ebook img

Gallium Nitride Based Transistors for High-Efficiency Microwave Switch-Mode Amplifiers PDF

177 Pages·2011·4.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gallium Nitride Based Transistors for High-Efficiency Microwave Switch-Mode Amplifiers

Gallium Nitride Based Transistors for High-Efficiency Microwave Switch-Mode Amplifiers Dissertation zur Erlangung des Doktorgrades an der Technischen Fakultät der Albert-Ludwigs Universität Freiburg im Breisgau vorgelegt von Dipl.-Ing. Stephan Maroldt Juni 2010 Dekan: Prof. Dr. Hans Zappe Referent: Prof. Dr. rer. nat. Oliver Ambacher Koreferent: PD Dr.-Ing. habil. Frank Schwierz Datum der Prüfung: 11.11.2010 II Abstract Highly-efficient switch-mode power amplifiers form key elements in future fully-digital base stations for mobile communication. This novel digital base station concept reduces system energy consumption, complexity, size and costs, while the flexibility in terms of multi-band operation and signal modulation improves. In this work, innovative core circuits for digital high-efficiency class-D and class-S power amplifiers based on gallium nitride (GaN) technology were developed for the application in digital base stations. A combination of optimized GaN devices and improvements in circuit design allow a highly-efficient switch- mode operation at mobile communication frequencies between 0.45 GHz and 2 GHz. Transistor device modeling for switch-mode operation, the simulation environment, and a broadband measurement system were established for the design and evaluation of digital switch-mode power amplifiers. The design of broadband core circuits for switch-mode amplifier concepts was analyzed for dual-stage amplifier circuits, using an initial GaN technology with a gate length of 0.25 µm. A speed-enhanced driver stage improved the circuit switching speed sufficiently above 1 GHz. Speed and efficiency of the amplifier core circuits were studied related to transistor parameters like cut-off frequency or gate capacitance. A reduced gate length was found to improve the switching speed, while a lower on-resistance allows the reduction of the inherent static losses of the GaN-based switches. Apart from this, the restriction to a 50 Ohm environment was found to be the major output power and switching speed limitation, due to a poor drive capability at the input of the GaN circuit. Finally, the optimized transistor and circuit design with an output gate width of 1.2 mm were effectively implemented in the given environment for an operation up to 2 GHz with a high drain efficiency of > 65% and a digital output power of 5 W. A maximum output power of 9.7 W and a circuit efficiency of > 80% were achieved for an operation at 0.45 GHz when adjusting the transistor size for lower operation frequencies. A further decisive improvement of speed and circuit complexity was found by the implementation of enhancement-mode GaN transistors based on a high-transconductance gate-recess technology. Transistors with a threshold voltage of +1 V were demonstrated with a high current drive capability and a maximum transconductance of up to 600 mS/mm. Their reduced input voltage swing tremendously increases the compatibility of digital power amplifier circuits based on GaN and external digital driver and modulation circuits based on silicon technology. Moreover, an innovative development, the series-diode GaN transistor, replaces an off- chip hybrid diode in the class-S amplifier with an integrated solution. It reduces parasitic switching losses and improves the total amplifier properties in terms of operation frequency, efficiency, and circuit complexity. A differential switch-mode core chip featuring series-diode transistors and additional on-chip filter elements enabled our partner EADS to realize the first class-S amplifier at 2 GHz worldwide in a module. III Zusammenfassung Schaltverstärker mit hoher Energieeffizienz und Ausgangsleistung sind Schlüsselelemente für die neueste Generation von Mobilfunkbasisstationen. Diese neuen digitalen Basisstationen verringern den Energieverbrauch, die Kosten und die Baugröße einer Basisstation, wobei gleichzeitig die Möglichkeit eröffnet wird, mehrere Frequenzbänder und Mobilfunkstandards mit einem System zu bedienen. Im Rahmen dieser Arbeit wurden unter Verwendung der Galliumnitrid-Technologie (GaN-Technologie) neuartige integrierte Leistungsverstärker- schaltungen entwickelt. Der Einsatz dieser Schaltungen in digitalen Klasse-D und Klasse-S Schaltverstärker in einer digitalen Basisstation trägt erheblich zur Verbesserung der Energieeffizienz bei. Durch eine Optimierung der GaN-Bauelemente und der gleichzeitigen Weiterentwicklung im Schaltungsdesign konnte erstmals eine Anwendung dieser Schaltungen im Mobilfunkfrequenzbereich zwischen 0.45 GHz und 2 GHz ermöglicht werden. Dazu wurde zunächst ein Transistormodell für den Schaltbetrieb erstellt sowie eine Simulationsumgebung und ein Breitbandmesssystem für die Entwicklung des digitalen Schaltverstärkers eingerichtet. Der Entwurf der integrierten Schaltungen für den Einsatz in breitbandigen Schaltverstärkerkonzepten wurde am Beispiel eines zweistufigen Leistungsverstärkers untersucht, für den eine GaN-Technologie mit 0.25 µm Gatelänge verwendet wurde. Hierbei konnte die Schaltfrequenz durch eine gezielte Geschwindigkeitsoptimierung der Treiberschaltung auf über 1 GHz erhöht werden. Weiterhin wurde der Einfluss der Transistoreigenschaften, wie zum Beispiel der Grenzfrequenz und Gatekapazität, auf die Geschwindigkeit und die Effizienz der Basisschaltungen untersucht. Dabei konnte gezeigt werden, dass eine Reduzierung der Gatelänge deutlich zur Erhöhung der Schaltgeschwindigkeit beiträgt, während ein reduzierter Widerstand im eingeschalteten Zustand des GaN-Transistors die statischen Verluste signifikant verringert. Neben diesen Ergebnissen wurde die Beschränkung auf eine Umgebungsimpedanz von 50 Ω als ein wichtiger geschwindigkeitslimitierender Faktor identifiziert. Durch die hohe Impedanz des externen Treibers kann die Eingangsgatekapazität der GaN-Schaltung nur langsam geladen und entladen werden, wodurch die Schaltgeschwindigkeit begrenzt wird. Verbesserte Schaltungs- und Transistordesigns ermöglichten letztendlich die Entwicklung einer schnellen Verstärkerbasisschaltung mit 1.2 mm Gateweite in der Ausgangsstufe. Diese kann digitale Signale bis zu einer Frequenz von 2 GHz mit einer hohen Draineffizienz > 65% schalten, wobei eine digitalen Ausgangsleistung von 5 W erreicht wurde. Durch eine angepasste Gateweite konnte eine hohe Ausgangsleistung von 9.7 W mit einer Gesamteffizienz von über 80% für eine Frequenz von 0.45 GHz erreicht werden. IV Weiterhin wurden GaN-basierte selbstsperrende Transistoren mit sehr hoher Steilheit mittels einer so genannten gate-recess Technologie entwickelt. Diese ermöglichen eine zusätzliche Erhöhung der Schaltgeschwindigkeit sowie eine Vereinfachung der Schaltungskomplexität. Es wurden Transistoren mit einer Schwellspannung von +1 V und mit einer maximalen Steilheit bis zu 600 mS/mm realisiert, deren Ausgangsstrom und Ausgangsleistung vergleichbar mit denen herkömmlicher selbstleitender Transistoren sind. Durch ihre hohe Steilheit reduziert sich der benötigte Eingangsspannungshub zum An- und Ausschalten des Transistors. Damit wird die Kompatibilität von GaN-basierten Schaltverstärkerschaltungen zu externen digitalen Treiber- und Modulatorschaltungen, die in Siliziumtechnologie hergestellt werden, erheblich verbessert und damit die Realisierbarkeit der digitalen Basisstation vereinfacht. Eine weitere innovative Entwicklung ist der Austausch einer hybriden Diode im Modulaufbau des Class-S Verstärker durch eine integrierten Lösung on-chip, dem GaN Transistor mit integrierter seriell geschalteter Diode. Dadurch werden parasitäre Schaltverluste reduziert, die Schaltungskomplexität verringert und die maximale Schaltfrequenz und Effizienz des gesamten Verstärkermoduls erhöht. Eine differentielle Basisschaltung mit diesen Transistoren und zusätzlichen integrierten Filterelementen ermöglichte dem Projektpartner EADS Deutschland die Realisierung des weltweit ersten Class-S Verstärkermoduls bei 2 GHz. V Table of Contents 1 Introduction......................................................................................................................1 1.1 State of the Art: Switch-Mode Amplifiers for Mobile Communication...............3 2 Gallium Nitride Based Transistors for Microwave Switch-Mode Applications..............5 2.1 Semiconductor Technology for AlGaN/GaN Transistors.....................................5 2.1.1 Epitaxy of the Heterostructure........................................................................5 2.1.2 Processing of GaN Heterostructure Field Effect Transistors.........................7 2.2 Modeling of GaN Transistors for Microwave Broadband Switching...................10 2.2.1 Definition of Specific Transistor Properties...................................................12 2.3 Technological Realization of Enhancement-Mode GaN HFETs..........................14 2.3.1 Self-Aligned Gate-Recess Etching Technology.............................................16 2.3.2 Challenges and Further Requirements for Gate-Recessed HFETs.................21 3 Switch-Mode Power Amplifiers for Mobile Communication Using GaN HFETs..........23 3.1 Switch-Mode Concepts for Mobile Communication............................................23 3.1.1 Loss Mechanisms in Switch-Mode Amplifiers..............................................24 3.1.2 Loss Mechanisms: GaN Class-D Amplifier...................................................25 3.1.3 Current-Mode Class-S SMPA for Digital Amplifier Concepts......................28 3.1.4 3rd-Quadrant Issue of the HFET-Based Class-S Amplifiers...........................30 3.2 Characteristics of Digital-Switching Microwave Power Amplifiers....................33 3.2.1 Coexistence of Frequency and Time Domain for Digital Amplifiers............34 3.2.2 Broadband Power Switching Measurements in Time Domain.......................36 3.3 Digital Power Amplifier Using GaN HFET Technology......................................41 3.3.1 Simplified Large-Signal Switch-Mode Model...............................................41 3.3.2 Capacitance Charging Model for Digital Broadband Switching....................44 3.3.3 Absolute Switching Speed..............................................................................45 3.3.4 GaN Inverter Classes for Digital Driver Circuits...........................................49 3.4 Circuit Simulation, Design, and Specific Layout Aspects....................................55 3.4.1 General Simulation Considerations................................................................55 3.4.2 Major Circuit Design Parameters...................................................................56 3.4.3 Input Voltage Overdrive for Switching GaN HFETs.....................................56 3.4.4 Stability and Small-Signal Analysis...............................................................60 3.4.5 Layout Aspects...............................................................................................62 VI 4 Circuit Design for Digital Power Amplifiers...................................................................63 4.1 Conventional Dual-Stage Digital Amplifier.........................................................63 4.1.1 Design Approach............................................................................................64 4.1.2 Circuit Simulations.........................................................................................65 4.1.3 Measurement Results......................................................................................68 4.2 Switching Speed Improved Dual-Stage Digital Amplifier....................................77 4.2.1 Simulative Investigation of the Speed Improvement......................................78 4.2.2 Measurement Results......................................................................................83 4.3 Circuit Design Summary and Discussion of Loss Mechanisms...........................91 5 Impact of Device Properties on Circuit Switching Behavior...........................................95 5.1 Gate Length Scaling..............................................................................................96 5.1.1 Influence on Transistor Device Level.............................................................96 5.1.2 Digital Switching Performance.......................................................................98 5.2 Device On-Resistance Reduction..........................................................................102 5.2.1 Transistor Properties for Reduced Gate Contact Spacings.............................102 5.2.2 Impact of the On-Resistance on Circuit Level...............................................104 5.3 Gate Width Influence............................................................................................111 5.3.1 Impact on the Circuit Switching Speed..........................................................112 5.4 Circuits with Integrated Series Diodes..................................................................121 5.4.1 GaN HFETs with Integrated In Series Connected Schottky-Diode...............121 5.4.2 Digital Switch-Mode Amplifier Circuits Using SD-HFETs..........................124 5.5 Optimized Digital Switch-Mode Power Amplifiers..............................................130 5.6 Digital Amplifier Circuits Based on Gate-Recessed GaN HFETs........................139 5.6.1 GaN Inverters Using Enhancement-Mode HFETs.........................................139 5.6.2 Advantages of High-Transconductance HFETs for Digital Amplifiers.........140 5.6.3 Improvement of Switching Speed Due to Gate-Recessed HFETs.................141 6 Conclusions and Outlook..................................................................................................144 Appendix................................................................................................................................147 References..............................................................................................................................159 List of Publications.................................................................................................................165 Curriculum Vitae....................................................................................................................166 Acknowledgements................................................................................................................167 Eigenständigkeitserklärung....................................................................................................168 VII List of Abbreviations 2DEG Two-dimensional electron gas AlGaN Aluminum gallium nitride BPDS Bandpass delta-sigma BT Base transistor of an inverter circuit CM Current-mode CMCD Current-mode class-D CPW Coplanar waveguide CTC Current transfer characteristics DC Direct current DSA Driver-switching-ability DTR SMPA driver with depletion transistor and resistive load DTDR SMPA driver with depletion transistor and depletion FET/resistive load DUT Device under test E/D-mode Enhancement/Depletion-mode FET Field effect transistor GaAs Gallium arsenide GaN Gallium nitride Gbps Gigabit per second HEMT High electron mobility transistor HFET Heterostructure field effect transistor LDMOS Laterally diffused metal oxide semiconductor LT Load transistor of an inverter circuit MISHFET Metal insulator semiconductor heterostructure field effect transistor MESFET Metal semiconductor FET MMIC Monolithic microwave integrated circuit MSL Microstrip line RF Radio frequency RTC Resistance transfer characteristics PA Power amplifier PT Output power transistor of an integrated circuit SD Series diode, Schottky-drain SD-HFET Series-diode heterostructure field effect transistor Si Silicon SiC Silicon carbide SiGe Silicon germanium SiN Silicon nitride SMPA Switch-mode power amplifier VM Voltage-mode VMCD Voltage-mode class-D VIII Symbols and Constants Symbol Description Unit BR Bitrate Gbps BL Bit length ps C Gate-source capacitance (normalized to W ) pF/mm GS G C Gate-drain capacitance (normalized to W ) pF/mm GD G C Drain-source capacitance (normalized to W ) pF/mm DS G d Barrier thickness of an AlGaN/GaN heterostructure nm Bar DE Drain efficiency % DE(BR = 0) Extrapolated static drain efficiency (at a bitrate of zero) % ∆DE Slope of drain efficiency vs. bitrate pp/Gbps ε Permittivity - E Switching loss W/Gbps sw f Fundamental frequency GHz 0 f Maximum frequency of oscillation GHz max f Current-gain cut-off frequency GHz T gain Large-signal power gain dB g Transconductance mS/mm m h Short-circuit current-gain (small-signal) dB 21 I Drain current (normalized to W ) mA/mm D G I Gate current (normalized to W ) mA/mm G G L Gate length nm G MAG Maximum available gain (small-signal) dB MSG Maximum stable gain (small-signal) dB PAE Power-added efficiency % P RF input power W (dBm) in P RF output power W (dBm) out P (BR = 0) Extrapolated static RF output power (at bitrate of zero) W out P Static power dissipation/loss W D_static r Gate-width ratio between BT and PT in a dual-stage SMPA circuit - BT-PT r Inverter resistance transfer function - drv R Inverter output resistance Ω drv R Transistor on-resistance (normalized to W ) Ω (Ω·mm) on G τ Capacitance charging time constant ps T, T Switching time constant ps 0 t On-/off-switching time, also fall/rise time ps on/off V Inverter voltage transfer function V drv V Drain-source voltage V DS V Gate-source voltage V GS V Threshold voltage V th W Gate width mm G x Aluminum content in the barrier of an AlGaN/GaN heterostructure % Al IX 1 Introduction 1 Introduction Beside the World Wide Web, mobile communication is one of the most important technical revolutions of our daily life in the last twenty years. Today’s internet and mobile communication are merging. The permanent mobile accessibility of e-mail, social networks, or media-sharing website services need very high data transmission rates of several megabytes per second and user, increasing fast in the next years. A variety of communication standards have been developed and established in recent years to follow the demand of our society. A wide frequency range is used to generate the required bandwidth for the high data rates, e.g., TETRA (terrestrial trunked radio) at 450 MHz, WiMAX (worldwide interoperability for microwave access) at 2.45 and 3.5 GHz, 3rd generation mobile communication (3G) like UMTS (universal mobile telecommunications system) at 0.9 and 2.1 GHz, and the upcoming 4th generation (4G) with LTE (long-term evolution) currently between 0.7 and 2.6 GHz. All these techniques are using complex modulation schemes which cause a low energy efficiency of the mobile communication base station systems, especially due to the power amplifier. Most of the energy is wasted into heat instead of transmitting information through an antenna. Today already more than 4 million operating base stations worldwide [1] consume about five times more energy than the city of Berlin*. Taking into account their still rapidly growing number especially in Asia [3], an ecological imbalance is rising. The impact of global warming changes our daily life and a further expansion can implicate worldwide dramatic consequences. New technical systems with impact on mass market applications, like base stations for new mobile communication technologies, cannot be developed without taking into account the social responsibility in terms of energy efficient operation. To reduce the waste of energy the demand for the “green” base station intensifies. Future advanced mixed-mode/digital concept digital digital analog digital driver DSP digital pre- + filter output modulation I/Q distortion SMPA Integratedcircuitsbasedon silicon GaN Fig. 1-1: Architecture of a future digital base station using a GaN-based switch-mode power amplifier. To cope with this situation, efficiency-improving analog power amplifier concepts have been suggested recently, e.g., envelope tracking [4] or Doherty amplifier [5]. Another leap in efficiency and system architecture can be achieved due to a fully-digital base station (Fig. 1-1) by using a highly efficient switch-mode power amplifier (SMPA). While today the complex, * A typical base station with a power consumption of 2 kW has an energy consumption of 17.6 MWh per year. The city of Berlin has an annual consumption of electrical energy of about 13000 GWh [2]. 1

Description:
Transistor device modeling for switch-mode operation, the simulation transistors and additional on-chip filter elements enabled our partner EADS to realize the first .. account their still rapidly growing number especially in Asia [3], future systems could be digital up to the final power amplifi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.