze3A 14hmn 21(h mr h ns +h ms h nr −h mn h rs ) (cid:3)+(¶ z+3A′)¶ z hrs . Z Z (cid:26) (cid:20) (cid:21) 1 3(cid:0) (cid:1) + hm 5 h mn (cid:3)+¶ z(¶ z+3A′) hn 5+ f (cid:3)+(¶ z+A′)(¶ z+2A′) f . (51) 2 8 (cid:27) (cid:2) (cid:0) (cid:1)(cid:3) (cid:2) (cid:3) Thedimensionalreducedactionis ¥ Sx(2=)1=MP2l d4x (cid:229) 41hmn (n) 12(h mr h ns +h ms h nr −h mn h rs )((cid:3)−m2n) hrs (n) Z (cid:26)n=0 (cid:20) (cid:21) ¥ ¥ +(cid:229) 21hm 5(n)[h mn ((cid:3)−m2n)]hn 5(n)+(cid:229) 83f (n)[(cid:3)−m2n]f (n) . (52) n=1 n=0 (cid:27) It should be emphasized the first line suggests that the residue of the graviton propagatoris common to any n Z so that 0 onemayexpectinthe’tHooft-FeynmangaugeitmaybepossibletoevadethevDVZdiscontinuity,whicharises∈inth≥eunitary gauge.Forfurtherdiscussion,seeSectionIV. RRRx Gauge:SofarwehaveusedthenotationLGxF=1andSx(2=)1, ofx : a/x =b/x =(ab)/x =1. Butobviouslyitisnotpos- whichimpliesthat,asingaugetheories,our’tHooft-Feynman sible. At first glance, it seems to be impossible to eliminate gaugejustcorrespondstothecasex =1insomewhatunder- thethreeundesirablemixingtermsbya singlegaugeparam- lyingRx gauge,however,nomentionhasbeenmadeofhow eterx . However,we canconstructthe one-parameterfamily we haveinsertedthe gaugeparameterx into the action. Ac- ofgaugechoicesanalogoustotheRx gaugeinspontaneously tually,itishighlynon-trivialtoinsertx intothegauge-fixing broken gauge theories with the help of the boundary condi- Lagrangian(50). Toseethedifficulty,considerthearithmetic tions(32). 1 (x+ay+bz)2 Oneofthecrucialkeysisthatwehavetwosquaredbrack- 2x ets in (50), Fm [h] 2 and F5[h] 2, the former fixes the four- = 21x (x2+b2y2+c2z2+2axy+2bxz+2abyz). (53) ddiimmeennssiioonnaall(cid:0)ognaeugxe(cid:1)5.arSbiintrca(cid:0)eritnheesss(cid:1)cxamlaranfideldthef loanttleyratphpeeeaxrstrian- thelatterbracket,wehavetoinsertx asacoefficientoff to Since we already know the ’t Hooft-Feynman gauge, which canceloutbytheoverallfactor1/(2x ). Thenthecrossterm correspondstox =a=b=1,wenowwanttochoosetheco- betweenhandhm 5 inthelatterbracketcometodependonx . efficients a and b to make the three cross terms independent However,wecanmakeallthecrosstermsindependentofx by 9 insertingitintotheformerbracketasfollowingcombination: Uponintegratingbyparts,onecaneasilycheckthatthecross termbetweenhandhm 5 isjustthesameas(50)withthehelp LGF=M3e3A −12 FmRx [h] 2−12 F5Rx [h] 2 , (54) onfattehsethbeouunnddeasryiracbolnedmitiioxninsg(t3e2r)m.sT. hus (54) correctly elimi- (cid:26) (cid:27) (cid:0) (cid:1) (cid:0) (cid:1) with FmRx [h]=−¶ l hlm +21 2−x1 ¶ m h−x (¶ z+3A′)hm 5, (cid:18) (cid:19) (55a) F5Rx [h]= 12¶ zh−¶ m hm 5−32x (¶ z+2A′)f . (55b) Gauge-FixedActiontoQuadraticOrder:Addingtotheaction(26)agauge-fixingterm(54)weget SR(2x)=M3 d4x zcdze3A 41hmn KmnRx ;rs hrs +21hm 5KmR;xr hr 5+38f KfR;xf f , (56) 0 Z Z (cid:26) (cid:27) where KmnRx ;rs =−21 1−x1 (h mr ¶ n ¶ s +h ms ¶ n ¶ r +h nr ¶ m ¶ s +h ns ¶ m ¶ r ) (cid:18) (cid:19) 1 2 1 2 + 1−x h mn ¶ r ¶ s + 1−x h rs ¶ m ¶ n (cid:18) (cid:19) (cid:18) (cid:19) 1 1 1 2 +2 h mr h ns +h ms h nr −2 1−2x (cid:18)2−x (cid:19) !h mn h rs !(cid:3) 1 1 +2 h mr h ns +h ms h nr − 2−x h mn h rs (¶ z+3A′)¶ z, (57a) (cid:18) (cid:18) (cid:19) (cid:19) KmR;xr =h mr [(cid:3)+x¶ z(¶ z+3A′)]− 1−x1 ¶ m ¶ r , (57b) (cid:18) (cid:19) KRx =(cid:3)+(3x 2)(¶ +A)(¶ +2A). (57c) f ;f − z ′ z ′ Now it is straightforward to compute the propagatorsin the intothefollowingpolarizationstates Rx gauge. The results are summarized in Appendix B. As in a massive gauge boson propagator of spontaneously bro- hmn =h(mnTT)+¶ m h(nT)+¶ n h(mT)+2¶ m ¶ n h(L)+h mn h(tr), ken gauge theories, the massive graviton propagator can be (58a) writtenintothesumofthegauge-independentand-dependent part separately. The gauge-independentpart corresponds to hm 5=h(mT5)+¶ m h(5L), (58b) thetransverse-tracelesspartofhmn , asitshould. Thegauge- dependentpartcanfurtherbedecomposedintothesumofthe where h(mnTT) is the transverse-traceless mode (5 DOF), h(mT) three independent parts; the transverse gauge freedom part the transverse gauge freedom(3 DOF), h(L) the longitudinal D (T), the longitudinalgauge freedom part D (L) and the trace partD (tr). D (T) hasthesamesimplepolepositiontothetrans- gaugefreedom(1DOF),h(tr) the“trace”piece(1DOF),h(mT) verse part of the vector propagator. D (L) and D (tr) have the thetransversemode(3DOF)andh(L) thelongitudinalmode 5 samesimplepolepositionstothelongitudinalpartofthevec- (1DOF). Notice thatthese decompositionsare justified only torpropagatorandthescalarpropagator,respectively.Inview for the case that hmn and hm 5 are both massive. Indeed the of thisfact we expectthat asin the case of the pureAbelian masslesstensordecompositionaremorecomplicated;seefor gaugetheory,thesespuriousdegreesoffreedomhaveitspart- example Appendix of [19]. However, since we are now in- nerswiththesamemass-squared,andconsistofmultipletsun- terested in the gauge-dependentmass terms of the would-be derSUSY-liketransformationsgeneratedbythesupercharges. NG bosons, we do not need the massless tensor and vector To this end we decompose the graviton and vector fields decompositions. 10 B. ResidualSymmetries Insertingthedecompositions(58a),(58b)into(56)weget SR(2x)=M3 d4x 0zcdze3A 21hˆ(TT)mn (cid:3)+(¶ z+3A′)¶ z hˆ(mnTT) Z Z (cid:26) +12t(cid:20)hˆhˆ((TT))mm5(cid:21)(cid:20)−01 01(cid:21)(cid:18)(cid:3)−x(cid:2)(cid:20)−(¶ z+03A′)¶ z (cid:3)−¶ z(¶ z0+3A′)(cid:21)(cid:19)"hhˆˆ((mmTT5))# 1t hˆ(L) 1 0 (¶ +3A)¶ 0 hˆ(L) +2 "hˆ(5L)#(cid:20)0 −1(cid:21)(cid:18)(cid:3)−x 2(cid:20)− z 0 ′ z −¶ z(¶ z+3A′)(cid:21)(cid:19)"hˆ(5L)# 1t hˆ(tr) 1 0 (¶ +3A)¶ 0 hˆ(tr) +2 fˆ −0 1 (cid:3)−(3x −2) − z 0 ′ z (¶ z+A′)(¶ z+2A′) fˆ , (59) (cid:20) (cid:21)(cid:20) (cid:21)(cid:18) (cid:20) − (cid:21)(cid:19)(cid:20) (cid:21)(cid:27) where7 troducethefollowing2 2matrixoperators × hˆ(mnTT):= √12h(mnTT), hˆ(mT):=s(cid:3)x h(mT), hˆ(mT5):=h(mT5), Hˆ =(cid:20)−(¶ z+03A′)¶ z −(¶ z+A′0)(¶ z+2A′)(cid:21), 0 (¶ +3A)(¶ +2A) hˆ(L):= 1 (cid:3)h(L) (3x 2)h(tr) , hˆ(L):= (cid:3)h(L), Qˆ1= (¶ z+A′)¶ z − z 0′ z ′ , x 3 − − 5 sx 5 (cid:20)− (cid:21) (cid:0) (cid:1) ( 1)Fˆ = 1 0 , (62) hˆ(tr):=√p3h(tr), fˆ := √3f . (60) − (cid:20)0 −1(cid:21) 2 it is easy to check that these operators satisfy the so-called Thisisourfinalexpressionforthequadraticaction. Wehave higher-derivativesupersymmetryalgebra(HSUSYalgebra): separatedtheactiontothegauge-independentand-dependent part,justasdoneinthepureAbeliangaugetheory. Itisnow Qˆ ,Qˆ =2d Hˆ2, [Hˆ,Qˆ ]=[Hˆ,( 1)Fˆ]=0, a b ab a obviousthat(59)is invariantunderthefollowingthreeinde- { } − pendentglobaltransformations ( 1)Fˆ,Qˆa =0, a,b=1,2, (63) { − } d "hhˆˆ((mmTT5))#=q 1(cid:20)¶0z −(¶ z+0 3A′)(cid:21)"hhˆˆ((mmTT5))#, (61a) pwdeihfrfeaerlrgeeenQbˆtr2far=odmisi(ct−uhse1s)seFtdˆaQnˆi1dn.a[r2dT0sh,uis2p1ei,rsa2lag2ne,be2rx3at,e(n32d74ea,d)2,5(n3,o7n2bl6i)]n,.ethaAersssuuis-- hˆ(L) 0 (¶ +3A) hˆ(L) perchargesarenowthesecondorderdifferentialoperators,as d "hˆ(5L)#=q 2(cid:20)¶ z − z0 ′ (cid:21)"hˆ(5L)#, (61b) tthheeyreshfaocutlodrifzraotmionthoefmthenetiHonamabilotovnei.aTnhfeorpothinetvisecotnocre-magoadien, d (cid:20)hˆf(ˆtr)(cid:21)=q 3(cid:20)−(¶ z+0A′)¶ z −(¶ z+3A0′)(¶ z+2A′)(cid:21)(cid:20)hˆ(f(ˆ6tr)1(cid:21)c.) b−a¶c(z2k()g¶rzTo+huen3rdeAs′io)sl=untoi−orne(¶sAizd′′+u=a2l(AsA′y)′m)(2¶mz(e+extrcAye′p)g,teownneirtthahteethdbeobuhyneQdl¯pa1r.oiefOs)tnh.ee may wonder about the absence of the symmetry generated As expected, the transformations(61a) and (61b) are gener- by Q¯1. However, it is reasonable from the unitarity point of atedbysuperchargeQ in(36a). Thetransformation(61c)is view. In ordinary spontaneously broken gauge theories, the 1 not, however,expressedby a first-orderdifferentialoperator. x -dependentpartofthegaugebosonpropagatormusthaveas Thisisbecause(61c)isthesymmetrytransformationbetween itspartnersthewould-beNGbosonsandtheFaddeev-Popov (the unphysical component of) hmn and f , which should be ghostswiththesamex -dependentpolesoastocanceloutthe generatedbyproductoftwosupercharges. x -dependenceofanyphysicalamplitudes,andthenmaintain Severalcommentsareinorderatthisstage: theunitarityofthetheory. Inthiscase,sincewedonotneed (1) It can be regarded that (61c) is the so-called higher- theFaddeev-Popovghosts, theunphysicalpolarizationstates derivative supersymmetric transformation. Indeed, if we in- ofthemassivegravitonfield(5DOF)musthaveasitspartners thewould-beNGvector(4DOF)andscalar(1DOF)bosons. Thus,wedonothaveanydegreesoffreedomtorelatebythe symmetrytransformationgeneratedbyQ¯ . 1 7Onceagain,thesedefinitions(60)arewell-definedonlyintheregioninside (3) In special cases x =1,2, the four polarization states (outside)thelight-coneandx >0(x <0.) in(61b)and(61c)arehappenedtobeindegeneratewiththe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.