Chapter 10 The Gamma Function (Factorial Function) The gamma function appears in physical problems of all kinds, such as the normalizationofCoulombwavefunctionsandthecomputationofprobabilities instatisticalmechanics.Itsimportancestemsfromitsusefulnessindeveloping other functions that have direct physical application. The gamma function, therefore, is included here. A discussion of the numerical evaluation of the gammafunctionappearsinSection10.3.Closelyrelatedfunctions,suchasthe errorintegral,arepresentedinSection10.4. 10.1 DefinitionsandSimpleProperties At least three different, convenient definitions of the gamma function are in commonuse.Ourfirsttaskistostatethesedefinitions,todevelopsomesimple, directconsequences,andtoshowtheequivalenceofthethreeforms. InfiniteLimit(Euler) Thefirstdefinition,duetoEuler,is 1·2·3···n (cid:2)(z)≡ lim nz, z=(cid:7) 0,−1,−2,−3,.... (10.1) n→∞ z(z+1)(z+2)···(z+n) Thisdefinitionof(cid:2)(z)isusefulindevelopingtheWeierstrassinfinite-product form of (cid:2)(z) [Eq. (10.17)] and in obtaining the derivative of ln(cid:2)(z) (Sec- tion10.2).Hereandelsewhereinthischapter,zmaybeeitherrealorcomplex. 523 524 Chapter10 TheGammaFunction(FactorialFunction) Replacingzwithz+1,wehave 1·2·3···n (cid:2)(z+1)= lim nz+1 n→∞(z+1)(z+2)(z+3)···(z+n+1) nz 1·2·3···n = lim · nz n→∞ z+n+1 z(z+1)(z+2)···(z+n) = z(cid:2)(z). (10.2) Thisisthebasicfunctionalrelationforthegammafunction.Itshouldbenoted thatitisadifferenceequation.Thegammafunctionisoneofageneralclass of functions that do not satisfy any differential equation with rational coef- ficients. Specifically, the gamma function is one of the very few functions of mathematical physics that does not satisfy any of the ordinary differential equations(ODEs)commontophysics.Infact,itdoesnotsatisfyanyusefulor practicaldifferentialequation. Also,fromthedefinition 1·2·3···n (cid:2)(1)= lim n=1. (10.3) n→∞1·2·3···n(n+1) Now,applicationofEq.(10.2)gives (cid:2)(2)=1, (cid:2)(3)=2(cid:2)(2)=2,... (10.4) (cid:2)(n)=1·2·3···(n−1)=(n−1)! We see that the gamma function interpolates the factorials by a continuous functionthatreturnsthefactorialsatintegerarguments. DefiniteIntegral(Euler) Aseconddefinition,alsofrequentlycalledtheEulerintegral,is (cid:2) ∞ (cid:2)(z)≡ e−ttz−1dt, (cid:10)(z)>0. (10.5) 0 Therestrictiononzisnecessarytoavoiddivergenceoftheintegralatt = 0. Whenthegammafunctiondoesappearinphysicalproblems,itisofteninthis formorsomevariation,suchas (cid:2) ∞ (cid:2)(z)=2 e−t2t2z−1dt, (cid:10)(z)>0 (10.6) 0 or (cid:2) (cid:3) (cid:4) (cid:5)(cid:6) 1 1 z−1 (cid:2)(z)= ln dt, (cid:10)(z)>0. t 0 10.1 DefinitionsandSimpleProperties 525 EXAMPLE10.1.1 The Euler Integral Interpolates the Factorials The Euler integral for positive integer argument, z = n+1 with n> 0, yields the factorials. Using integrationbypartsrepeatedlywefind (cid:2) (cid:7) (cid:2) (cid:2) ∞ (cid:7)∞ ∞ ∞ e−ttndt =−tne−t(cid:7)(cid:7) +n e−ttn−1dt =n e−ttn−1dt 0 (cid:3) 0 (cid:7) 0 (cid:2) 0 (cid:6) (cid:7)∞ ∞ =n −tn−1e−t(cid:7)(cid:7) +(n−1) e−ttn−2dt (cid:2) 0 0 ∞ =n(n−1) e−ttn−2dt =···=n! 0 (cid:8) because ∞e−tdt =1.Thus,theEulerintegralalsointerpolatesthefactorials. 0 (cid:2) When z = 1, Eq. (10.6) contains the Gauss error integral, and we have the 2 interestingresult (cid:9) (cid:10) √ (cid:2) 1 = π. (10.7) 2 Thevalue(cid:2)(1)canbederiveddirectlyfromthesquareofEq.(10.6)forz= 1 2 2 byintroducingplanepolarcoordinates(x2+y2 =ρ2,dxdy=ρdρdϕ)inthe productofintegrals (cid:4) (cid:5) (cid:2) (cid:2) 1 2 ∞ ∞ (cid:2) =4 e−x2−y2dxdy 2 0 0 (cid:2) (cid:2) (cid:7) π/2 ∞ (cid:7)∞ =4 e−ρ2ρdρdϕ =−πe−ρ2(cid:7)(cid:7) =π. ϕ=0 ρ=0 0 GeneralizationsofEq.(10.7),theGaussianintegrals,are (cid:2) ∞ s! x2s+1exp(−ax2)dx= , (10.8) 2as+1 0 (cid:2) (cid:11) ∞ (s− 1)! (2s−1)!! π x2sexp(−ax2)dx= 2 = , (10.9) 2as+1/2 2s+1as a 0 whichareofmajorimportanceinstatisticalmechanics.Aproofislefttothe readerinExercise10.1.11.ThedoublefactorialnotationisexplainedinExer- cise5.2.12andEq.(10.33b). To show the equivalence of the two definitions, Eqs. (10.1) and (10.5), considerthefunctionoftwovariables (cid:2) (cid:4) (cid:5) n t n F(z,n)= 1− tz−1dt, (cid:10)(z)>0, (10.10) n 0 withnapositiveinteger.Since (cid:4) (cid:5) t n lim 1− ≡e−t, (10.11) n→∞ n 526 Chapter10 TheGammaFunction(FactorialFunction) fromthedefinitionoftheexponential (cid:2) ∞ lim F(z,n)= F(z,∞)= e−ttz−1dt ≡(cid:2)(z) (10.12) n→∞ 0 byEq.(10.5). ReturningtoF(z,n),weevaluateitinsuccessiveintegrationsbyparts.For convenienceletu=t/n.Then (cid:2) 1 F(z,n)=nz (1−u)nuz−1du. (10.13) 0 Integratingbyparts,weobtainfor(cid:10)(z)>0, (cid:7) (cid:2) F(z,n) =(1−u)nuz(cid:7)(cid:7)(cid:7)1+ n 1(1−u)n−1uzdu. (10.14) nz z z 0 0 Repeating this, with the integrated part vanishing at both end points each time,wefinallyget (cid:2) n(n−1)···1 1 F(z,n)=nz uz+n−1du z(z+1)···(z+n−1) 0 1·2·3···n = nz. (10.15) z(z+1)(z+2)···(z+n) ThisisidenticaltotheexpressionontherightsideofEq.(10.1).Hence, lim F(z,n)= F(z,∞)≡(cid:2)(z) (10.16) n→∞ byEq.(10.1),completingtheproof. Usingthefunctionalequation(10.2)wecanextend(cid:2)(z)frompositiveto negativearguments.Forexample,startingwithEq.(10.2)wedefine (cid:4) (cid:5) (cid:4) (cid:5) 1 1 1 √ (cid:2) − =− (cid:2) =−2 π, 2 0.5 2 andEq.(10.2)forz→0impliesthat(cid:2)(z→0)→∞.Moreover,z(cid:2)(z)→1for z → 0 [Eq. (10.2)] shows that (cid:2)(z)has a simple pole at the origin. Similarly, wefindsimplepolesof(cid:2)(z)atallnegativeintegers. InfiniteProduct(Weierstrass) Thethirddefinition(Weierstrass’sform)is (cid:4) (cid:5) (cid:12)∞ 1 z ≡zeγz 1+ e−z/n, (10.17) (cid:2)(z) n n=1 whereγ istheEuler–Mascheroniconstant[Eq.(5.27)] (cid:13) (cid:15) (cid:14)n 1 γ = lim −lnn =0.5772156···. (10.18) n→∞ m m=1 10.1 DefinitionsandSimpleProperties 527 This infinite product form may be used to develop the reflection identity, Eq.(10.24a),andappliedintheexercises,suchasExercise10.1.17.Thisform canbederivedfromtheoriginaldefinition[Eq.(10.1)]byrewritingitas (cid:4) (cid:5) 1·2·3···n 1 (cid:12)n z −1 (cid:2)(z)= lim nz= lim 1+ nz. (10.19) n→∞ z(z+1)···(z+n) n→∞ z m m=1 InvertingEq.(10.19)andusing n−z=e−zlnn, (10.20) weobtain 1 (cid:12)n (cid:16) z(cid:17) =z lim e(−lnn)z 1+ . (10.21) (cid:2)(z) n→∞ m m=1 Multiplyinganddividingby (cid:3)(cid:4) (cid:5) (cid:6) 1 1 1 (cid:12)n exp 1+ + +···+ z = ez/m, (10.22) 2 3 n m=1 weget (cid:18) (cid:3)(cid:4) (cid:5) (cid:6)(cid:19) 1 1 1 1 = z lim exp 1+ + +···+ −lnn z (cid:2)(z) n→∞ 2 3 n (cid:20) (cid:21) (cid:12)n (cid:16) z(cid:17) × lim 1+ e−z/m . (10.23) n→∞ m m=1 As shown in Section 5.2, the infinite series in the exponent converges and definesγ,theEuler–Mascheroniconstant.Hence,Eq.(10.17)follows. The Weierstrass infinite product definition of (cid:2)(z) leads directly to an importantidentity, π (cid:2)(z)(cid:2)(1−z)= , (10.24a) sinzπ usingtheinfiniteproductformulasfor(cid:2)(z),(cid:2)(1−z),andsinz[Eq.(7.60)]. Alternatively,wecanstartfromtheproductofEulerintegrals (cid:2) (cid:2) ∞ ∞ (cid:2)(z+1)(cid:2)(1−z)= sze−sds t−ze−tdt (cid:2)0 0 (cid:2) ∞ dv ∞ πz = vz e−uudu= , (v+1)2 sinπz 0 0 transforming from the variables s,t to u = s+t,v = s/t, as suggested by combiningtheexponentialsandthepowersintheintegrands.TheJacobianis (cid:7) (cid:7) J =−(cid:7)(cid:7)(cid:7)11 −1 s (cid:7)(cid:7)(cid:7)= st+2 t = (v+u1)2, t t2 (cid:8) where (v +1)t = u. The integral ∞e−uudu = 1, whereas that over v may 0 be derived by contour integration, giving πz . Similarly, one can establish sinπz 528 Chapter10 TheGammaFunction(FactorialFunction) Legendre’sduplicationformula (cid:9) (cid:10) √ (cid:2)(1+z)(cid:2) z+ 1 =2−2z π(cid:2)(2z+1). 2 Settingz= 1 inEq.(10.24a),weobtain 2 (cid:9) (cid:10) √ (cid:2) 1 = π, (10.24b) 2 (takingthepositivesquareroot)inagreementwithEqs.(10.7)and(10.9). The Weierstrass definition shows immediately that (cid:2)(z)has simple poles atz= 0,−1,−2,−3,...,andthat[(cid:2)(z)]−1 hasnopolesinthefinitecomplex plane,whichmeansthat(cid:2)(z)hasnozeros.Thisbehaviormayalsobeseenin Eq.(10.24a),inwhichwenotethatπ/(sinπz)isneverequaltozero. Actually, the infinite product definition of (cid:2)(z) may be derived from the Weierstrass factorization theorem with the specification that [(cid:2)(z)]−1 have simplezerosatz=0,−1,−2,−3,....TheEuler–Mascheroniconstantisfixed byrequiring(cid:2)(1)= 1.Seealsotheproductexpansionsofentirefunctionsin Chapter7. In mathematical probability theory the gamma distribution (probability density)isgivenby 1 xα−1e−x/β, x>0 f(x)= βα(cid:2)(α) (10.25a) 0, x≤0. Theconstant[βα(cid:2)(α)]−1 isincludedsothatthetotal(integrated)probability will be unity. For x → E, kinetic energy, α → 3 and β → kT, Eq. (10.25a) 2 yieldstheclassicalMaxwell–Boltzmannstatistics. BiographicalData Weierstrass,KarlTheodorWilhelm. Weierstrass,aGermanmathemati- cian,wasbornin1815inOstenfelde,Germany,anddiedin1897inBerlin. Heobtainedadegreeinmathematicsin1841andstudiedAbel’sandJacobi’s workonellipticalfunctionsandextendedtheirworkonanalyticfunctions whilelivingasaschoolteacher.Afterbeingrecognizedasthefatherofmod- ernanalysis,hebecameaprofessorattheUniversityofBerlinandamember oftheAcademyofSciencesin1856. FactorialNotation So far, this discussion has been presented in terms of the classical notation. As pointed out by Jeffreys and others, the −1 of the z−1 exponent in our seconddefinition[Eq.(10.5)]isacontinualnuisance.Accordingly,Eq.(10.5) isrewrittenas (cid:2) ∞ e−ttzdt ≡z!, (cid:10)(z)>1, (10.25b) 0 10.1 DefinitionsandSimpleProperties 529 todefine(cid:26)afactorialfunctionz!.Occasionally,wemayevenencounterGauss’s notation, (z),forthefactorialfunction (cid:12) (z)=z!. (10.26) The(cid:2)notationisduetoLegendre.ThefactorialfunctionofEq.(10.25a)is, ofcourse,relatedtothegammafunctionby (cid:2)(z)=(z−1)!, or (cid:2)(z+1)=z!. (10.27) Ifz=n,apositiveinteger[Eq.(10.4)]showsthat z!=n!=1·2·3···n, (10.28) thefamiliarfactorial.However,itshouldbenotedthatsincez!isnowdefined byEq.(10.25b)[orequivalentlybyEq.(10.27)]the factorial function is no longer limited to positive integral values of the argument (Fig. 10.1). Thedifferencerelation[Eq.(10.2)]becomes z! (z−1)!= . (10.29) z Thisshowsimmediatelythat 0!=1 (10.30) Figure10.1 TheFactorial x! Function---Extension toNegative Arguments 5 4 3 2 1 x –5 –3 –1 1 2 3 4 5 –1 –2 –3 –4 –5 530 Chapter10 TheGammaFunction(FactorialFunction) Figure10.2 TheFactorial 6 Functionandthe 5 FirstTwo Derivativesofln(x!) 4 x! 3 2 d2 ln (x!) ddxln (x!) dx2 1 d2 ln (x!) x! dx2 0 d ln (x!) –1.0 dx –1.0 0 1.0 2.0 3.0 4.0 x and n!=±∞ forn,anegativeinteger. (10.31) Intermsofthefactorial,Eq.(10.24a)becomes πz z!(−z)!= (10.32) sinπz because 1 (cid:2)(z)(cid:2)(1−z)=(z−1)!(1−z−1)!=(z−1)!(−z)!= z!(−z)!. z By restricting ourselves to the real values of the argument, we find that x! definesthecurveshowninFig.10.2.TheminimumofthecurveinFig.10.1is x!=(0.46163···)!=0.88560···. (10.33a) DoubleFactorialNotation In many problems of mathematical physics, particularly in connection with Legendrepolynomials(Chapter11),weencounterproductsoftheoddpositive integersandproductsoftheevenpositiveintegers.Forconvenience,theseare givenspeciallabelsasdoublefactorials: 1·3·5···(2n+1)=(2n+1)!! (10.33b) 2·4·6···(2n)=(2n)!!. Clearly,thesearerelatedtotheregularfactorialfunctionsby (2n+1)! (2n)!!=2nn! and (2n+1)!!= . (10.33c) 2nn! 10.1 DefinitionsandSimpleProperties 531 IntegralRepresentation An integral representation that is useful in developing asymptotic series for theBesselfunctionsis (cid:2) e−zzνdz=(e2πiν −1)ν!, (10.34) C whereCisthecontourshowninFig.10.3.Thiscontourintegralrepresentation is only useful when ν is not an integer, z = 0 then being a branch point. Equation (10.34) may be verified for ν > −1 by deforming the contour as shown in Fig. 10.4. The integral from ∞ to (cid:14) > 0 in Fig. 10.4 yields −(ν!), placingthephaseofzat0.Theintegralfrom(cid:14) to∞(inthefourthquadrant) then yields e2πiνν!, the phase of z having increased to 2π. Since the circle of radius (cid:14) around the origin contributes nothing as (cid:14) → 0, when ν > −1, Eq.(10.34)follows. Itisoftenconvenienttoputthisresultintoamoresymmetricalform (cid:2) e−z(−z)νdz=2isin(νπ)ν!, (10.35) C multiplyingbothsidesofEq.(10.34)by(−1)ν =e−πiν. ThisanalysisestablishesEqs.(10.34)and(10.35)forν >−1.Itisrelatively simpletoextendtherangetoincludeallnonintegralν.First,wenotethatthe integralexistsforν < −1, aslongaswestayawayfromtheorigin.Second, integratingbypartswefindthatEq.(10.35)yieldsthefamiliardifferencere- lation [Eq. (10.29)]. If we take the difference relation to define the factorial Figure10.3 y FactorialFunction Contour C x +∞ Figure10.4 y TheContourof Fig.10.3Deformed Cut line e x +∞ 0 532 Chapter10 TheGammaFunction(FactorialFunction) functionofν <−1,thenEqs.(10.34)and(10.35)areverifiedforallν (except negativeintegers). EXERCISES 10.1.1 Derivetherecurrencerelations (cid:2)(z+1)=z(cid:2)(z) fromtheEulerintegral[Eq.(10.5)] (cid:2) ∞ (cid:2)(z)= e−ttz−1dt. 0 10.1.2 In a power series solution for the Legendre functions of the second kind,weencountertheexpression (n+1)(n+2)(n+3)···(n+2s−1)(n+2s) , 2·4·6·8···(2s−2)(2s)·(2n+3)(2n+5)(2n+7)···(2n+2s+1) in which s is a positive integer. Rewrite this expression in terms of factorials. 10.1.3 Showthat (s−n)! (−1)n−s(2n−2s)! = , (2s−2n)! (n−s)! wheresandnareintegerswiths<n.Thisresultcanbeusedtoavoid negativefactorialssuchasintheseriesrepresentationsofthespher- ical Neumann functions and the Legendre functions of the second kind. 10.1.4 Showthat(cid:2)(z)maybewritten (cid:2) ∞ (cid:2)(z)=2 e−t2t2z−1dz, (cid:10)(z)>0, 0 (cid:2) (cid:3) (cid:4) (cid:5)(cid:6) 1 1 z−1 (cid:2)(z)= ln dt, (cid:10)(z)>0. t 0 10.1.5 In a Maxwellian distribution the fraction of particles with speed betweenvandv+dvis (cid:4) (cid:5) (cid:4) (cid:5) dN m 3/2 mv2 =4π exp − v2dv, N 2πkT 2kT where N isthetotalnumberofparti(cid:8)cles.Theaverageorexpectation valueofvnisdefinedas(cid:15)vn(cid:16)= N−1 vndN.Showthat (cid:4) (cid:5) (cid:4) (cid:5)(cid:27) 2kT n/2 n+1 1 (cid:15)vn(cid:16)= ! !. m 2 2
Description: