ebook img

Game-Theoretical Models in Biology PDF

623 Pages·2022·13.888 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Game-Theoretical Models in Biology

Game-Theoretical Models in Biology Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology, Second Edition presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the Prisoner’s Dilemma. It covers the evolu- tionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use Python to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behaviour, and the existence of adornments (for exam- ple, the peacock’s tail), have been explained using ideas underpinned by game theoretical modelling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modelling of these diverse biological phenomena. In this thoroughly revised new edition, the authors have added three new chapters on the evolution of structured populations, biological signalling games, and a new chapter on evolutionary models of cancer. There are also new sections on games with time con- straints that convert simple games to potentially complex nonlinear ones; new models on extortion strategies for the Iterated Prisoner’s Dilemma and on social dilemmas; and on evolutionary models of vaccination, a timely section given the current Covid pandemic. • Presents a wide range of biological applications of game theory • Suitable for researchers and professionals in mathematical biology and the life sci- ences, and as a text for postgraduate courses in mathematical biology • Provides numerous examples, exercises and Python code. Chapman & Hall/CRC Mathematical Biology Series Series Editors: Ruth Baker, Mark Broom, Adam Kleczkowski, Doron Levy, Sergei Petrovskiy About the Series This series aims to capture new developments in mathematical biology, as well as high-quality work summarizing or contributing to more established topics. Publishing a broad range of textbooks, reference works, and handbooks, the series is designed to appeal to students, researchers, and professionals in mathematical biology. We will consider proposals on all topics and applications within the field, including but not limited to stochastic modelling, differential equation modelling, dynamical systems, game theory, machine learning, data science, evolutionary biology, cell biology, oncology, epidemiology, ecology and more. An Introduction to Physical Oncology How Mechanistic Mathematical Modeling Can Improve Cancer Therapy Outcomes Vittorio Cristini, Eugene Koay, Zhihui Wang Introduction to Mathematical Oncology Yang Kuang, John D. Nagy, Steffen E. Eikenberry Stochastic Dynamics for Systems Biology Christian Mazza, Michel Benaim Systems Biology Mathematical Modeling and Model Analysis Andreas Kremling Cellular Potts Models Multiscale Extensions and Biological Applications Marco Scianna, Luigi Preziosi Quantitative Biology From Molecular to Cellular Systems Edited By Michael E. Wall Game-Theoretical Models in Biology, Second Edition Mark Broom, Jan Rychtář For more information about the series, visit: https://www.routledge.com/ Chapman--HallCRC-Mathematical-Biology-Series/book-series/CRCMBS Game-Theoretical Models in Biology Second Edition Mark Broom City, University London, UK Jan Rychtář Virginia Commonwealth University, USA Second edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Taylor & Francis, LLC First edition published by CRC Press 2013 CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify it in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC, please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 978-0-367-45668-9 (hbk) ISBN: 978-1-032-30870-8 (pbk) ISBN: 978-1-003-02468-2 (ebk) DOI: 10.1201/9781003024682 Typeset in CMR10 by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from a camera-ready copy provided by the authors. To Monica and Dewey and Walter Contents Preface xix Authors xxiii 1 Introduction 1 1.1 The history of evolutionary games . . . . . . . . . . . . . . 1 1.1.1 Early game playing and strategic decisions . . . . . 2 1.1.2 The birth of modern game theory . . . . . . . . . . 4 1.1.3 The beginnings of evolutionary games . . . . . . . . 5 1.2 The key mathematical developments . . . . . . . . . . . . . 7 1.2.1 Static games . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Dynamic games . . . . . . . . . . . . . . . . . . . . 9 1.3 The range of applications . . . . . . . . . . . . . . . . . . . 10 1.4 Reading this book . . . . . . . . . . . . . . . . . . . . . . . 12 2 What is a game? 13 2.1 Key game elements . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Players . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2.1 Pure strategies . . . . . . . . . . . . . . . . 15 2.1.2.2 Mixed strategies . . . . . . . . . . . . . . . 16 2.1.2.3 Pure or mixed strategies? . . . . . . . . . . 17 2.1.3 Payoffs . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3.1 Representation of payoffs by matrices . . . 19 2.1.3.2 Contests between mixed strategists . . . . 20 2.1.3.3 Generic payoffs . . . . . . . . . . . . . . . 21 2.1.4 Games in normal form . . . . . . . . . . . . . . . . . 23 2.2 Games in biological settings . . . . . . . . . . . . . . . . . . 23 2.2.1 Representing the population . . . . . . . . . . . . . 24 2.2.2 Payoffs in matrix games . . . . . . . . . . . . . . . . 26 2.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 vii viii Contents 3 Two approaches to game analysis 29 3.1 The dynamical approach . . . . . . . . . . . . . . . . . . . . 29 3.1.1 Replicator dynamics . . . . . . . . . . . . . . . . . . 29 3.1.1.1 Discrete replicator dynamics . . . . . . . . 29 3.1.1.2 Continuous replicator dynamics . . . . . . 30 3.1.2 Adaptive dynamics. . . . . . . . . . . . . . . . . . . 31 3.1.3 Other dynamics . . . . . . . . . . . . . . . . . . . . 32 3.1.4 Timescales in evolution . . . . . . . . . . . . . . . . 33 3.2 The static approach — ESS . . . . . . . . . . . . . . . . . . 34 3.2.1 Nash equilibria . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Evolutionarily Stable Strategies . . . . . . . . . . . 37 3.2.2.1 ESSs for matrix games . . . . . . . . . . . 38 3.2.3 Polymorphic versus monomorphic populations . . . 39 3.2.4 Stability of Nash equilibria and of ESSs . . . . . . . 41 3.3 Dynamics versus statics . . . . . . . . . . . . . . . . . . . . 42 3.3.1 ESS and replicator dynamics in matrix games. . . . 43 3.3.2 Replicator dynamics and finite populations . . . . . 44 3.4 Python code . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Some classical games 49 4.1 The Hawk-Dove game . . . . . . . . . . . . . . . . . . . . . 49 4.1.1 The underlying conflict situation . . . . . . . . . . . 49 4.1.2 The mathematical model . . . . . . . . . . . . . . . 50 4.1.3 Mathematical analysis . . . . . . . . . . . . . . . . . 50 4.1.4 An adjusted Hawk-Dove game . . . . . . . . . . . . 51 4.1.5 Replicator dynamics in the Hawk-Dove game . . . . 51 4.1.6 Polymorphic mixture versus mixed strategy . . . . . 51 4.2 The Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . 53 4.2.1 The underlying conflict situation . . . . . . . . . . . 54 4.2.2 The mathematical model . . . . . . . . . . . . . . . 54 4.2.3 Mathematical analysis . . . . . . . . . . . . . . . . . 55 4.2.4 Interpretation of the results . . . . . . . . . . . . . . 55 4.2.5 The IPD, computer tournaments and Tit for Tat . . 56 4.3 The war of attrition . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 The underlying conflict situation . . . . . . . . . . . 58 4.3.2 The mathematical model . . . . . . . . . . . . . . . 59 4.3.3 Mathematical analysis . . . . . . . . . . . . . . . . . 59 4.3.4 Some remarks on the above analysis and results . . 61 4.3.5 A war of attrition game with limited contest duration 61 4.3.6 A war of attrition with finite strategies . . . . . . . 62 4.3.7 The asymmetric war of attrition . . . . . . . . . . . 63 4.4 The sex ratio game . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 The underlying conflict situation . . . . . . . . . . . 64 Contents ix 4.4.2 The mathematical model . . . . . . . . . . . . . . . 64 4.4.3 Mathematical analysis . . . . . . . . . . . . . . . . . 65 4.5 Python code . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 The underlying biology 73 5.1 Darwin and natural selection . . . . . . . . . . . . . . . . . 73 5.2 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Hardy-Weinberg equilibrium . . . . . . . . . . . . . 77 5.2.2 Genotypes with different fitnesses . . . . . . . . . . 79 5.3 Games involving genetics . . . . . . . . . . . . . . . . . . . 81 5.3.1 Genetic version of the Hawk-Dove game . . . . . . . 82 5.3.2 A rationale for symmetric games . . . . . . . . . . . 82 5.3.3 Restricted repertoire and the streetcar theory . . . . 83 5.4 Fitness, strategies and players . . . . . . . . . . . . . . . . . 84 5.4.1 Fitness 1 . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.2 Fitness 2 . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.3 Fitness 3 . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.4 Fitness 4 . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.5 Fitness 5 . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.6 Further considerations . . . . . . . . . . . . . . . . . 86 5.5 Selfish genes: How can non-beneficial genes propagate? . . . 86 5.5.1 Genetic hitchhiking . . . . . . . . . . . . . . . . . . 87 5.5.2 Selfish genes . . . . . . . . . . . . . . . . . . . . . . 88 5.5.3 Memes and cultural evolution . . . . . . . . . . . . . 89 5.5.4 Selection at the level of the cell . . . . . . . . . . . . 90 5.6 The role of simple mathematical models . . . . . . . . . . . 90 5.7 Python code . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Matrix games 97 6.1 Properties of ESSs . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.1 An equivalent definition of an ESS . . . . . . . . . . 97 6.1.2 A uniform invasion barrier . . . . . . . . . . . . . . 98 6.1.3 Local superiority of an ESS . . . . . . . . . . . . . . 100 6.1.4 ESS supports and the Bishop-Cannings theorem . . 101 6.2 ESSs in a 2 2 matrix game . . . . . . . . . . . . . . . . . 103 × 6.3 Haigh’s procedure to locate all ESSs . . . . . . . . . . . . . 105 6.4 ESSs in a 3 3 matrix game . . . . . . . . . . . . . . . . . 107 × 6.4.1 Pure strategies . . . . . . . . . . . . . . . . . . . . . 107 6.4.2 A mixture of two strategies . . . . . . . . . . . . . . 108 6.4.3 Internal ESSs . . . . . . . . . . . . . . . . . . . . . . 108 6.4.4 No ESS . . . . . . . . . . . . . . . . . . . . . . . . . 109

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.