Advanced Sciences and Technologies for Security Applications Laobing Zhang · Genserik Reniers Game Theory for Managing Security in Chemical Industrial Areas Advanced Sciences and Technologies for Security Applications SeriesEditor Anthony J. Masys, Associate Professor, Director of Global Disaster Management, Humanitarian Assistance and Homeland Security, University of South Florida, Tampa,USA EditorialBoardMembers GiselaBichler,CaliforniaStateUniversity,SanBernardino,CA,USA ThirimachosBourlai,WVU-StatlerCollegeofEngineeringandMineral Resources,Morgantown,WV,USA ChrisJohnson,UniversityofGlasgow,UK PanagiotisKarampelas,HellenicAirForceAcademy,Attica,Greece ChristianLeuprecht,RoyalMilitaryCollegeofCanada,Kingston,ON,Canada EdwardC.Morse,UniversityofCalifornia,Berkeley,CA,USA DavidSkillicorn,Queen’sUniversity,Kingston,ON,Canada YoshikiYamagata,NationalInstituteforEnvironmentalStudies,Tsukuba,Japan The series Advanced Sciences and Technologies for Security Applications com- prises interdisciplinary research covering the theory, foundations and domain- specific topics pertaining to security. Publications within the series are peer- reviewedmonographsandeditedworksintheareasof: – biological and chemical threat recognition and detection (e.g., biosensors, aero- sols,forensics) – crisisanddisastermanagement – terrorism – cyber security and secure information systems (e.g., encryption, optical and photonicsystems) – traditionalandnon-traditionalsecurity – energy,foodandresourcesecurity – economicsecurityandsecuritization(includingassociatedinfrastructures) – transnationalcrime – humansecurityandhealthsecurity – social,politicalandpsychologicalaspectsofsecurity – recognition and identification (e.g., optical imaging, biometrics, authentication andverification) – smartsurveillancesystems – applicationsoftheoreticalframeworksandmethodologies(e.g.,groundedtheory, complexity,networksciences,modellingandsimulation) Together, the high-quality contributions to this series provide a cross-disciplinary overviewofforefrontresearchendeavoursaimingtomaketheworldasaferplace. The editors encourage prospective authors to correspond with them in advance of submittingamanuscript.SubmissionofmanuscriptsshouldbemadetotheEditor- in-ChieforoneoftheEditors. Moreinformationaboutthisseriesathttp://www.springer.com/series/5540 (cid:129) Laobing Zhang Genserik Reniers Game Theory for Managing Security in Chemical Industrial Areas LaobingZhang GenserikReniers SafetyandSecurityScienceGroup SafetyandSecurityScienceGroup DelftUniversityofTechnology DelftUniversityofTechnology Delft,TheNetherlands Delft,TheNetherlands ISSN1613-5113 ISSN2363-9466 (electronic) AdvancedSciencesandTechnologiesforSecurityApplications ISBN978-3-319-92617-9 ISBN978-3-319-92618-6 (eBook) https://doi.org/10.1007/978-3-319-92618-6 LibraryofCongressControlNumber:2018943895 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartof SpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Introduction Weareconvincedthatphysicalsecurityinchemicalindustrialareascanandshould beimproved,throughouttheworld.Chemicalsubstancesarestoredandprocessedin largequantitiesinchemicalplantsandchemicalclustersaroundtheglobe,anddueto thematerials’characteristicssuchastheirflammability,explosiveness,andtoxicity, theymaycausehugedisastersandevensocietaldisruptionifdeliberatelymisused. Dealing with security implies dealing with intelligent adversaries and deliberate actions, as will also be further expounded in the next chapters. Such intelligent adversariesrequiresmartsolutionsandflexiblemodelsandrecommendationsfrom thedefender’sside. Suchisonly possible viamathematical modellingandthrough the use of game theory as a technique for intelligent strategic decision-making support. In this book, we will elaborate and discuss on how this can be achieved. Figure1showsanoverviewofthebook. Fig.1 Organizationof Ch1: Chemical Security Ch2: Game Theory thebook x Single Plant Protection Multi-Plant Protection Ch3: Chemical Plant Protection (CPP) Game Ch6: Chemical Cluster Patrolling (CCP) Game Ch4: Interval CPP Game Ch5: CPP Game with Boundedly Rational Attacker Ch7: Case Study of CPP Game and CCP Game Ch8: Conclusion and Recommendation v vi Introduction Chapter 1 points out that ‘intentionality’ is the key difference between a (delib- erate)securityeventanda(coincidental)safetyevent.Theimportanceofprotecting achemicalplantaswellasprotectingachemicalclusterisillustratedinthechapter. State-of-the-art literature and governmental regulations are discussed. The lack of historicaldataandtheexistenceofintelligentadversariesareidentifiedasthemain challengesforimprovingsecurityinchemicalindustrialareas. Chapter 2 introduces game theory, which is the main methodology used in this book. ‘Players’, ‘strategies’, and ‘payoffs’ are the main components of a game theoreticmodel.The‘commonknowledge’assumptionandthe‘rationality’assump- tion are the most frequently used assumptions in game theoretic research and are thoroughlyexplained.Gameswithadiscretesetofstrategiesarealsodiscussed(and furtherused),sincetheyareeasiertosolveaswellastheybetterreflectrealitythan gameswithcontinuousstrategies. Chapters3,4,and5concernthephysicalprotectionofchemicalplantsbelonging to a single operator. In Chap. 3, a Chemical Plant Protection (CPP) game is developed, based on the so-called multiple-layer protection approach for chemical plants.TheCPPgameisabletomodelintelligentinteractionsbetweenthedefender and the attackers. An analysis of the inputs and outputs of the CPP game is also provided. However,theCPPgamesuffersadrawback,thatis,alargeamountofquantita- tiveinputsisrequired.Chapter4thereforeaddressesthisdisadvantage,byproposing an Interval CPP game, which is an extension of the CPP game where the exact numbers of the attacker’s parameters are no longer needed. Instead, in this game, only the intervals that the parameters will be situated in are required. Thus, the Interval CPP game considers the defender’s distribution-free uncertainties on the attackers’parameters, andhencetheinputsfor theIntervalCPP game areeasier to obtain,forinstance,byusingtheoutputsfromtheAPISRAmethod[1]. AseconddrawbackoftheCPPgameconcernstherationalattackerassumption. Chapter 5 therefore models bounded-rational attackers into the CPP game. In Chap.5,threerobustsolutionsareproposedfortheCPPgame,namely,theRobust solution with epsilon-optimal attackers, the MoSICP solution, and the MiniMax solution, for addressing attackers who may deviate from strategies having close payoffs to their ‘best response’ strategy, for addressing attackers who may play strategieswithhigherpayoffswithhigherprobabilities,andforaddressingattackers whoonlyaimatminimizingthedefender’smaximalpayoffs,respectively. Chapter 6 employs game theory for optimizing the scheduling of patrolling in chemicalclustersorchemicalindustrialparks.AChemicalClusterPatrolling(CCP) gameisformulated.Boththehazardousnesslevelofeachplantandtheintelligence ofadversariesareconsideredintheCCPgame,forgeneratingrandombutstrategic andimplementablepatrollingroutesfortheclusterpatrollingteam. InChapter7,twoillustrativecasestudiesareelaboratedandinvestigated.Inthe firstcasestudy,theCPPgameisappliedtoarefinerytoshowhowthegameworks andwhatresultscanbeobtainedbyimplementingthegame.Therefinerycaseisalso usedintheAPISRAdocumentforillustrativepurposes.Therefore,theoutputsfrom Introduction vii theAPISRAmethodareusedasonepartoftheinputsfortheCPPgame,whileother inputsoftheCPPgameareillustrativenumbers.Inthesecondcasestudy,theCCP gameisappliedtoachemicalclustercomposedofseveralplants,eachbelongingto differentoperators,foroptimizingthepatrollingofsecurityguardsinthemulti-plant area. Results show that the patrolling route generated by the CCP game well out- performsthepurelyrandomizedpatrollingstrategyaswellasallthefixedpatrolling routes. EightconclusionsaredrawnandninerecommendationsaregiveninChap.8. Reference 1.API.Securityriskassessmentmethodologyforthepetroleumandpetrochemical industries.In:780ARP,editor.2013. Contents 1 ProtectingProcessIndustriesfromIntentionalAttacks:TheState oftheArt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 SafetyandSecurityDefinitionsandDifferences. . . . . . . . . . . . . . 2 1.3 SecurityinaSingleChemicalPlant. . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 TheNeedofImprovingSecurityinChemicalPlants. . . . . 5 1.3.2 ChallengeswithRespecttoImprovingChemicalSecurity. . 8 1.3.3 SecurityRiskAssessmentinChemicalPlants: State-of-the-ArtResearch. . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.4 DrawbacksofCurrentMethodologies. . . . . . . . . . . . . . . . 17 1.4 ProtectionofChemicalIndustrialParks(CIPs)orSo-Called ChemicalClusters. .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . 18 1.4.1 SecurityWithinChemicalClusters. . . . . . . . . . . . . . . . . . 18 1.4.2 ChemicalClusterSecurity:State-of-the-ArtResearch. . . . . 19 1.4.3 FuturePromisingResearchDirectionsonCluster Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 IntelligentInteractionModelling:GameTheory. . . . . . . . . . . . . . . . 25 2.1 PreliminariesofGameTheory,SettingtheScene. . . . . . . . . . . . . 25 2.1.1 Introduction.. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. 25 2.1.2 Players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.3 Strategy(Set). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Payoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.5 TheAssumptionof‘CommonKnowledge’. . . . . . . . . . . . 29 ix x Contents 2.1.6 TheAssumptionof‘Rationality’. . . . . . . . . . . . . . . . . . . . 31 2.1.7 SimultaneousandSequentialGame. . . . . . . . . . . . . . . . . . 32 2.2 GameTheoreticModelswithaDiscreteSetofStrategies. . . . . . . 33 2.2.1 DiscreteandContinuousSetofStrategies. . . . . . . . . . . . . 33 2.2.2 NashEquilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 StackelbergEquilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 CriticismsonGameTheoreticModelsforSecurity Improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 IntegratingConventionalSecurityRiskAssessment MethodologiesandGameTheoryforImprovingChemical PlantProtection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 SinglePlantProtection:AGame-TheoreticalModel forImprovingChemicalPlantProtection. . . . . . . . . . . . . . . . . . . . . 43 3.1 GeneralIntrusionDetectionApproachinChemicalPlants. . . . . . . 43 3.2 Game-TheoreticalModelling:TheChemicalPlant ProtectionGame(CPPGame). . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.3 Payoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 SolutionsfortheCPPGame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 NashEquilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 StackelbergEquilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.3 BayesianNashEquilibrium. . . . . . . . . . . . . . . . . . . . . . . 55 3.3.4 BayesianStackelbergEquilibrium. . . . . . . . . . . . . . . . . . . 56 3.4 CPPGamefromanIndustrialPracticePointofView. . . . . . . . . . 58 3.4.1 InputAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.2 OutputAnalysis. . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62 3.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 SinglePlantProtection:PlayingtheChemicalPlant ProtectionGamewithDistribution-FreeUncertainties. . . . . . . . . . . 65 4.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 IntervalCPPGameDefinition. . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 IntervalBi-MatrixGameSolver(IBGS). . . . . . . . . . . . . . . . . . . . 67 4.4 ParameterCoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 IntervalCPPGameSolver(ICGS). . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Description: