ebook img

Gallium Nitride Processing for Electronics, Sensors and Spintronics PDF

382 Pages·2006·7.028 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gallium Nitride Processing for Electronics, Sensors and Spintronics

Engineering Materials and Processes Series Editor ProfessorBrianDerby,ProfessorofMaterialsScience ManchesterMaterialsScienceCentre,GrosvenorStreet,ManchesterM17HS,UK Other titles published in this series: FusionBondingofPolymerComposites C.AgeorgesandL.Ye CompositeMaterials D.D.L.Chung Titanium G.Lu¨tjeringandJ.C.Williams CorrosionofMetals H.Kaesche CorrosionandProtection E.Bardal IntelligentMacromoleculesforSmartDevices L.Dai MicrostructureofSteelsandCastIrons M.Durand-Charre PhaseDiagramsandHeterogeneousEquilibria B.Predel,M.HochandM.Pool ComputationalMechanicsofCompositeMaterials M.Kamin´ski MaterialsforInformationTechnology E.Zschech,C.WhelanandT.Mikolajick PublicationdueJuly2005 Thermoelectricity J.P.Heremans,G.ChenandM.S.Dresselhaus PublicationdueAugust2005 ComputerModellingofSinteringatDifferentLengthScales J.Pan PublicationdueOctober2005 ComputationalQuantumMechanicsforMaterialsEngineers L.Vitos PublicationdueJanuary2006 FuelCellTechnology N.Sammes PublicationdueJanuary2006 Stephen J. Pearton, Cammy R. Abernathy and Fan Ren Gallium Nitride Processing for Electronics, Sensors and Spintronics With 241 Figures Stephen J. Pearton, PhD Department of Materials Science and Engineering, P.O. Box 116400, University of Florida, Gainesville, FL 32611, USA Cammy R. Abernathy, PhD Department of Materials Science and Engineering, P.O. Box 116400, University of Florida, Gainesville, FL 32611, USA Fan Ren, PhD Department of Chemical Engineering, P.O. Box 116005, University of Florida, Gainesville, FL 32611, USA BritishLibraryCataloguinginPublicationData Pearton,S.J. Galliumnitrideprocessingforelectronics,sensorsand spintronics.—(Engineeringmaterialsandprocesses) 1.Semiconductors 2.Galliumnitride 3.Detectors— Technologicalinnovations I.Title II.Abernathy,C.R. III.Ren,F. 621.3′8152 ISBN-10:1852339357 LibraryofCongressControlNumber:2005926297 EngineeringMaterialsandProcessesISSN1619-0181 ISBN-10:1-85233-935-7 ISBN-13:978-1-85233-935-7 Printedonacid-freepaper ©Springer-VerlagLondonLimited2006 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlyberepro- duced,storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingof thepublishers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicences issuedbytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethoseterms shouldbesenttothepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsence of a specific statement, that such names are exempt from the relevant laws and regulations and thereforefreeforgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinfor- mationcontainedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrors oromissionsthatmaybemade. PrintedintheUnitedStatesofAmerica (TB/SBA) 9 8 7 6 5 4 3 2 1 SpringerScience+BusinessMedia springeronline.com Preface The GaN-based materials system has provided over a decade of surprises, from the initial breakthroughs with visible light-emitting diodes (LEDs) to laser diodes, solar-blind ultraviolet (UV) detectors to microwave power electronics and then to solid-state UV light sources and white lighting. Even recently, the bandgap of InN was determined to be closer to 0.7 eV rather than the value of 1.9 eV accepted for many years. The areas men- tioned above have been extensively covered in other books and in the lit- erature. The purpose of this volume is to cover some of the newer areas of research and development for GaN, such as sensors, megawatt electronics, and gate dielectrics for transistors and spin-transport electronics (or spin- tronics), along with advances in processing of the material. GaN-based visible LEDs and laser diodes are already commercialized for a variety of lighting and data storage applications. This materials system is also showing promise for microwave and high-power electronics intended for radar, satellite, wireless base stations, and utility grid applications, for biological detection systems, and for a new class of spintronics in which the spin of charge carriers is exploited. The explosive increase in interest in the AlGaInN family of materials in recent years has been fueled by the application of blue–green–UV LEDs in full-color displays, traffic lights, automotive lighting, and general room lighting using so-called white LEDs [1]. In addition, blue–green laser diodes can be used in high storage- capacity digital versatile disks (DVDs) systems. AlGaN-based photode- tectors are also useful for solar-blind UV detection and have applications as flame sensors for control of gas turbines or for detection of missiles. There are currently major development programs in the United States for three newer applications for GaN-based materials and devices, namely: i. UV optical sources capable of operation down to 280 nm for use in airborne chemical and biological sensing systems, allowing di- rect multi-wavelength spectroscopic identification and monitoring of UV-induced reactions. ii. Power amplifiers and monolithic microwave integrated circuits (MMICs) for use in high-performance radar units and wireless broadband communication links and ultra-high-power (>1 MW) switches for control of distribution on electricity grid networks. v vi Preface iii.Room-temperature, ferromagnetic semiconductors for use in elec- trically controlled magnetic sensors and actuators, high-density, ultra-low-power memory and logic, spin-polarized light emitters for optical encoding, advanced optical switches and modulators, and devices with integrated magnetic, electronic, and optical func- tionality. There is currently a lot of interest in the science and po- tential technological applications of spintronics, in which the spin of charge carriers (electrons or holes) is exploited to provide new functionality for microelectronic devices. The phenomena of giant magnetoresistance and tunnelling magnetoresistance have been exploited in all-metal or metal–insulator–metal magnetic systems for read/write heads in computer hard drives, magnetic sensors, and magnetic random access memories. The development of mag- netic semiconductors with practical ordering temperatures could lead to new classes of device and circuits, including spin transis- tors, ultra-dense non-volatile semiconductor memory, and optical emitters with polarized output. In addition, there is increasing interest in use of GaN-based structures for increasing the sensitivity, selectivity, and reliability of sensor devices while keeping their fabrication at low cost. There is still a lack of funda- mental understanding of the physical/chemical/biological phenomena at the origin of the sensing mechanism in most cases. The GaN has potential for chemical sensors and field effect transistor (FET) devices, magnetic sensors, radiation sensors, acoustic sensors, mechanical sensors, and bio- sensors. It is hoped that this volume will prove useful to researchers entering these new areas. Acknowledgments We wish to thank our many collaborators over the past few years, includ- ing G. Thaler, B.P. Gila, R. Frazier, A.H. Onstine, J. Kim, S. Kim, B.S. Kang, A.P. Zhang, X.A. Cao, J.W. Johnson, B. Luo, K. Baik, K. Ip, R. Khanna, D.P. Norton, J.M. Zavada, R.G. Wilson, J. Lin, M.E. Law, K.S. Jones, W.M. Chen, I.A. Buyanova, A.Y. Polyakov, Y. Irokawa, J.R. LaRoche, M.E. Overberg, R.J. Shul, A.G. Baca, J.C. Zolper, K.E. Waldrip, M. Stavola, S.N.G. Chu, M.W. Cole, W.S. Hobson, J.W. Lee, and C. Var- tuli. Preface vii References 1. Nakamura S, Pearton SJ, Fasal G, The Blue Laser Diodes (Springer, Berlin, 2000) Gainesville, Florida, USA Stephen J. Pearton Cammy R. Abernathy Fan Ren Contents Preface...........................................................................................................v 1 Advanced Processing of Gallium Nitride for Electronic Devices..............1 1.1 Abstract ............................................................................................1 1.2 Introduction......................................................................................2 1.3 Results and Discussion...................................................................16 1.3.1 Ultra-High-Temperature Activation of Implant Doping in Gallium Nitride................................................................16 1.3.1.1 High-Temperature Annealing and Aluminum Nitride Encapsulation..............................................17 1.3.1.2 n-Type Implant Doping............................................22 1.3.1.3 p-Type Implant Doping............................................25 1.3.1.4 Dopant Redistribution..............................................26 1.3.1.5 Residual Damage.....................................................31 1.4 Implant Isolation.............................................................................32 1.4.1 Oxygen Implantation for Selective Area Isolation...............34 1.4.2 Creation of High-Resistivity Gallium Nitride by Ti, Iron, and Chromium Implantation..................................38 1.5 Electrical Contacts to Gallium Nitride...........................................41 1.5.1 Effects of Interfacial Oxides on Schottky Contact...............44 1.5.2 Interfacial Insulator Model...................................................49 1.5.3 Thermally Stable Tungsten-Based Ohmic Contact...............51 1.5.4 Behavior of Tungsten and Tungsten Silicide Contacts on p-Gallium Nitride.............................................54 1.6 Dry Etch Damage in Gallium Nitride.............................................60 1.6.1 Plasma Damage in n-Gallium Nitride...................................61 1.6.2 Effect of Etching Chemistries on Damage............................66 1.6.3 Thermal Stability of Damage................................................71 1.6.4 Plasma Damage in p-Gallium Nitride...................................75 1.6.5 Thermal Stability of Damage................................................80 1.6.6 Determination of Damage Profile in Gallium Nitride..........82 1.7 Conclusions and Future Trends......................................................86 References...................................................................................................89 ix x Contents 2 Dry Etching of Gallium Nitride and Related Materials...........................97 2.1 Abstract...........................................................................................97 2.2 Introduction....................................................................................97 2.3 Plasma Reactors..............................................................................97 2.3.1 Reactive Ion Etching.............................................................98 2.3.2 High-Density Plasmas.........................................................100 2.3.3 Chemically Assisted Ion Beam Etching.............................101 2.3.4 Reactive Ion Beam Etching................................................102 2.3.5 Low-Energy Electron Enhanced Etching............................103 2.4 Plasma Chemistries.......................................................................104 2.4.1 Chlorine-Based Plasmas.....................................................104 2.4.2 Iodine- and Bromine-Based Plasmas..................................116 2.4.3 Methane–Hydrogen–Argon Plasmas..................................121 2.5 Etch Profile and Etched Surface Morphology..............................122 2.6 Plasma-Induced Damage..............................................................124 2.6.1 n-Gallium Nitride................................................................126 2.6.2 p-Gallium Nitride................................................................133 2.6.3 Schottky Diodes..................................................................141 2.6.4 p-n Junctions.......................................................................148 2.7 Device Processing.........................................................................152 2.7.1 Microdisk Lasers.................................................................152 2.7.2 Ridge Waveguide Lasers....................................................153 2.7.3 Heterojunction Bipolar Transistors.....................................157 2.7.4 Field Effect Transistors.......................................................161 2.7.5 Ultroviolet Detectors...........................................................166 References.................................................................................................169 3 Design and Fabrication of Gallium Nitride High-Power Rectifiers.......179 3.1 Abstract.........................................................................................179 3.2 Introduction..................................................................................179 3.3 Background...................................................................................180 3.3.1 Temperature Dependence of Bandgap................................180 3.3.1.1 Gallium Nitride......................................................180 3.3.1.2 6H-SiC...................................................................181 3.3.2 Effective Density of States.................................................182 3.3.3 Intrinsic Carrier Concentration...........................................182 3.3.4 Incomplete Ionization of Impurity Atoms..........................183 3.3.5 Mobility Models.................................................................184 3.3.5.1 Analytical Mobility Model.....................................184 3.3.5.2 Field-Dependent Mobility Model..........................185 3.3.6 Generation and Recombination..........................................186 3.3.6.1 Shockley–Read–Hall Lifetime...............................186 Contents xi 3.3.6.2 Auger Recombination............................................186 3.3.7 Reverse Breakdown Voltage..............................................186 3.3.8 On-State Resistance............................................................191 3.4 Edge Termination Design.............................................................195 3.4.1 Field Plate Termination......................................................195 3.4.2 Junction Termination..........................................................198 3.5 Comparison of Schottky and p-n Junction Diodes.......................201 3.5.1 Reverse Bias.......................................................................201 3.5.2 Forward Bias.......................................................................201 3.6 High Breakdown Lateral Diodes..................................................204 3.7 Bulk Diode Arrays....................................................................... 207 3.8 Conclusions..................................................................................210 References.................................................................................................211 4 Chemical, Gas, Biological, and Pressure Sensing..................................213 4.1 Abstract.........................................................................................213 4.2 Introduction..................................................................................214 4.3 Sensors Based on AlGaN–GaN Heterostructures.........................219 4.3.1 Gateless AlGaN–GaN High Electron Mobility Transistor Response to Block Co-Polymers......................219 4.3.2 Hydrogen Gas Sensors Based on AlGaN–GaN-Based Metal-Oxide Semiconductor Diodes..................................222 4.3.3 Hydrogen-Induced Reversible Changes in Sc O – 2 3 AlGaN–GaN High Electron Mobility Transistors.............226 4.3.4 Effect of External Strain on Conductivity of AlGaN– GaN High Electron Mobility Transistors...........................230 4.3.5 Pressure Sensor Fabrication................................................236 4.3.6 Selective-Area Substrate Removal.....................................239 4.3.7 Biosensors Using AlGaN–GaN Heterostructures...............240 4.3.8 Surface Acoustic Wave-Based Biosensors.........................245 4.4 Surface Acoustic Wave Device Fabrication.................................247 4.5 Surface Acoustic Wave Device for Gas Sensing..........................250 4.6 Flexural Plate Wave Device for Liquid Sensing..........................251 4.7 Surface Acoustic Wave Array......................................................251 4.8 Wireless Sensor Network and Wireless Sensor Array Using Radio Frequency Identification Technology.....................252 4.9 Summary.......................................................................................255 References.................................................................................................255 5 Nitride-Based Spintronics......................................................................261 5.1 Abstract........................................................................................261 5.2 Introduction.................................................................................261

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.