Mon.Not.R.Astron.Soc.000,1–??(2014) Printed23April2015 (MNLATEXstylefilev2.2) Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks B. D. Metzger1(cid:63), T. Finzell2, I. Vurm1, R. Hascoe¨t1, A. M. Beloborodov1, L. Chomiuk2 1ColumbiaAstrophysicsLaboratory,NewYork,NY,10027,USA 2DepartmentofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824,USA 5 1 0 Received/Accepted 2 r p ABSTRACT A 1 The Fermi LAT discovery that classical novae produce ∼> 100 MeV gamma-rays estab- 2 lishesthatshocksandrelativisticparticleaccelerationarekeyfeaturesoftheseevents.These shocks are likely to be radiative due to the high densities of the nova ejecta at early times ] coincidentwiththegamma-rayemission.ThermalX-raysradiatedbehindtheshockareab- E sorbedbyneutralgasandreprocessedintoopticalemission,similartoTypeIIn(interacting) H supernovae. Gamma-rays are produced by collisions between relativistic protons with the . novaejecta(hadronicscenario)orInverseCompton/bremsstrahlungemissionfromrelativistic h electrons(leptonicscenario),whereinbothscenariostheefficiencyforconvertingrelativistic p particle energy into LAT gamma-rays is at most a few tens of per cent. The measured ratio - o ofgamma-rayandopticalluminosities, L /L ,thussetsalowerlimitonthefractionofthe γ opt r shockpowerusedtoacceleraterelativisticparticles,(cid:15) .Themeasuredvalueof L /L for t nth γ opt s two classical novae, V1324 Sco and V339 Del, constrains (cid:15) > 10−2 and > 10−3, respec- a nth ∼ ∼ tively. Leptonic models for the gamma-ray emission are disfavored given the low electron [ acceleration efficiency, (cid:15) ∼ 10−4 − 10−3, inferred from observations of Galactic cosmic nth 2 rays and particle-in-cell (PIC) numerical simulations. A fraction f > 100((cid:15) /0.01)−1 and sh ∼ nth v > 10((cid:15) /0.01)−1 per cent of the optical luminosity is powered by shocks in nova Sco and 8 ∼ nth nova Del, respectively. Such high fractions challenge standard models that instead attribute 0 allnovaopticalemissiontothedirectoutwardstransportofthermalenergyreleasednearthe 3 5 whitedwarfsurface.Wepredicthard∼10−100keVX-rayemissioncoincidentwiththeLAT 0 emission, which should be detectable by NuSTAR or ASTRO-H, even at times when softer 1. ∼<10keVemissionisabsorbedbyneutralgasaheadoftheshocks. 0 Keywords: keywords 5 1 : v i X 1 INTRODUCTION central temperature, and accretion rate (e.g., Yaron et al. 2005; r Hillman et al. 2014). Despite notable successes, models of nova a As“gueststars”toourancestors,novaehavebeenobservedsince outburstsremainplaguedbyuncertaintiessuchastheefficiencyof antiquity (Zwicky 1936). Powered by runaway nuclear burning convectivemixingandtheassumedprescriptionformassloss.This on the surface of white dwarfs (e.g. Starrfield et al. 1972), nova makesitchallengingtoaccuratelypredictthequantity,velocity,and eruptionsareusuallyaccompaniedbytheexpulsionofmatterout- timehistoryofmatterejectedfromthewhitedwarfsurface. wardsathighvelocities>103kms−1(Shore2013,andreferences ∼ The Large Area Telescope (LAT) on the Fermi satellite re- therein).Mostoftheradiatedenergyinanovaoutburstoccursat cently discovered that classical novae emit > 100 MeV gamma- optical and ultraviolet wavelengths and is generally attributed to ∼ rays,occurringattimescoincidenttowithinafewdaysoftheop- theoutwardstransportofthermalenergyproducednearthewhite ticalpeakandlastingforseveralweeks(Ackermannetal.2014). dwarf surface (Prialnik 1986; Prialnik & Kovetz 1995; Starrfield Luminouscontinuumgamma-rayemissionindicatesthepresence etal.2000).Dynamicalstellarevolutionandhydrodynamiccalcu- ofstrongshockswhichaccelerateparticlestorelativisticenergies, lationsareusedtointerpretbasicfeaturesofnovalightcurves,such producing gamma-rays via leptonic or hadronic processes (e.g., as how their rate of evolution depends on the white dwarf mass, Tatischeff & Hernanz 2007). Radio VLBI imaging by Chomiuk etal.(2014)recentlydetectedcompact,high brightnesstempera- tureknotsfromV959Mon,confirmingthepresenceofnon-thermal (cid:63) E-mail:[email protected] shockemissioninagamma-rayproducingnova. (cid:13)c 2014RAS 2 Evidence for shocks in novae has existed well before Fermi gamma-ray data from novae can be used to probe particle accel- in the form of hard X-ray emission (e.g., Mukai & Ishida 2001; eration at non-relativistic shocks. The basic concepts of diffusive Mukai et al. 2008), early peaks in the radio emission which are shockacceleration(DSA)weredevelopedalmostfortyyearsago inconsistent with thermal emission from freely expanding photo- (e.g.,Axfordetal.1977;Bell1978;Blandford&Ostriker1978). ionized gas (e.g., Taylor et al. 1987; Krauss et al. 2011; Weston However, only recently have plasma kinetic simulations seen the etal.2013),andcoronallineemissionduringthenebularphasere- self-consistentdevelopmentoftheDSAcycleincollision-lessnon- quiring a harder source of ionizing radiation than expected from relativisticshocks(e.g.,Caprioli&Spitkovsky2014a;Kato2014; thecoolingwhitedwarf(e.g.,Shields&Ferland1978).However, Parketal.2014).Asweshalldiscuss,gamma-raynovaeprovide sincemostofthesesignaturesareobservedontimescalesofmonths areal-timelaboratoryfortestingthepredictionsofDSAtheoryin orlateraftertheeruption,shocksappeartohavebeenrelegatedto wayscomplementarytotraditionalmethods,suchasthemodeling a mere side feature of the main thermonuclear event. The Fermi ofsupernovaremnantemission. discoveryofluminousshocksincoincidencewiththeopticalpeak Thispapersolidifiestheabovetheoreticalargumentsandputs unambiguouslyestablishestheirimportancetothequalitativepic- themintopracticeusingdatafromtheclassicalnovaeV1324Sco ture of nova eruptions. The dearth of X-ray and radio shock sig- andV339Del(hereafter,‘novaSco’and‘novaDel’,respectively). naturesattimescoincidentwiththegamma-raysisunsurprisingin Thoughwell-studiedatmanywavelengths,wedonotconsiderthe retrospectduetothehighbound-freeandfree-freeopticaldepths novaV959Monbecauseofthelackofearlyopticalcoveragecon- created,respectively,bylargecolumnsofneutralandionizedgas current with the gamma-ray detections. The salient properties of atearlytimes(Hillmanetal.2014;Metzgeretal.2014). nova shocks are reviewed in §2, including their radiative nature Shocks were unexpected in classical novae because the pre- (§2.1), the high efficiency with which shock power is radiated at eruptionenvironmentsurroundingthewhitedwarfisoccupiedonly optical/UVfrequencies(§2.2),andtheefficiencyofparticleaccel- bythelowdensitywindofthemainsequencecompanionstar,re- erationandgamma-rayproduction(§2.3).Acombinedanalysisof quiring a different source of matter into which the nova outflow the optical and gamma-ray data of V1324 Sco and V3229 Del is collides. One physical picture, consistent with both optical (e.g., presented in §3, using our theoretical framework to constrain the Schaeferetal.2014)andradioimaging(e.g.,Chomiuketal.2014), minimumfractionoftheshockpowerplacedintorelativisticparti- andtheevolutionofopticalspectrallines(e.g.,Ribeiroetal.2013; clesandtheminimumfractionofnovaopticallightcurvesthatare Shore et al. 2013), is that the thermonuclear runaway is first ac- shockpowered.In§4wediscussourresultsandtheirimplications companied by a slow ejection of mass with a toroidal geometry, forparticleaccelerationatnon-relativisticshocksandforthepower the shape of which may be influenced by the binary companion sourcebehindnovaopticallightcurves. (e.g.,Livioetal.1990;Lloydetal.1997).Thisslowoutflowisthen followedbyasecondejectionoracontinuouswind(e.g.,Bath& Shaviv1976)withahighervelocityandmoresphericalgeometry. Assuming the expanding ejecta cools sufficiently, the subse- 2 SHOCKSINGAMMA-RAYNOVAE quent collision between the fast and slow components produces strong“internal”shockswithintheejectawhichareconcentratedin 2.1 Theshocksareprobablyradiative theequatorialplane.Thefastcomponentcontinuestoexpandfreely alongthepolardirection,creatingabipolarmorphology(Fig.1). The slow outflow from a nova with velocity v4 = 103v8 km s−1 Interestingly, modeling of the symbiotic gamma-ray novae V407 expandstoaradius Cyg(Abdoetal.2010)alsoappearedtorequirethepresenceofa R =v t≈6×1013t v cm (1) denseequatorialtorus(Martin&Dubus2013),similartothatin- ej 4 wk 8 ferredinclassicalnovae(seealsoSokoloskietal.2008,Orlando byatimet = t week.Thedensityintheslowejectaofassumed wk et al. 2009, Drake et al. 2009, Orlando & Drake 2012 for other thickness∼R andhydrogen-dominatedcompositionisgivenby ej evidenceforbipolarejectainsymbioticnovae). Metzgeretal.(2014)presentasemi-analyticmodelfornova M n ≈ ej ∼9×1010M t−3v−3cm−3, (2) shocksandtheirthermalemission,whichtheyfittotheradioand ej 4πR3ejf∆Ωmp −4wk 8 X-raydataofthegamma-raynovaV1324Sco.Akeyfindingwas thattheshocksresponsiblefortheradiomaximumseenmonthsaf- where f∆Ω ∼ 0.5isthefractionofthetotalsolid-anglesubtended tertheeruptioncould,atsmallerradiiandearliertimes,alsopower bytheoutflow(Fig.1)and M = 10−4M M istheejectamass, ej −4 (cid:12) thenovaopticalemission.Onecangeneralizethebasicargument normalizedtoavaluecharacteristicofthosemeasuredbylatether- asfollows.Gasaheadofashockwithpowersufficienttocreatethe mal radio emission (Hjellming et al. 1979; Seaquist et al. 1980). observedgamma-rayemissionisnecessarilydense.Mostoftheki- Weassumearadially-thickoutflowbecausetheresultinglowden- neticenergydissipatedbyshocksmovingthroughadensemedium sitymakesthisthemostconservativeassumptionwhenarguingfor isradiatedasthermalX-rays(aso-called“radiative”shock).These radiative shocks. A wide solid angle f∆Ω ∼ 0.5 is also the most X-raysareabsorbedbyneutralgasaheadorbehindtheshock,re- conservativeassumptionwhenarguingforradiativeshocksandis processing their energies to lower, optical frequencies, where the neededtoproduceahighefficiencyforconvertingthekineticen- loweropacityreadilyallowstheirenergytoescape.Theobserved ergyoftheoutflowtoshock,andhencegamma-ray,luminosity. gamma-ray luminosity is typically only a fraction ∼ 10−4 −10−2 Afasteroutflow(hereafter“wind”)ofmasslossrate M˙ and ofthatemittedasoptical/UVradiation(§3).However,sinceonlya velocityv ∼2v collideswiththeejectafrombehind.Therelative 1 4 fractionoftheshockpowerisusedtoacceleraterelativisticparti- velocitybetweenthefastandslowoutflowsisunlikelytogreatly clesandonlyafractionofthatisradiatedintheLATbandpass,one exceed this assumed value ∼ v ∼ 103 km s−1, but if it is much 4 concludesthatasignificantfractionofthenovaopticalemissionis lowerthanassumedthiswouldonlystrengthenoursubsequentar- shock-powered. gumentthattheshocksareradiative,sincethecoolingtimeisan The above result also implies that combined optical and increasingfunctionoftheshockvelocity.Thedensityofthewind (cid:13)c 2014RAS,MNRAS000,1–?? Gamma-raynovaeasprobesofparticleacceleration 3 Herewehaveassumedtheshocksareradiative,forwhichtheve- locityoftheimmediatepostshockgasslowstothatofthecoldcen- tralshell,suchthattheshockvelocityequalsthedifferencebetween thevelocityoftheupstreamgasandthecentralshell.Hereafter,the velocitiesofbothshocksareparametrizedasv = ηv ,wherewe sh 4 expectthatη<1fortheFSandη∼1forRS.Alsonotethatforpa- rametersofinterest,theamountofkineticenergydissipatedbythe RSisgreaterthanthatbytheFSduetothehighervelocityofthe RS,potentiallyfavoringtheRSasthesiteofparticleacceleration. Theshocksheatthegastoatemperature 3 T (cid:39) µm v2 ∼1.4×107v2η2K (4) sh 16k p sh 8 andcompressesittoadensityn = 4n (FS)or4n (RS),where sh ej w wehavetakenµ=0.62. Gascoolsbehindtheshockonacharacteristictimescale (cid:40) 3kT /2 1.6×103ηv4M−1t3 s FS, t = sh ≈ 8 −4 wk (5) cool n Λ(T ) 7.8×104v4M˙−1t2 s RS, sh sh 8 −5 wk where Λ = Λ T1/2 = 2×10−27T1/2 erg cm3 s−1 is the cooling 0 function and we have assumed η = 1 in the RS case. Our cool- ing function includes just free-free emission, which is conserva- tive from the standpoint of radiative shocks because line cooling Figure1.Schematicdiagramoftheproposedgeometry(sideview)ofshock contributes a comparable or greater cooling rate at temperatures interactioninclassicalnovaoutflows(seetext).Aslowoutflowwithveloc- ∼< 3×107 K(e.g.Schureetal.2009).Herewehaveassumedthat ityv4∼<103kms−1isejectedfirst,itsgeometryshapedintoanequatorially- electronsandprotonsareefficientlycoupledbehindtheshock,as concentratedtorus,possiblyduetointeractionwiththebinarycompanion is justified because the timescale for Coulomb energy exchange ofthewhitedwarf(e.g., Livioetal.1990).Thisoutflowisfollowedwithin t = 14T3/2/n s(NRLPlasmaFormulary;Huba2007)isshort e−p sh sh afewdaysbyafasteroutfloworcontinuouswindwithahighervelocity comparedtotheexpansiontimescalet ∼R /v ∼t, exp ej 4 v1∼2v4.Thefastandslowcomponentscollide,produceaforward-reverse (cid:40) shockstructure.Kineticenergydissipatedbytheshocksisradiatedasther- te−p ≈ 3×10−5M−−41v68η3tw2k FS, (6) malX-rays,whichareabsorbedbyneutralgasaheadorbehindtheshock t 1.2×10−3M˙−1v6t RS, andre-radiatedasthermaloptical/UVemission(Metzgeretal.2014).A −5 8wk small fraction, (cid:15)nth (cid:28) 1, of the shock power is used to accelerate non- wherewehave(conservatively)assumedapurehydrogencompo- thermal ions or electrons, which radiate gamma-rays by interacting with sition. ambientgasorradiation,respectively. Whethertheshocksareradiativedependsontheratioofthe coolingtimescaletotheexpansiontimescale, (cid:40) t 2.7×10−3ηv4M−1t2 FS, atthecollisionradius(∼radiusoftheslowejecta)isgivenby χ≡ cotol ≈ 0.13v4M˙−1t 8 −4 wk RS, (7) 8 −5 wk n ≈ M˙ ∼2×109M˙ v−3t−2cm−3, (3) ForthecharacteristicrangeofparametersM−4 ∼0.3−3(Seaquist w 4πR2m v −5 8 wk &Bode2008),v < 3,η < 1andtimescalescorrespondingtothe ej p 1 8 ∼ gamma-rayemissiont <fewweeks,oneconcludesthattheFSis ∼ whereM˙ =10−5M˙−5M(cid:12)wk−1isnormalizedtoavalueresultingin likelytoberadiative(χ<1).ItislessclearthattheRSisradiative, theejectionof∼ 10−5M(cid:12) overaweek.Forinstance,atotalmass since in principle for v8 ∼> 2 and a very low wind mass loss rate 4×10−5M(cid:12) was ejected in the “fast” component of V959 Mon M˙ <1onecanhaveχ>1. −5∼ (Chomiuk et al. 2014). Our assumption that the fast outflow is a Theargumentforradiativeshockscanbestrengthenedbycon- steady wind is also the most conservative one when arguing for sideringadditionalconstraints.First,theopticaldepthoftheouter radiative shocks; for a fixed fast ejecta mass, the wind density at unshockedejectaatopticalfrequencies, thereverseshockissmallerthaniftheejectionhadoccurredovera shorterduration. τopt(cid:39)mpnejRejκopt≈0.9M−4v−82tw−2k, (8) Theinteractiondrivesaforwardshock(FS)throughtheslow mustexceedunity,whereκ ∼ 0.1cm2 g−1 istheopticalopacity opt shellandareverseshock(RS)backthroughthewind(Fig.1).As- setbyDoppler-broadenedironlines(Pinto&Eastman2000).This suming the shocks are radiative, the post shock material is com- constraintismotivatedbythelackofclearevidence,e.g.emission pressed and piles up in a central cold shell sandwiched by (the lines,forhot,energeticshocksinopticallythinregionsduringthe ram pressure of) the two shocks. The FS propagates at a veloc- opticalpeaksofnovaeandduringmostepochsofgamma-rayde- ity v = v −v (cid:28) v , while the velocity of the reverse shock is f c 4 4 tection.Overthefirstfewweeksorlongerfollowingoutburst(i.e., v = v −v ,wherev isthevelocityofthecoldcentralshell(see r 1 c c priortothedropofthe“ironcurtain”),novaspectraarecharacter- Metzgeretal.2014,althoughbewaryofnotational1 differences). ized by broad P-Cygni line profiles, indicating the presence of a pseudo-photosphere. Equation(7)canberewrittenintermsofτ as opt 1sheInllp(avrctiicnutlhairs,Mpaeptezrg)e.rIenttahli.s(2p0ap1e4r)vdsehfiinnestvesahdasdethneotveeslothceityveolfotchiteycoenfttrhael χ= √9m3p/2k1/2ηv2shκopt ≈(cid:40) 2×10−3ηv28τ−op1t. FS,(9) shocks. 8 3Λ0(nshmpRejκopt) 0.08M˙−−51M−24τ−op2ttw−3k RS. (cid:13)c 2014RAS,MNRAS000,1–?? 4 Fortheforwardshocktooccurbelowthephotosphere(τ > 1) withoutadiabaticlossesafteratime(Arnett1982) opt yetnotberadiative(χ > 1)wouldthusrequireunphysicallyhigh t ≈0.4M1/2v−1/2d. (11) ejectavelocities,v > 10,000kms−1.TheRSisalsoradiativeif opt −4 8 4 ∼ τ > 1ontimescalesofacoupleweeksfor M < 3aslongas Thetimescalet alsosetstheminimumtimescalefortheoptical opt −4 ∼ opt M˙ >0.2. lightcurvetoriseaftertheonsetoftheexplosion. −5∼ Asecondrequirementisthatpowerdissipatedbytheshocks Theonsetofgamma-rayemissionfromV1324ScoandV339 L = 9πR2n m v3/32exceedtheobservedgamma-rayluminos- Del was delayed with respect to the peak of the optical radiation sh ej sh p sh ity L by an efficiency factor 1/(cid:15) (cid:15) > 100 accounting for the byafewdays(Ackermannetal.2014).Thedominantprocess3by γ nth γ ∼ fractionoftheshockpowerradiatedasgamma-rays,where(cid:15)nt ac- whichgamma-raysofenergy(cid:15)γ ∼ 0.1−3GeVareattenuatedis countsfortheefficiencyoftheshockinacceleratingnon-thermal inelastic electron scattering, for which the Klein-Nishina opacity particlesand(cid:15)γaccountsfortheenergyofthelatterradiatedinthe isκie ∼ 10−3((cid:15)γ/GeV)−1κes ∼ 4×10−3((cid:15)γ/GeV)−1κopt.Theejecta LATbandpass(see§2.3).Equation(7)canbewrittenintermsof will thus remain opaque to gamma-rays of energy (cid:15)γ until τopt ∼< Lsh=Lγ/(cid:15)nth(cid:15)γas 250((cid:15)γ/GeV), as occurs after a time tγ which exceeds that of the nominalopticalrisetime(eq.[11])bytheratio χ = 25861√π3η4v54m3p/L2kγ1Λ/20Rej(cid:15)nth(cid:15)γ tγ ≈(cid:32) cκie (cid:33)1/2≈1.1(cid:18) (cid:15)γ (cid:19)−1/2v−1/2, (12) t v κ GeV 8 (cid:32) L (cid:33)−1(cid:18)(cid:15) (cid:15) (cid:19) opt w opt ≈ 0.02η4v68twk 1036erγgs−1 0n.th01γ . (10) i.e.tγ ∼coupledaysfor(cid:15)γ ∼0.1GeV. Fromtheabovewecandrawtwokeyconclusions:(i)ashock FormeasuredvaluesL ∼3×1035ergs−1(Ackermannetal.2014) that produces gamma-ray emission which is not absorbed and γ theshocksarethusradiative(χ < 1)onatimescaleofweeksfor hence observable (gamma-ray optical depth τ < 1) necessarily γ (cid:15) (cid:15) <0.01ifthevelocityoftheshocksis<2,000kms−1. radiatesthebulkofitsdissipatedthermalenergywithoutadiabatic nth γ ∼ Inconclusion,bothforwardandreverseshocksarelikelytobe lossesatopticalfrequencies(τ <c/v ).Inotherwords,attimes opt ∼ 4 radiativeattimescorrespondingtotheobservedgamma-rayemis- whenthecolumnofejectaissufficientlylowtoallowgamma-rays sion,althoughthisstatementisthemostsecureattheearliesttimes. to escape unattenuated, it is also sufficiently low to allow ther- Onecanneverthelesskeepthefollowingargumentsfullygeneralby mal radiation to escape without significant losses to PdV work. introducingtheshockradiativeefficiency f =(1+5χ/2)−1,which (ii)gamma-rayabsorption(τ > 1)atearlytimesmayexplainthe rad γ equalsunityforχ(cid:28)1butscales∝1/χforχ(cid:29)1(Metzgeretal. delayed onset of the gamma-ray emission. If true, the latter im- 2014). plies that the optical emission near peak can be shock-powered, even if gamma-ray emission is suppressed at this time. Alterna- tively,thegamma-raydelaymayresultfromthefinitetimescalere- 2.2 Theshockpowerwillmostlyemergeasopticalradiation quiredtoacceleratethegamma-rayproducingparticlesattheshock (G.Dubus,privatecommunication). Absent the immediate presence of a shock, the bulk2 of the nova ejecta is neutral at early times because the timescale for radia- tive recombination, trec ∼ 1/nejαrec ∼ 11v38tw3kM−−41Z−2 s, is ex- 2.3 Partitioningtheshockenergy tremelyshortcomparedtotheevolutiontimescale∼weeks,where α ∼10−12Z2cm3s−1istheapproximateradiativerecombination Alargefraction frad∼1ofthetotalpowerLshdissipatedbyshocks rec goes into thermal X-rays, which are absorbed and re-radiated as rateforhydrogen-likespeciesofchargeZ (Osterbrock&Ferland 2006). X-rays of temperature T < 107 K (eq. [4]) are thus ab- opticalemission(§2.2).Amuchsmallerfraction(cid:15)nth(cid:28)1goesinto sh ∼ accelerating non-thermal ions or electrons. The fraction of non- sorbedbyhighcolumnsofneutralgasaheadorbehindtheshock, thermalpower(cid:15) radiatedasgamma-rays,L =(cid:15) (cid:15) L ,depends before being re-radiated as line emission at lower frequencies. If nth γ nth γ sh alsoonafactor(cid:15) <1accountingfortheradiativeefficiencyofthe theshockisradiativethenthetimescaleforreprocessingtolower γ acceleratedparticlesandthefractionofthetotalgamma-rayemis- temperaturesisalsonecessarilyshortbecausethelinecoolingfunc- tion Λ(T) increases rapidly with decreasing temperature down to sion emitted in the LAT bandpass. Combining these expressions, T ∼ 104 K(e.g.Schureetal.2009).However,harderX-rayswith thefractionofthetotalnovaopticalluminositypoweredbyshocks canbewritten energies > 10 keV should be free to escape even at these early ∼ timesduethedecreasingbound-freecrosssectionathighphoton f ≡ Lopt,sh ≈ frad Lγ . (13) frequencies(§4). sh L (cid:15) (cid:15) L opt γ nth opt Radiationescapesefficientlyonceitreachestheoptical/near- Once (cid:15) is specified based on the assumed emission process UVbandduetothemuchloweropacityatthesefrequenciescom- γ (hadronicorleptonic),theobservedratioL /L setsalowerlimit paredtotheUV/X-rayopacityofneutralgas.Reprocessedoptical γ opt onthevalueof(cid:15) ,i.e. radiationwillfurthermorenotbedegradedbyPdVlossesprovided nth that the photon diffusion timescale td ∼ Rejτopt/c is shorter than f <1⇒(cid:15) >(cid:15) = 1 Lγ , (14) the expansion timescale texp ∼ Rej/v4 ≈ t, where τopt is the opti- sh nth nth,min (cid:15)γ Lopt cal depth (eq. [8]). Equating these two, optical radiation escapes assumingaradiativeshock(f =1).Alternatively,ifthevalueof rad (cid:15) isassumed,thenthemeasuredvalueofL /L determines f . nth γ opt sh 2 Althoughthebulkoftheejectaisneutralatearlytimes,X-raysfromthe shocksfullyionizeathinlayerofgasjustaheadoftheshocks(Metzgeretal. 3 Photo-pionproductionisthedominantsourceofopacityforhigheren- 2014).Thus,wedonotexpecttheshocktobemodifiedbythepresenceofa ergygamma-rays(cid:15)γ ∼>3GeV,forwhichtheopacityisκπ ∼ 3×10−4κes neutralupstreammedium,asmayoccurinsomesupernovaremnants(e.g., (e.g.Anchordoquietal.2002,Montanetetal.1994).Photon-photonpair Blasietal.2012). creationopacitybecomesimportantatTeVenergies(eq.[25]). (cid:13)c 2014RAS,MNRAS000,1–?? Gamma-raynovaeasprobesofparticleacceleration 5 Wenowconsiderwhatvaluesof(cid:15) and(cid:15) areexpectedinhadronic onionizationbythefree-freeemission(theireq.[45]).Replacing nth γ andleptonicscenarios,respectively. R with∆ inequation(16)resultsin ej ion eB v ∆ E = sh sh ion 2.3.1 Hadronicscenario max c (cid:18) (cid:15) (cid:19)1/2(cid:18) n (cid:19) Themomentumdistribution f(p)∝ p−4ofnon-thermalprotonsac- ≈ 1.0×109eVη3 B ej M1/2v3/2t−3/2(.18) celeratedviaDiffusiveShockAcceleration(e.g.,Blandford&Os- 10−6 1010cm−3 −4 8 wk triker1978)correspondstoanenergydistribution Thus, for typical values of n ∼ 109 −1010 cm−3 (eq. [2], [3]) ej ddNEpE2p∝(cid:40) cEo1pn/2s,tant, mkTcs2h(cid:28)∼<EEp(cid:28)<Empc2, . (15) a1n0d−4v(8(cid:15)B∼,(cid:63)1∼>, o1n0e−2fi−nd1s)thisatnhoiwghreerqufiierleddsttorehnagvthesEomfax(cid:15)B∼>∼>101100−2eV−. p p p max Note,however,thatMetzgeretal.(2014)donottakeintoaccount thatconcentratesmostofthenon-thermalenergyinrelativisticpar- additionalionizationofhydrogenbytheUVradiationproducedby ticles.TheHillas(1984)criterionsetsanupperlimitonthemaxi- linecoolingorbythereprocessedX-rays,whichcouldbeimportant mumprotonenergy atearlytimesofrelevancebecausetheejectaisopaquetoX-rays. eB v R (cid:18) (cid:15) (cid:19)1/2 Thiscouldincreasetheenergyoftheionizingradiation,andhence Emax= shcsh ej ≈7×1012eVη2 10B−6 M−1/42v38/2tw−1k/2, (16) the thickness of the ionized layer and Emax, by up to a factor of ∼kT /(2Ryd)∼50η2v2,whereRyd=13.6eVisthecharacteristic where B is the magnetic field strength near the shock, which is sh 8 sh ionization threshold energy for hydrogen, relaxing constraints on estimatedbyassumingthatmagneticpressureB2/8πisafraction sh (cid:15)B,(cid:63). (cid:15) ofthethermalpressureofthepost-shockgas. B Thefractionoftheshockpowerplacedintonon-thermalions Areasonablyhighvalueof(cid:15) isexpectedifionaccelerationis B (cid:15) can be estimated from observations of other non-relativistic efficient,becausecosmic-rayinducedinstabilitiesamplifythemag- nth shocks, such as gamma-ray emission in supernova remnants neticfieldforsomedistancebehindtheshocktoasignificantfrac- (e.g. Ackermann et al. 2014). In Tycho, for instance, Morlino & tionofitsequipartitionvalue.Caprioli&Spitkovsky(2014b)show Caprioli (2012) infer (cid:15) ∼ 0.1 if the gamma-rays are hadronic nth thatthemagneticfieldneartheshockisamplifiedfromitsinitial inorigin.Hybrid(kineticions-fluidelectron)simulationsofnon- upstreamvalueB0,accordingto(Bsh/B0)2 ≈3(cid:15)nthMA(theireq.2), relativisticshocksalsofind(cid:15) ≈0.1−0.2forcasesinwhichtheup- whereM =v /v istheAlfve´nicMachnumberoftheupstream4 nth A sh A (cid:112) streammagneticfieldisquasi-paralleltotheshocknormal(Capri- flowintheshockframe,v =B / 4πm n ,and(cid:15) isthefraction A 0 p 4 nth oli&Spitkovsky2014a).However,ifthenovaejectaischaracter- oftheshockdissipatedkineticenergyplacedintorelativisticions. izedbyaphaseofapproximatelysteady-stateoutflow,thenradial Theequipartitionfractionoftheshockregioncanthusbewritten expansionintwodimensionswillproduceamagneticfielddomi- as natedbyitstoroidalcomponent,i.e.perpendiculartotheoutflow (cid:18)(cid:15) (cid:19)(cid:18) (cid:15) (cid:19)1/2 and hence shock direction (Fig. 1). For such quasi-perpendicular (cid:15) =3(cid:15) η−1(cid:15)1/2≈10−6η−1 nth B,0 , (17) B nth B,0 0.1 10−11 magnetic field geometries, Caprioli & Spitkovsky (2014a) infer muchlowerprotonaccelerationefficiencies(consistentwithzero), where(cid:15) ≡ B2/(4πn m v2)istheratioofmagneticenergytoki- B,0 0 4 p 4 apointwereturntoin§4. neticenergywithintheinitial,unshockedoutflow. Relativisticprotonsacceleratedattheshocksproducepionsby Thevalueof(cid:15) withintheunshockednovaejectacanbecon- B,0 collidingwitheffectivelystationaryprotonsintheejecta.Themean strainedasfollows.Assumethatthemagneticenergydensityofthe timebetweeninteractionsisgivenbyt =(κ m n c)−1,where outflowU isafraction(cid:15) ofthebulkkineticenergyU ∝ρv2/2 p−p p−p p ej nearthestBellarsurface(rB=,(cid:63)R ),whereρandvaretheoutKflowden- κp−p ∼ 0.025cm−2 g−1 ≈ κopt/4(Kamaeetal.2006)istheopacity (cid:63) forinelasticprotoncollisionsofenergyE >GeV.Thenumberof sityandvelocity,respectively.Flux-freezingwithinthe3Dexpand- p ∼ collisionsaprotonexperiencesoveranexpansiontimescalet/t ingflow(ρ∝r−3)dilutesthefieldstrengthaccordingtoB∝1/r2, p−p suchthatU /U = (cid:15) attheradiusoftheshock∼ R willbeat thusexceedsunityuntilafteratime B k B,0 ej mostafactorofR /R smallerthan(cid:15) .Forcharacteristicvalues of Rej ∼ 1014 cm(cid:63)andejthe initial radiuBs,(cid:63)R(cid:63) ∼> 109 cm of the out- tp−p≈8.2M−1/42v−83/2weeks. (19) flowsetbythewhitedwarfsurface,weexpectthat(cid:15) >10−5(cid:15) . B,0 ∼ B,(cid:63) Thus,for(cid:15)nth = 0.1andη = 1,evenanextremelysmallvalueof At times t (cid:28) tp−p, protons lose their energy to pion production (cid:15) >10−18appearssufficienttoaccelerateprotonstoamaximum insteadofadiabaticexpansion;theejectathusactsasanefficient B,(cid:63) ∼ energyE >1010eV(eq.[16])largeenoughtoexplainthehigh- “calorimeter”forconvertingrelativisticprotonsintogamma-rays. max ∼ Thefractionof p− pcollisionsproducinggamma-rays(cid:15) is estLAT-detectedphotonenergiesviaπ creation(Ackermannetal. γ 0 theproductofthefractionofinelasticinteractions,σ /(σ +σ )∼ 2014). ie ie e 0.5−0.8(whereσ andσ aretheelasticandinelasticcrosssec- Wecaution,however,thatthebulkoftheejectaisneutraland e ie tions,respectively;Kamaeetal.2006),andthefraction(cid:39) 1/3of hencemaynotbeabletosupportthestrongturbulentmagneticfield inelasticeventsplacedintothe p+p → π0 → γ+γchannel.We neededtoaccelerateparticles.InthiscasetheradiusR enteringthe ej thustypicallyexpectthat(cid:15) ≈0.2−0.3,dependingonthedetailsof Hillascriterioninequation(16)shouldbereplacedbythewidthof γ theacceleratedprotonspectrum,whilealowervaluecouldresultif theX-rayionizedlayeraheadoftheshock.Metzgeretal.(2014) estimatethelattertobe∆ion∼9×109ηv (n /1010cm−3)−1cmbased protonsarenotefficientlytrapped,i.e.attimest>tp−p. 8 ej To summarize, we expect (cid:15) (cid:15) < 0.03 in hadronic scenar- nth γ ∼ ios if the magnetic field within the ejecta is perpendicular to the 4 Forconcreteness,wefocushereonamplificationofthemagneticfieldof shockplane,butthisvaluemaybeconsiderablylowerifthefield theslowejectaattheforwardshock,althoughsimilarconsiderationsapply isinsteadparalleltotheshockplane,aswouldbeexpectedgivena toamplificationofthefieldinthefastoutflowatthereverseshock. phaseofquasi-steadyoutflowfromthewhitedwarfsurface. (cid:13)c 2014RAS,MNRAS000,1–?? 6 2.3.2 Leptonicscenario where we have assumed that that particles with 104 < γ < 105 ∼ e ∼ aretheonlyonescontributingintotheLATbandpassandthatthey In supernova shocks, the ratio of the energy placed into rela- radiativewith100percentefficiency,i.e.t (cid:28) tort (cid:28) t. tivistic protons to that in relativistic electrons is estimated to be cool,IC cool,rb Power-law fits to the gamma-ray spectra of three classical novae K ∼ 10−4 −10−2 based on observations of individual remnants ep yieldbest-fitphotonindicesΓ ∼ 2−2.5(Ackermannetal.2014) (Vo¨lketal.2005;Morlino&Caprioli2012)andsynchrotronemis- corresponding to p = 2(Γ−1) ∼ 2−3, for which we estimate sionfromGalacticcosmicrays(Beck&Krause2005;Strongetal. (cid:15) ∼ 0.2−10−4. To be conservative we hereafter assume p = 2, 2010).Thisvalueisconsistentwithrecentparticle-in-cellsimula- γ correspondingto(cid:15) =0.2. tionsofnon-relativisticshocks,whichfindK ∼10−3whenextrap- γ ep Insummary,adopting(cid:15) ∼10−5−10−3motivatedbysimula- olatedtoshockvelocitiesv /c<0.01characteristicofthoseinno- nth sh ∼ tionsandobservations,weestimatethat(cid:15) (cid:15) ∼10−6−10−4inthe vae(Parketal.2014;Kato2014).Assumingshocksacceleratepro- nth γ leptonicscenario. tonswithamaximumefficiency∼ 0.1(§2.3.1),K < 10−2 corre- ep ∼ spondstoarelativisticnon-thermalelectronfractionof(cid:15) <10−3. nth∼ ToComptonupscatteropticalseedphotonsofenergy E ∼ opt eVenergyto∼0.1−10GeVrequireselectronswithenergyE = 3 DATA e γemec2andLorentzfactorγe∼104−105.TheratiooftheCompton Thissection describesour analysisofthe gamma-rayand optical coolingtimescaleoftheelectrontotheexpansiontimescaleisgiven lightcurvesofV1324ScoandV3229Del,eventschosenascur- by rentlybeingtheonlyclassicalnovaewithbothpublishedgamma- t 3m c (cid:18) γ (cid:19)−1(cid:32) L (cid:33)−1 ray data and contemporaneous optical coverage. We do not con- cootl,IC = 4σ Ue γ t ∼0.07τ−op1t 10e4 1038eorpgt s−1 v28twk, sidersymbioticnovaeinthisanalysisbecausetheargumentforthe T opt e (20) shocksbeingradiativeislesssecuregiventhatthelatterpropagate where U ≈ Fτ = L τ /4πcR2 is the radiation energy den- intotheextendedwindofthegiantcompanionstar,insteadofthe opt opt opt ej sityneartheshock(forshocksbelowthephotosphere,τ > 1), potentially denser slow ejecta in the case of internal shocks. Our opt where we have used the fact that the conserved radiative flux goalistousethemeasuredratioofgamma-rayandopticalfluxes F ∝ ∂Uopt/∂τ in the diffusion approximation implies that Fτ is toconstraintheparticleaccelerationefficiency(cid:15)nthandthefraction constantfromthephotosphere(τ∼1)totheshockdepthτ=τopt. oftheclassicalnovaopticallightcurvepoweredbyshocks fsh,fol- Equation(20)showsthatγ > 104 electronsareinthefastcool- lowingtheargumentsoutlinedin§2.3. e ∼ ing regime (t (cid:28) t ) for luminosities L > 1037 erg s−1 and cool exp opt ∼ timescalest∼weeksofrelevance. 3.1 Optical Relativistic Bremsstrahlung emission represents an alterna- tive, and possibly dominant, leptonic emission mechanism. The For each nova we use photometric measurements at both opti- coolingrateofarelativisticelectronofLorentzfactorγ offprotons calandnear-infrared(NIR)wavelengths.Opticalphotometrywas e inthenovaejectaisgivenbyq˙ =3×10−22γ3/2n ergs−1(Rybicki taken from the database of the American Association of Variable rb e ej &Lightman1979),resultinginacoolingtime Star Observers (Henden 2013). Both nova Sco and Del had BVR t γ m c2 (cid:18) γ (cid:19)−1/2 bandmeasurements,butonlyDelincludedI band.Tosupplement cool,rb = e e ≈5.1×10−4 e M−1t2 v3, (21) theNIRfornovaSco,weusedJHKmeasurementsfromtheSmall t q˙ 104 −4 wk 8 rb andModerateApertureResearchTelescope(F.M.Walter,private where we have used equation (2). A comparison between equa- communication).Onlyphotometricmeasurementscoincidentwith tions(20)and(20)showsthatrelativisticbremsstrahlungemission the published Fermi gamma-ray light curve were used; specifi- canexceedthatfromInverseComptonscatteringfortypicalvalues cally August 16−September 14 2013 and June 15−June 30 2012 ofthenovaluminosity,outflowvelocity,andejectamass.Regard- forV339DelandV1324Sco,respectively.Photometricreddening lessofwhetherInverseComptonorbremsstrahlungemissiondom- correctionswereappliedtothedatasetsusingan E(B−V) = 0.2 inates, the shock energy placed into electrons with the necessary forV339Del(Munarietal.2013)andE(B−V) = 1.0forV1324 Lorentzfactorstoproducetheobservedgamma-rayemissionwill Sco(Finzelletal.2015).Filterspecificreddeningcorrectionsfor infactberadiatedwithhighefficiency. the optical/NIR were taken from Schlafly et al. (2011) assuming Comptonscatteringofelectronswithanacceleratedspectrum R =3.1. dNe/dEe ∝ Ee−p,whereEe =γemec2,producesagamma-rayspec- V Thetotaloptical/NIRfluxeachnight,Fopt,wasdeterminedby trum approximating the SED as a blackbody, fitting a temperature and dNγ ∝(cid:40) E−(p+1)/2, E(cid:28)Ec . (22) normalization,andintegratingoverfrequency.Theearly-timeflux dE E−(p+2)/2 E(cid:29)E , obtainedforV339Delareconsistentwiththevaluesfoundinthe c more detailed analysis of Skopal et al. (2014), who also showed where E ∼ E γ2 and γ is the minimum electron Lorentz fac- c opt c c thatthespectralshapewasablackbodyallthewayouttothemid- tor obeying the fast-cooling condition (t < t ; eq. [20]). cool,IC ∼ exp IR.WeconfirmedourblackbodyassumptionforV1324Scobyex- A similar cooling energy can be defined in the case of relativis- tendingourspectralfituptothenear-UVandcomparingwithflux tic brehmsstrahlung emission, below which the photon spectrum valuesfromSwiftUVOT(Pageetal.2012).Afterapplyingredden- dN /dE ∝ E−(2p−1)/2,i.e.thesameasforInverseComptoninthe γ ingcorrectionsfromBrownetal.(2010)ourblackbodyfitpredicts p=2caseofgreatestrelevance(seebelow). anear-UVfluxof2.1±0.4×10−13ergs−1cm−2,avalueinagree- Thefractionofthetotalenergyinrelativisticelectronsradi- mentwiththeobservedflux,2.4±0.16×10−13ergs−1cm−2.Asthe atedintheLATbandpassisgivenby near-UVfluxisafactor∼105timeslowerthanintheoptical,this (cid:15) < (cid:82)110045 ddNEeeEedEe ≈(cid:40) 108−4p−1010−5p(cid:28)0.2, p>(223). efixlec.elRleenstulatgsrfeoermtehnettvoatalildoaptetsictahle/NaIsRsuflmuexdabnladcbkebsotd-fiytstpeemcptrearlapturore- γ (cid:82)105 dNeE dE 0.2 p=2, asafunctionoftimeareshowninFigure2. 1 dEe e e (cid:13)c 2014RAS,MNRAS000,1–?? Gamma-raynovaeasprobesofparticleacceleration 7 As only three nights have complete NIR + BVR color data Table1.γ-ray/opticalfluxratioinclassicalnovaeandimplications. in nova Sco, we also consider separately the flux ratio on other nights with LAT detections obtained using just the V magnitude (cid:20) (cid:21) tocalculatetheoptical/NIRflux,assumingabolometriccorrection Nova (cid:104)log LLoγpt (cid:105) log(cid:15)n(ath),min fs(hb) identicaltothatmeasuredwithbettercolordataonday15.Uncer- V1324Sco -2.2±0.4 -1.5±0.4 0.13((cid:15)nth/0.1)−1 taintyinthetotalfluxisestimatedbycombiningtheuncertaintyin V339Del -3.5±0.2 -2.8±0.2 0.016((cid:15)nth/0.1)−1 thebest-fitconstantoffsetwithanuncertaintyinthetemperaturefit derivedusingtheerrorinindividualfluxmeasurement. (a)Minimumfractionofshockpoweredplacedintonon-thermalparticles(eq.[14]), calculatedassumingradiativeshocksand(conservatively)(cid:15)γ=0.2(§2.3.1,2.3.2). 3.2 Gamma-Ray (b)Fractionofopticalluminositypoweredbyshocks(eq.[13]), calculatedassumingradiativeshocksand(conservatively)(cid:15)γ=0.2. TheFermiLATdatafornovaScoandDelaretakenfromAcker- mannetal.(2014).Spectralfitstothegamma-rayemission(over itsentireduration)areprovidedbytheseauthorsfortwoprofiles: PowerLaw(PL,dN /dE ∝ E−Γ)andPowerLawwithExponen- γ tialCut-OffatenergyE =Ec(EPL,dNγ/dE ∝E−sexp−E/Ec).The best-fitvaluesofthefreeparameters,Γ(PL)orsandE (EPL),are c providedalongwiththeiruncertainties. Also provided for each day is the average photon number fluxabove100MeV, N ∝ (cid:82)100GeV dNγdE.Theenergyflux F ∝ (cid:82)100GeVEdNγdEiscalcuγlated1f0r0oMmeVFdEaccordingto γ 100MeV dE γ N (cid:82)100GeVEdNγdE F = γ 100MeV dE , (24) γ (cid:82)100GeV dNγdE 100MeV dE whereuncertaintiesinF arederivedfromboththequoteduncer- γ taintiesinN andinthebest-fitparametersofthespectralfits.Al- γ thoughwecalculatethegamma-rayfluxeachday,ouranalysisas- sumesaconstantspectralshapeoverthedurationoftheoutburst, asnecessitatedbythepoorstatisticsofthegamma-raydetections. 3.3 FluxRatio Our results for the flux ratio L /L = F /F as a function of γ opt γ opt timefornovaScoandDelareshowninFigure3.Keyresultsare summarizedinTable1.TheratioL /L isconsistentwithbeing γ opt constant in time in nova Sco, but nova Del shows evidence for a moderatesecularincrease. We find an average value L /L ≈ 10−2.2(10−3.5) for nova γ opt Sco(Del),respectively.Assumingradiativeshocksandgamma-ray efficiency(cid:15) < 0.2(§2.3.1,2.3.2),theminimumnon-thermalpar- γ ∼ ticle acceleration efficiency corresponds to (cid:15) > 0.1 − 0.01 in nth ∼ nova Sco and (cid:15) > 10−3 in nova Del. This greatly exceeds the nth ∼ acceleration efficiency expected for electron acceleration at non- relativisticshocks,disfavoringleptonscenariosforthegamma-ray emission. Furthermore, assuming a proton acceleration efficiency of(cid:15) ∼0.01−0.1,weconcludethatafraction f >10−100per nth sh ∼ Figure2.Totalopticalflux(toppanel)andbest-fitblackbodytemperature centoftheopticalemissionwasshock-poweredinnovaSco.The (bottompanel)asafunctionoftimesinceoutburstfornovaeV1324Sco shock-poweredfractionis fsh∼>1−10percentinnovaDel. (blue)andV339Del(red).TimeismeasuredstartingonJune1,2012for NovaSco(beginningofopticaloutburst),andstartingonAugust16,2013 forNovaDel(epochoffirstgamma-raydetection,withindaysoftheoptical rise). 4 DISCUSSIONANDCONCLUSIONS Thehighdensitieswithinthenovaejectaatearlytimescoincident with the observed gamma-rays imply that the shocks responsible theobservedvaluesofLγ/Lopt,forthehighestgamma-rayefficien- forthisemissionarelikelytoberadiative(§2.1).Thoughnotob- cies (cid:15)nth ∼ 0.1 expected in hadronic scenarios, we conclude that served directly, thermal X-rays from the shocks are absorbed by a significant fraction fsh ∼> 10 per cent and ∼> 1 per cent of nova theejectaandreprocessedtoopticalfrequencies(§2.2).5Basedon optical emission in nova Sco and nova Del, respectively, is pow- 5 NovaDeldidshowX-rayemissionatlatertimes,aftertheepochofpeak hadexpandedorbecamesufficientlyphoto-ionizedtoreducethecolumnof gamma-rayandopticalemission.Thispresumablyoccurredaftertheejecta neutralabsorbinggas(seebelow). (cid:13)c 2014RAS,MNRAS000,1–?? 8 ilar mechanism of internal shocks within a time-variable outflow maypoweranopticaltransientfromtheremnantproducedbythe mergerofbinarywhitedwarfs(Beloborodov2014). If the majority of nova optical light is powered by radiative shocks, then the ratio of optical and gamma-ray fluxes should be relatively constant in time, assuming that the microphysical pa- rameters of the shocks remain constant (and that the conditions τ > v /c and t /t < 1 remain satisfied in hadronic and lep- p−p 4 cool tonicscenarios,respectively).NovaScoisconsistentwithatem- porallyconstantratioL /L ,whilenovaDelshowsevidencefor γ opt the gamma-ray emission becoming relatively stronger with time (Fig.3).TheapparentincreaseofL /L innovaDelcouldresult γ opt fromthereverseshockthermalemissionbecominglessradiatively efficientwithtime,i.e.χ∝t(eq.[7]).Alternatively,itmayreflect theearlytransitioninthiseventtoanebularphase(asoccurredon Day11;Skopaletal. 2014),resultinginalossoffluxout ofthe measuredopticalbandandintotheUV.Ifnovashocksareindeed radiative,thenwepredictthatL /L shouldnotexceed∼0.06at γ opt anytime,sincethisrepresentsthelimitofshock-dominatedemis- sion f =1(eq.[13])forrealisticmaximumefficiencies(cid:15) <0.3, sh γ ∼ (cid:15) <0.2. nth∼ Thegamma-raytoopticalfluxratioalsoplacesalowerlimit on the acceleration efficiency (cid:15) of relativistic non-thermal par- nth ticles at non-relativistic shocks. For nova Sco and nova Del we constrain(cid:15) > 10−2 and10−3,respectively(Table1).Unliketra- nth ∼ ditional studies modeling particle acceleration in supernova rem- nants, nova shocks evolve in real-time, in principle allowing for thestudyoftime-dependenteffects.Modelsusedtoconstrainpar- ticleaccelerationinsupernovaremnantsalsosometimesrequireas- sumptionsabouttheescapefractionofrelativisticparticles,e.g.if gamma-rays are produced by the collision of relativistic protons with nearby molecular clouds of irregular geometry. By contrast, nova ejecta serves as a relatively efficient hadronic “calorimeter” since relativistic protons are probably trapped when gamma-rays Figure3.Ratioofgamma-rayandopticalluminosities,Lγ/Lopt,fornovae areobserved(eq.[19]). V1324Sco(toppanel)andV339Del(bottompanel)asafunctionoftime Neitherhadronicnorleptonicscenariosfornovagamma-ray sinceoutburst.InNovaSco,largesquaresshownightswithfullNIR+VBR emissioncanberuledoutbymodelingoftheγ−rayspectrumalone coverage,whilesmalltrianglesshowthefluxratioestimatedusingjustthe (Ackermannetal.2014).However,thetensionbetweenthevalue V-band magnitude adopting the same bolometric correction as measured (cid:15) >10−2wefindisrequiredinnovaScoandthemuchlowerelec- withthefulldatacolordataonDay15. nth∼ tronaccelerationefficiency(cid:15) < 10−3 inferredfromobservations nth ∼ ofsupernovaremnants(e.g.Morlino&Caprioli2012)andtheoret- eredbyshocks.Theselimitsapproachunityformorerealisticef- icalmodeling(Kato2014;Parketal.2014)appearstodisfavorthe ficiencies (cid:15) < 0.01 expected from the difficulty of accelerating leptonicscenario.Leptonicmodelsalsorequireaflatinjectedspec- nth ∼ protons given the expected geometry of the magnetic field in the trum p = 2tobeenergeticallyfeasible(eq.[23]).Incontrast,ion pre-shockedejecta(seebelow). acceleration efficiencies as high as (cid:15) ∼ 0.1 are found for non- nth This shock-powered emission mechanism is similar to that relativistic shocks by hybrid PIC simulations, but only in cases at work in some core collapse supernovae when the ejecta whentheupstreammagneticfieldisparalleltotheshocknormal from the exploding star interacts with dense circumstellar matter (Caprioli&Spitkovsky2014a);forperpendicularfieldsessentially (e.g.Chevalier&Fransson1994;Larssonetal.2011),whichinex- no ion acceleration is seen, also inconsistent with our lower lim- tremecasespowersthemostluminoussupernovaeyetdiscovered itson(cid:15) .Hadronicscenariosinvolvingionaccelerationatquasi- nth (Smithetal.2007).Ourfindingthatalargefractionofnovaopti- parallelshocksthusappeartobethemostviablesourceofrelativis- calemissionispoweredbyshocksrequiresarevisionofstandard ticparticlesresponsiblefornovagamma-rays. modelsthatinsteadassumenovathermalemissionresultsfromthe However, this conclusion is problematic. Most of the power direct outwards transport of thermal energy released in the white dissipatedinthesystemoccursatthereverseshock,makingitthe dwarfenvelopebynuclearburning(e.g.Hillmanetal.2014).The mostnaturallocationforparticleacceleration.Ifthefastoutflowis ultimateenergysource(thethermonuclearrunaway)isnotinques- ejectedoveratimescalewhichislongcomparedtothedynamical tion,butshock-poweredemissiontapsintothedifferentialkinetic timenearthesurfaceofthehydrostaticwhitedwarfenvelope(i.e.,a energy of the outflow instead of its thermal content advected or quasi-steadywind),thenitsmagneticfieldwillbecomedominated diffusedfromsmallradii.AssuggestedbyMetzgeretal.(2014), byitsazimuthalcomponentatthemuchlargerradiiwherethere- shock-powered optical emission might also help explain some of verse shock occurs (§2.3.1). Such a field, being perpendicular to theirregularlightcurveshapes,includingplateausandsecondary theradialshocknormal,isnotconducivetoionacceleration. maxima,observedinsomenovae(e.g.,Stropeetal.2010).Asim- This mystery could be resolved if particle acceleration oc- (cid:13)c 2014RAS,MNRAS000,1–?? Gamma-raynovaeasprobesofparticleacceleration 9 curs at localized regions of quasi-parallel shocks, creating spe- anupperlimitof<10−11ergscm−2s−1onthe>50keVemission. ∼ ∼ cial regions of efficient acceleration ((cid:15) ∼ 0.1) with (cid:15) = 0 Gamma-rayemissionwasdetectedbyLATat2−3σsignificance nth nth across the larger bulk, thereby resulting in an average value of and a flux of ∼ 10−10 erg cm−2 s−1, but lasting only for 2 days (cid:15) ∼ 10−3 −10−2 consistent with observations. These localized neartheonsetoftheoutburst(Cheungetal.2014),approximately nth regions of conducive field geometry could be caused by global aweekbeforetheNuSTARobservationsandwhen(perhapsnotco- asymmetriesintheejecta,suchasobliqueshocksoccurringwhere incidentallyinlightofourresultsonshock-poweredopticalemis- the edge of the slow ejecta torus meets the faster bipolar wind sion)theopticallightcurvewasatitsmaximum.Bythetimeofthe (Fig.1).Alternatively,inhomogeneityofthenovaejecta(“clumpi- NuSTAR observations, the optical flux had decreased by a factor ness”)couldalsoresultinlocalizedregionsofobliqueshocksbe- of∼100fromitspeakvalue,suchthatifF /F hadremainedap- γ opt tween the clumps. Indeed, low ejecta filling factors are inferred proximatelyconstantintime(asinthenovaeinoursample;Fig.3), observationally by emission line modeling of the nebular phase thentheNuSTARupperlimitcorrepondsto f <10inthenotation X ∼ (e.g.,Shoreetal.2013).Radialfieldsmayalsobeproducednear above,i.e.notparticularlyconstraining.Westronglyencouragefu- theshockastheresultofRayleigh-Taylorinstabilitiesattheinter- tureNuSTARobservationsofgamma-raynovae,ideallycloserto facebetweenthefastnowoutflowandthedensecentralshell(as theopticalpeakandcoincidentwithLATdetections. mayoccurinsupernovaremnants;e.g.,Blondin&Ellison2001). Inthispaperwehavefocusedoninternalshocksinclassical Leptonic versushadronic models fornova gamma-ray emis- novae instead of symbiotic novae, because in the symbiotic case sion may be further distinguished by their predictions for non- shocksandparticleaccelerationcanresultalsofromtheinteraction thermal X-ray emission. In nova Sco, Swift XRT observations betweenthenovaejectaandtheeffectivelystationarydensewindof placed an upper limit of F < 9 × 10−14 erg s−1 cm−2 on the theredgiantcompanion(Abdoetal.2010,Martin&Dubus2013). X 0.3−10 keV flux on days 22−41 (Page et al. 2012), i.e. three or- Ouranalysisreliesontheassumptionofradiativeshocksinternal dersofmagnitudelessthanthesimultaneousLAT-detectedfluxof tothenovaejecta,asisjustifiedbythehighermassoutflowrates F ∼ 2×10−10 erg cm−2 s−1. Such a low value of F /F would M˙ ∼ 10−3M yr−1 and densities that characterize nova ejecta as γ X γ (cid:12) atfirstappeartobebarelycompatiblewiththeleptonicscenario, comparedtothelowervalues< 10−5M yr−1 characteristicofred ∼ (cid:12) even when considering the most conservative case of p = 2 and giantwinds.Nevertheless,muchofthesamephysicsofrelativistic aslowcoolingspectrumνF ∝ ν1/2 fromkeVto∼GeVenergies particle acceleration could apply to both scenarios. Likewise, the ν (eq. [22]). The hadronic scenario fares even worse: secondary e± presence of a dense equatorial structure associated with the nova pairsfromπ± decaycarryasimilartotalenergytothatreleasedin ejectacouldalsobepresentinsymbioticsystems(aswasinferred γ−raysfromπ decay.Thesepairs’energies,∼0.1−1GeV,corre- inV407Cyg;Martin&Dubus2013). 0 spondtoLorentzfactorsγ ∼100−1000thatwillupscatter∼eV An additional prediction of the favored hadronic model is a e opticaltoenergies∼10−1000keVwithreasonablyhighefficiency GeVneutrinofluxcomparabletothegamma-rayfluxthatmaybe (eq.[20]).However,amoredetailedcalculationmustaccountfor detectedbyfutureexperiments(Razzaqueetal.2010).Depending the important role of coulomb losses on the energy of the X-ray on the maximum ion energy, novae may be important sources of emittingelectrons,whicharelikelysevereduetothehighdensities TeVgamma-rayemission.Sitareketal.(2015)recentlypresented of nova shocks; this will likely suppress the X-ray emission be- upperlimitsonTeVemissionfromV407CygbytheMAGICtele- lowthatobtainedbyanaiveextensionoftheICorbremsstrahllung scope(Aliuetal.2012)whichlieafactorof∼ 10belowtheex- spectrumtolowerenergies. trapolatedFermiLATspectrum;similarTeVupperlimitsonV407 Thisdearthofearly∼keVemissionfromnovashockscould CygwerereportedbyVERITAS(Aliuetal.2012).Theobserved resultfromthehighcolumnofneutral,X-rayabsorbinggasahead cut-offinthephotonspectrummaybeduetoanintrinsiccut-offin of the shock at times coincident with the gamma-ray emission theacceleratedionspectrum(eqs.[16,18]),oritmayresultfrom (Metzgeretal.2014).However,higherenergyX-rays> 10−100 γ−γabsorptionduetoe±pair-creationattenuationbythenovaop- ∼ keV could escape without photoelectric attenuation6, motivating ticallight.TeVphotonscanpaircreateofftargetphotonsofenergy one to consider the prospects for nova detection with NuSTAR Eopt∼1eV,resultinginanopticaldepth (Harrison et al. 2013), which has unprecedented X-ray sensitiv- (cid:32)E (cid:33)−1(cid:32) L (cid:33) ity above 10 keV. If a fraction f of the LAT luminosity is ra- τ ≈n σ R ≈0.3τ opt opt v−1t−1 (25) X γ−γ γ γ−γ ej opt eV 1038ergs−1 8 wk diated as X-rays of energy (cid:15) ∼ 30 keV, this results in a num- X ber flux of N˙X ∼ fXFγAeff/(cid:15)X ∼ 4 × 10−4(fX/0.01) s−1 for a nearunity,whereσγ−γ ∼ 10−25 cm2 isthephoton-photonabsorp- typical value F ∼ 10−10 erg cm−2 s−1 (Ackermann et al. 2014) tioncrosssectionnearthresholdandn = L τ /(4πcR2E )is γ γ opt opt ej opt and the NuSTAR effective area Aeff ≈ 200 cm2 (Harrison et al. theenergydensityofthetargetopticalphotonsneartheshock(for 2013; their Fig. 2). Given the NuSTAR estimated background of τ > 1).WestronglyencouragefutureadditionalTeVfollow-up opt N˙ ∼ 2×10−3 counts s−1 in this energy range across the point ofnovaenearandafteropticalpeak,evenifnotfirstdetectedby σ spread function (Harrison et al. 2013; their Fig. 11), we estimate Fermi,asdetectionsorupperlimitscanbeusedtoplacemeaning- that the integration time required for a 3σ detection is approxi- fulconstraintsonthemaximumacceleratedparticleenergyandthe mately 9N˙ /N˙2 ∼ 100(f /0.01)−2 ks. Reasonable constraints on locationofthegamma-rayemission. σ X X f ∼ 0.01 could thus be achieved for a modest 100 ks exposure. Thesampleofgamma-raynovaeshouldexpandrapidlyinthe X ThehardX-rayimageronASTRO-Hshouldalsoproveusefulfor nextfewyearsthankstoanticipatedenhancementsinthesensitivity novafollow-up. ofFermiLATresultingfromimprovementsinitsabilitytoperform Orioetal.(2014)reportedNuSTARobservationsofthefast low-level event reconstruction. The method for jointly analyzing symbioticnovaV745Scowithin10daysoftheoutburst,placing opticalandgamma-raydataemployedinthispaperwillthussoon be applicable to a greater sample of events. Our results highlight the importance of obtaining broad (ideally bolometric) frequency 6 Althoughattenuationbyinelasticelectronscatteringcouldbeimportant coverageofnovalightcurves,includingnearinfraredandultravio- forsufficientlyhighopticaldepths,leadingtohardX-raysuppression. letwavelengths,attimescoincidentwiththegamma-rayemission. (cid:13)c 2014RAS,MNRAS000,1–?? 10 Theutilityofourmodelrestsheavilyontheassumptionofradiative HillasA.M.,1984,ARA&A,22,425 shocks,whichdependssensitivelyonthequantityofmassandve- HillmanY.,PrialnikD.,KovetzA.,SharaM.M.,NeillJ.D.,2014, locityofthenovaejecta,andhowitispartitionedbetweenthefast MNRAS,437,1962 andslowcomponents.Additionalradiomonitoringofgamma-ray HjellmingR.M.,WadeC.M.,VandenbergN.R.,NewellR.T., novaeisthusalsokeytobetterconstrainingtheejectamassfrom 1979,AJ,84,1619 thesesystemsanditsgeometry,therebystrengtheningorrefuting HubaJ.D.,2007,NrlPlasmaFormulary.WexfordCollegePress theargumentforradiativeshocks. Kamae T., Karlsson N., Mizuno T., Abe T., Koi T., 2006, ApJ, 647,692 KatoT.N.,2014,ArXive-prints Krauss M. I., Chomiuk L., Rupen M., Roy N., Mioduszewski ACKNOWLEDGMENTS A.J.,SokoloskiJ.L.,NelsonT.,MukaiK.,BodeM.F.,Eyres BDMacknowledgeshelpfulconversationswithDamianoCaprioli, S.P.S.,O’BrienT.J.,2011,ApJL,739,L6 Koji Mukai, Jeno Sokoloski, Andrey Vlasov, and Bob Williams. LarssonJ.,etal.,2011,Nature,474,484 We thank Fred Walter for providing optical data on nova Sco. LivioM.,ShankarA.,BurkertA.,TruranJ.W.,1990,ApJ,356, BDM gratefully acknowledges support from NASA Fermi grant 250 NNX14AQ68G,NSFgrantAST-1410950,andtheAlfredP.Sloan LloydH.M.,O’BrienT.J.,BodeM.F.,1997,MNRAS,284,137 Foundation. We thank the reviewer, Guillaume Dubus, for help- MartinP.,DubusG.,2013,A&A,551,A37 ful criticism and suggestions that led to an improvement of the MetzgerB.D.,Hascoe¨tR.,VurmI.,BeloborodovA.M.,Chomiuk manuscript. L.,SokoloskiJ.L.,NelsonT.,2014,MNRAS,442,713 MontanetL.,etal.,1994,Phys.Rev.D.,50,1173 MorlinoG.,CaprioliD.,2012,A&A,538,A81 MukaiK.,IshidaM.,2001,ApJ,551,1024 REFERENCES MukaiK.,OrioM.,DellaValleM.,2008,ApJ,677,1248 Abdo A. A., Ackermann M., Ajello M., Atwood W. B., Baldini MunariU.,HendenA.,DallaportaS.,CheriniG.,2013,Informa- L., Ballet J., Barbiellini G., Bastieri D., Bechtol K., Bellazzini tionBulletinonVariableStars,6080,1 R.,etal.2010,Science,329,817 OrioM.,RanaV.,PageK.L.,SokoloskiJ.L.,HarrisonF.,2014, AckermannM.,etal.,2014,Science,345,554 ArXive-prints AliuE.,etal.,2012,ApJ,754,77 OrlandoS.,DrakeJ.J.,2012,MNRAS,419,2329 AnchordoquiL.A.,FengJ.L.,GoldbergH.,ShapereA.D.,2002, OrlandoS.,DrakeJ.J.,LamingJ.M.,2009,A&A,493,1049 Phys.Rev.D.,66,103002 Osterbrock D. E., Ferland G. J., 2006, Astrophysics of gaseous ArnettW.D.,1982,ApJ,253,785 nebulaeandactivegalacticnuclei Axford W. I., Leer E., Skadron G., 1977, International Cosmic PageK.L.,OsborneJ.P.,SchwarzG.J.,WalterF.M.,2012,The RayConference,11,132 Astronomer’sTelegram,4287,1 BathG.T.,ShavivG.,1976,MNRAS,175,305 ParkJ.,CaprioliD.,SpitkovskyA.,2014,ArXive-prints BeckR.,KrauseM.,2005,AstronomischeNachrichten,326,414 PintoP.A.,EastmanR.G.,2000,ApJ,530,757 BellA.R.,1978,MNRAS,182,147 PrialnikD.,1986,ApJ,310,222 BeloborodovA.M.,2014,MNRAS,438,169 PrialnikD.,KovetzA.,1995,ApJ,445,789 BlandfordR.D.,OstrikerJ.P.,1978,ApJL,221,L29 RazzaqueS.,JeanP.,MenaO.,2010,Phys.Rev.D.,82,123012 BlasiP.,MorlinoG.,BandieraR.,AmatoE.,CaprioliD.,2012, RibeiroV.A.R.M.,MunariU.,ValisaP.,2013,ApJ,768,49 ApJ,755,121 RybickiG.B.,LightmanA.P.,1979,Radiativeprocessesinas- BlondinJ.M.,EllisonD.C.,2001,ApJ,560,244 trophysics BrownP.J.,etal.,2010,ApJ,721,1608 SchaeferG.H.,etal.,2014,Nature,515,234 CaprioliD.,SpitkovskyA.,2014a,ApJ,783,91 SchlaflyE.F.,etal.,2011,ApJ,737,103 CaprioliD.,SpitkovskyA.,2014b,ApJ,794,46 Schure K. M., Kosenko D., Kaastra J. S., Keppens R., Vink J., CheungC.C.,JeanP.,ShoreS.N.,2014,TheAstronomer’sTele- 2009,A&A,508,751 gram,5879,1 SeaquistE.R.,BodeM.F..,2008,inClassicalNovae ChevalierR.A.,FranssonC.,1994,ApJ,420,268 Seaquist E. R., Duric N., Israel F. P., Spoelstra T. A. T., Ulich ChomiukL.,LinfordJ.D.,YangJ.,O’BrienT.J.,ParagiZ.,Mio- B.L.,GregoryP.C.,1980,AJ,85,283 duszewskiA.J.,BeswickR.J.,CheungC.C.,MukaiK.,Nelson ShieldsG.A.,FerlandG.J.,1978,ApJ,225,950 T., Ribeiro V. A. R. M., Rupen M. P., Sokoloski J. L., Weston ShoreS.N.,2013,A&A,559,L7 J.,ZhengY.,BodeM.F.,EyresS.,RoyN.,TaylorG.B.,2014, Shore S. N., De Gennaro Aquino I., Schwarz G. J., Augusteijn Nature,514,339 T.,CheungC.C.,WalterF.M.,StarrfieldS.,2013,A&A,553, Drake J. J., Laming J. M., Ness J.-U., Orlando S., Starrfield S., A123 Beardmore A. P., Bode M. F., Evans A., Eyres S. P. S., Gehrz SitarekJ.,BednarekW.,Lopez-CotoR.,deOnaWilhelmiE.,for R. D., Goad M. R., Gonzalez-Riestra R., Krautter J., O’Brien the MAGIC Collaboration Desiante R., Longo F., Hays E., for T.J.,OsborneJ.P.,PageK.L.,SchwarzG.,WoodwardC.E., theFermi-LATCollaboration2015,ArXive-prints 2009,ApJ,691,418 SkopalA.,etal.,2014,arXiv,astro-ph.SR Finzell T., et al., 2015, Distance and Reddening of Gamma-ray SmithN.,LiW.,FoleyR.J.,WheelerJ.C.,PooleyD.,Chornock NovaV1324Sco,InPrep R.,FilippenkoA.V.,SilvermanJ.M.,QuimbyR.,BloomJ.S., HarrisonF.A.,etal.,2013,ApJ,770,103 HansenC.,2007,ApJ,666,1116 HendenA.,,2013,ObservationsfromtheAAVSOInternational SokoloskiJ.L.,RupenM.P.,MioduszewskiA.J.,2008,ApJL, Database 685,L137 (cid:13)c 2014RAS,MNRAS000,1–??