ebook img

Gas chromatography and 2D-gas chromatography for petroleum industry : the race for selectivity PDF

365 Pages·2013·6.901 MB·English, French
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gas chromatography and 2D-gas chromatography for petroleum industry : the race for selectivity

Fabrice BERTONCINI IFP Energies nouvelles Marion COURTIADE-THOLANCE IFP Energies nouvelles Didier THIÉBAUT CNRS – ESPCI ParisTech GAS CHROMATOGRAPHY AND 2D-GAS CHROMA FOR PETROLEUM I NDUSTRY THE RACE FOR SELECTIVITY Translated from the French by Trevor Jones (Lionbridge) 2013 Editions TECHNIP 25 rue Ginoux, 75015 PARIS, FRANCE FROM THE SAME PUBLISHER Biofuels Meeting the Energy and Environmental Challenges of the Transportation Sector D. BALLERINI Hydrogen, the Post-Oil Fuel? E. FREUND, P. LUCCHESE Select Thermodynamic Models for Process Simulation A Pratical Guide using a Three Steps Methodology J.C. DE HEMPTINNE, J.M. LEDANOIS, P. MOUGIN, A. BARREAU Heavy Crude Oils From Geology to Upgrading. An Overview A.Y. HUC CO, Capture Technologies to Reduce Greenhouse Gas Emissions J. LECOMTE, P. BROUTIN, E. LEBAS Multiphase Production Pipeline Transport, Pumping and Metering J. FALCIMAIGNE, S. DECARRE Corrosion and Degradation of Metallic Materials Understanding of the Phenomena and Applications in Petroleum and Process Industries F. ROPITAL A Geoscientist’s Guide to Petrophysics B. ZINSZNER, EM. PERRIN Acido-Basic Catalysis (2 vols.) Application to Refining and Petrochemistry C. MARCILLY Petroleum Microbiology (2 vols.) J.P. VANDECASTEELE Physico-Chemical Analysis of Industrial Catalysts A Practical Guide to Characterisation J. LYNCH Chemical Reactors From Design to Operation P. TRAMBOUZE, J.P. EUZEN Petrochemical Processes (2 vols.) Technical and Economic Characteristics A. CHAUVEL, G. LEFEBVRE All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without the prior written permission of the publisher. 0 Editions Technip, Paris, 20 13. Printed in Frunce ISBN 978-2-7108-0992-0 Preface The field of comprehensive two-dimensional gas chromatography (GC×GC) has undergone a significant evolution since its inception. The first decade of development focused prima- rily on improvements in the instrumentation, as the technology moved from proof-of-con- cept prototypes in the laboratory to commercial instruments. The past decade has shifted towards improvements in the scope of the technique, and has seen a growth in the number of different application areas (petroleum, bioanalytical, environmental, etc.). The goal of GC×GC applications is a substantial improvement in the elucidation of a variety of complex samples beyond the analyses that are currently achievable using conventional gas chroma- tography (GC). A strong debate still abounds as to the figures of merit of the current GCxGC state-of-the-art on the market, particularly since there are still relatively significant develop- ments to be achieved in terms of instrumentation efficiency and particularly advanced soft- ware features. However, the growing number of GC×GC applications are revealing that the scope of this technology is well worth the continued investment. The petroleum industry is a very important application area for GC×GC, as demonstrated by the percentage of peer-reviewed papers that have been published in the past 20 years. The selectivity capabilities of GC×GC that allow for the ordered dissemination of molecular structure gradients along the two-dimensional separation space are particularly effective in enhancing the qualitative and quantitative resolution of samples in a manner not possible with current high-resolution GC technology. As the industry moves towards the new chal- lenges that surround the need to develop alternative production routes for fuel or petroleum derivatives (biomass conversion, etc.), the fractions to be analyzed are increasing in their complexity and are stretching the capabilities of GC×GC even when combined with mass spectrometry. This situation has thus ushered the need to explore couplings of the core tech- nology with other modules to further improve the dimensionality of the analyzer. I firmly believe that the next decade will see the establishment of GC×GC as a premier separation science technology, and that petroleum industry applications will play a critical role in the expansion of multidimensional chromatographic strategies. I have had the distinct privilege to be associated with GC×GC since its inception in the Phillips laboratory in 1989, and have enjoyed witnessing and working on a number of excit- ing developments in the technique. The group of authors from IFP Energies Nouvelles (IFPEN) and the École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech) laboratories that have teamed up in this effort have, over the past decade, steadily worked on improving the capabilities of GC×GC to solve practical prob- lems in the petroleum industry, and it has been very gratifying to interact with them over the years, primarily as a reviewer of projects that have been written up into five PhD disserta- tions and over thirty peer-reviewed manuscripts to date. VI Gas Chromatography and 2D-Gas Chromatography for Petroleum Industry Under the direction and supervision of Fabrice Bertoncini, Marion Courtiade and their colleagues (at IFPEN) and Marie-Claire Hennion and Didier Thiébaut (at ESPCI ParisTech and the Centre National de la Recherche Scientifique -CNRS) the work of their PhD and post-doctoral researchers has dealt with a variety of important fundamental concepts (cen- tered around GC×GC modulation and orthogonality) as well as the innovative inclusion of techniques aimed at increasing the dimensionality of the GC×GC instrument pre- and post- analysis (i.e. supercritical fluid chromatography, and data processing software). This book represents a collective review to these individual projects combined with an overview of recent advances in GC and related techniques to cope with more complex media to be separated. The common goal of these investigations is quite simply the improvement of molecular information via the increase of separation power. The first few chapters are very didactic in nature and are intended to be used as a general introduction to GC×GC the- ory, instrumentation, and data processing. The latter book chapters then focus more specifi- cally on applications of GC and GC×GC in the petroleum industry, from detailed hydrocar- bon analysis to global properties calculations. Other books on GC×GC have appeared in the past few years, but the strength of this body of work resides in the combined development of technology and application strategies by a cohesive group of scientists, as opposed to a compendium of individual researchers contributing single chapters. This approach will be very welcome in a field that is still grow- ing but in need of monographs that help the expanding number of new users while satisfying the existing experts to push the boundaries of their current conceptual understanding of the technique so that it can help them develop the next generation of instruments and methods. The field of multidimensional separation science is an exciting field that is still in develop- ment, and I truly believe that this contribution will be a worthy reference in everyone’s library. Jean-Marie D. Dimandja Department of Chemistry and Biochemistry Spelman College Atlanta, USA December 2012 Table of Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII List of authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX List of abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV Chapter 1 Molecular Analysis for Petroleum Products: Challenges and Future Needs Fabrice Bertoncini (IFP Energies nouvelles) 1.1 Overview on the Nature of Petroleum Oil and its Components. . . . . . . . . . . 1 1.1.1 Hydrocarbons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Heteroatom Containing Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2.1 Sulphur Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2.2 Nitrogen Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2.3 Oxygenated Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 Resins/Asphaltenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.5 Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Crude Oil Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Basic Refining Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1.1 Gasoline Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1.2 Distillate Hydrotreating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1.3 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Conversion of Heavy Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Visbreaking and Thermal Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 Coking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Fluid Catalytic Cracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.6 Hydrocracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.7 From Future Trends for Refining to New Challenges in Molecular Analysis . . . . 13 1.2.7.1 Trends for Refining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.7.2 Challenges in Molecular Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Molecular Analysis at Different Scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.1 From Global Analysis to Detailed Analysis of Petroleum Products . . . . . . . . . . . 17 1.3.2 Global Characterisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.3 Elemental and Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 XVIII Gas Chromatography and 2D-Gas Chromatography for Petroleum Industry 1.3.4 Hydrocarbon Family Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.4.1 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.4.2 Liquid Phase Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.4.3 Supercritical Fluid Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.5 Molecular Analysis by Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.5.1 Brief History of Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.5.2 Simulated Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.5.3 Detailed Analysis of Gaseous Hydrocarbons . . . . . . . . . . . . . . . . . . . . . 24 1.3.5.4 Detailed Analysis of Liquid Hydrocarbon . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.5.5 Heteroelements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.5.6 Mass Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.6 Improving the Separation Capacity: Multidimensional Gas Chromatography. . . . . 29 1.3.6.1 Valveless Based System (Deans’ Type Device) . . . . . . . . . . . . . . . . . . . 31 1.3.6.2 Interest of MDGC for Molecular Analysis. . . . . . . . . . . . . . . . . . . . . . . 32 1.3.6.3 Applications of MDGC for Molecular Analysis of Petroleum Derivatives. 33 1.3.7 State of Art of Conventional Molecular Analysis vs Analytical Challenges . . . . . . 36 1.3.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 2 GC××××GC: a Disruptive Technique Thomas Dutriez (DSM Resolve) 2.1 Multidimensional Chromatographic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.1 Complex Mixtures: Limitation of 1D Chromatography . . . . . . . . . . . . . . . . . . . . 43 2.1.2 Basic Principles of Multidimensional Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.2.1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.2.2 Sample and System Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.3 Difference between Heart-cutting and Comprehensive Coupling . . . . . . . . . . . . . 46 2.1.3.1 Heart-cutting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.1.3.2 Comprehensive Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2 Theoretical Aspects Related to GC××××GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.1 Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.2.1 Modulation Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.2.2 Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.2.3 Influence on Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.3 Chromatographic Aspects Related to GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.3.1 Column Combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.3.2 Determination of Retention Indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.4 Two-dimensional Separation Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2.4.1 2D Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.2.4.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.2.4.3 Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.2.4.4 2D Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3 GC××××GC Specific Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.1 Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.1.1 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.1.2 Cryogenic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table of Contents XIX 2.3.1.3 Valve-type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.3.1.4 Comparison of Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.3.2 Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.3.2.1 Universal and Selective Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.3.2.2 Detection by Mass Spectrometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.4 Quantitative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5 Choice of Separation Conditions in GC××××GC. . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.5.1 Selection of Stationary Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.5.2 Column Dimensions vs Modulation Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.5.3 Kinetic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.5.4 Temperature Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.5.5 Influence of Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.5.6 Predictive Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Chapter 3 Data Processing Applied to GC××××GC. Applications to the Petroleum Industry Benoît Celse, Maxime Moreaud, Laurent Duval (IFP Energies nouvelles), Daniela Cavagnino (Dani Instrument Spa) 3.1 Basis of Signal Processing in Chromatography. . . . . . . . . . . . . . . . . . . . . . . . 99 3.1.1 Baseline Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.1.1.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.1.1.2 Recommended Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.1.2 Detection of Chromatogram Elution Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.1.2.1 Calculating Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.1.2.2 Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1.2.3 Morphological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.1.3 Identification of Chromatogram Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.1.4 Global Comparison of Chromatograms (Fingerprint Type Analysis) . . . . . . . . . . 108 3.1.4.1 Signal Synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.1.4.2 Comparison of Chromatograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.2 General Presentation of Signal Processing Techniques Applied to GC××××GC 114 3.2.1 Description of the Chromatograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.2.2 Specificities of 2D Chromatograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.2.3 Description of the Various GC×GC Utilisation Methods . . . . . . . . . . . . . . . . . . 118 3.3 Determination of the Concentration of Compounds or Pseudo-compounds in GC××××GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.3.1 General Description of the Quantitative Analysis Numerical Methods. . . . . . . . . 119 3.3.1.1 Manual Determination of Blobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.3.1.2 Automatic Determination of Blobs by Application of Rules. . . . . . . . . . 120 3.3.1.3 Automatic Determination of Blobs by Image Processing . . . . . . . . . . . . 120 3.3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.3.2 Baseline Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.3.3 Determination of “raw” Elution Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 XX Gas Chromatography and 2D-Gas Chromatography for Petroleum Industry 3.3.4 Identification of Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.3.4.1 Definition of a Reference Template. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.3.4.2 Adaptation of the Template to a New 2D Chromatogram. . . . . . . . . . . . . 124 3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.4 Illustrations of Quantitative Analysis of Data Obtained by GC××××GC. . . . . . . 127 3.4.1 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.1.1 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.1.2 Analytical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.1.3 Template Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.1.4 Comparison between Automatic and Manual Recalibration. . . . . . . . . . . 132 3.4.2 Mixtures Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.4.2.1 Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.4.2.2 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.4.3 Simulated Distillation Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.4.4 Simulation of Physical Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.4.5 Calculations of Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.4.5.1 Interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.4.5.2 Principle of Property Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.4.5.3 Application Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.5 Comparison of GC××××GC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 3.5.1 Interest of Fingerprint Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 3.5.2 Types of Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 3.5.3 Pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.5.4 Comparison by Studying 3D Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.5.4.1 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.5.4.2 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.5.5 Comparison by Application of a Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.5.6 Multi-sample Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Chapter 4 Coupled Systems with a GC or GC××××GC Dimension Thomas Dutriez (DSM Resolve) 4.1 Overview of Requirements and Coupling Possibilities. . . . . . . . . . . . . . . . . . . 159 4.1.1 Chromatographic Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.1.2 Coupling Possibilities with GC or GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.1.3 Practical Implementation of Highly Hyphenated System . . . . . . . . . . . . . . . . . . . 161 4.1.3.1 Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.1.3.2 Specificity of Comprehensive Coupling Systems . . . . . . . . . . . . . . . . . . 162 4.2 Systems with a GC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.1 Coupling between an LC Dimension and GC . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.1.1 LC-GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.1.2 LC×GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.2.2 Coupling between an SFC Dimension and GC . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.2.2.1 SFC-GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.2.2.2 SFC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.2.3 Summary Table of Relevant Petroleum Applications. . . . . . . . . . . . . . . . . . . . . . 173 Table of Contents XXI 4.3 Systems with a GC××××GC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.3.1 Coupling between a GC Dimension and GC×GC. . . . . . . . . . . . . . . . . . . . . . . . 175 4.3.1.1 GC-GC×GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.3.1.2 GC×GC×GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 4.3.2 Coupling between an LC Dimension and GC×GC. . . . . . . . . . . . . . . . . . . . . . . 177 4.3.2.1 LC-GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.3.2.2 LC×GC×GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.3.3 Coupling between an SFC Dimension and GC×GC . . . . . . . . . . . . . . . . . . . . . . 180 4.3.4 Summary Table of Relevant Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Chapter 5 Detailed Analysis of Hydrocarbons Frederick Adam (Saudi Aramco) and Thomas Dutriez (DSM Resolve) 5.1 Analysis of Diesel Cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1.1 Conventional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1.2 Target Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.1.2.1 Analysis of Biodiesel and Diesel Blends. . . . . . . . . . . . . . . . . . . . . . . . 191 5.1.3 Extended PIONA Analysis of Middle Distillates by GC×GC . . . . . . . . . . . . . . . 193 5.1.3.1 Orthogonal Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.1.3.2 Non-orthogonal Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.1.3.3 Quantitative Comparison with the Reference Methods. . . . . . . . . . . . . . 196 5.1.4 Towards a Third Separation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.1.4.1 Third Separation Dimension by Detection . . . . . . . . . . . . . . . . . . . . . . 198 5.1.4.2 Adding a Separation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.1.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.2 Analysis of Heavy Petroleum Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.2.1 Global Group Type Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.2.2 Group Type Analysis for Heteroelement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.2.2.1 Sulphur Speciation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.2.2.2 Nitrogen Speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.2.3 Target Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.2.4 Summary Table of Applications to Petroleum Products . . . . . . . . . . . . . . . . . . . 216 5.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Chapter 6 Calculating Properties from Chromatographic Data Cyril Dartiguelongue, Vincent Souchon and Benoît Celse (IFP Energies nouvelles) 6.1 Property Prediction Based on One-dimensional GC – RON and MON Octane Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.1.1 The Octane Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.1.2 Determination of Octane Number from Chromatographic Data. . . . . . . . . . . . . . 227 6.1.2.1 Linear Octane Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.1.2.2 Non-linear Octane Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.1.2.3 Octane Profiles and Cumulated RON. . . . . . . . . . . . . . . . . . . . . . . . . . 233 XXII Gas Chromatography and 2D-Gas Chromatography for Petroleum Industry 6.2 Predicting Properties Using Two-dimensional Data – Example of the Cetane Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 6.2.1 Cetane Number: Definition, Measurement and Prediction . . . . . . . . . . . . . . . . . . 235 6.2.2 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.2.2.1 Description of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.2.2.2 GC×GC Analysis/Instrumentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.2.2.3 Strategy for Cetane Model Development. . . . . . . . . . . . . . . . . . . . . . . . 242 6.2.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6.2.3.1 Comparison of GC×GC Results with Conventional Techniques. . . . . . . . 243 6.2.3.2 Cetane Model from GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 6.2.3.3 Application to Virtual Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 6.3 Other Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.3.1 Property Models Based on GC Analysis of Gasolines . . . . . . . . . . . . . . . . . . . . . 253 6.3.1.1 Examples of Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.3.1.2 Examples of Non-linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.3.2 Properties Modelling from GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.3.2.1 Molecular Weight Calculation from GC×GC/FID. . . . . . . . . . . . . . . . . . 255 6.3.2.2 Viscosity Prediction of Fuels Using a Molecular-based Approach . . . . . . 256 6.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Chapter 7 Speciation of Heteroelements 7.1 Speciation of Sulphur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Laure Boursier (IFP Energies nouvelles) 7.1.1 Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.1.1.1 Specific Sulphur Detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 7.1.2 GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.1.2.1 Pre-separation between Sulphur Compounds and Hydrocarbon Matrix. . . 269 7.1.2.2 Specific Sulphur Detectors Adaptable to GC×GC. . . . . . . . . . . . . . . . . . 270 7.1.2.3 Application to Petroleum Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.2 Speciation of Nitrogen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Marion Courtiade-Tholance (IFP Energies nouvelles) 7.2.1 Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 7.2.1.1 Hall Electrolytic Conductivity Detector. . . . . . . . . . . . . . . . . . . . . . . . . 275 7.2.1.2 Thermionic Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 7.2.1.3 Atomic Emission Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 7.2.1.4 NCD Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 7.2.2 GC×GC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 7.3 Speciation of Oxygen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Badaoui Omais (IFP Energies nouvelles) 7.3.1 Speciation of Oxygen in Coal-derived Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . 285 7.3.1.1 Properties of Coal-derived Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 7.3.1.2 1D Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7.3.1.3 GC×GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.