ebook img

Galaxy And Mass Assembly (GAMA): Spectroscopic analysis PDF

4.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Galaxy And Mass Assembly (GAMA): Spectroscopic analysis

GAMAspectroscopicanalysis 1 Galaxy And Mass Assembly (GAMA): Spectroscopic analysis A. M. Hopkins1⋆, S. P. Driver2,3, S. Brough1, M. S. Owers1, A. E. Bauer1, M. L. P. Gunawardhana1,4, M. E. Cluver1, M. Colless1, C. Foster5, M. A. Lara-Lo´pez1, 6 7 8 8 9 10 11 I. Roseboom , R. Sharp , O. Steele , D. Thomas , I. K. Baldry , M. J. I. Brown , J. Liske , P. Norberg12, A. S. G. Robotham2,3, S. Bamford13, J. Bland-Hawthorn4, M. J. Drinkwater14, 3 1 J. Loveday15, M. Meyer2, J. A. Peacock6, R. Tuffs16, N. Agius17, M. Alpaslan2,3, E. Andrae16, 0 16 12 4 15 13 4 2 E. Cameron , S. Cole , J. H. Y. Ching , L. Christodoulou , C. Conselice , S. Croom , n N. J. G. Cross6, R. De Propris18, J. Delhaize2, L. Dunne19, S. Eales20, S. Ellis1, C. S. Frenk12, a 21 16 13 6 3 22 23 J A. Graham , M. W. Grootes , B. Ha¨ußler , C. Heymans , D. Hill , B. Hoyle , M. Hudson , 0 M. Jarvis24,25, J. Johansson26, D. H. Jones10, E. van Kampen11, L. Kelvin2,3, K. Kuijken27, 3 A´. Lo´pez-Sa´nchez1,28, S. Maddox19, B. Madore29, C. Maraston8, T. McNaught-Roberts12, ] O R. C. Nichol8, S. Oliver15, H. Parkinson6, S. Penny10, S. Phillipps30, K. A. Pimbblet,10, C 31 17 25 32 4 17 T. Ponman , C. C. Popescu , M. Prescott , R. Proctor , E. M. Sadler , A. E. Sansom , . h 29 2 33 4 34 M. Seibert , L. Staveley-Smith , W. Sutherland , E. Taylor , L. Van Waerbeke , p 15 35 4 3 24 - J. A. Va´zquez-Mata , S. Warren , D. B. Wijesinghe , V. Wild , S. Wilkins o r 1AustralianAstronomicalObservatory,POBox915,NorthRyde,NSW1670,Australia t 2InternationalCentreforRadioAstronomyResearch(ICRAR),UniversityofWesternAustralia,Crawley,WA6009,Australia s a 3SchoolofPhysics&Astronomy,UniversityofStAndrews,NorthHaugh,StAndrews,KY169SS,UK [ 4SydneyInstituteforAstronomy,SchoolofPhysics,UniversityofSydney,NSW2006,Australia 5EuropeanSouthernObservatory,AlonsodeCordova3107,Vitacura,Santiago,Chile 1 6InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,Edinburgh,EH93HJ,UK v 7ResearchSchoolofAstronomy&Astrophysics,AustralianNationalUniversity,CotterRoadWestonCreek,ACT2611,Australia 7 8InstituteofCosmologyandGravitation(ICG),UniversityofPortsmouth,DennisSciamaBuilding,BurnabyRoad,PortsmouthPO13FX,UK 2 9AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,TwelveQuaysHouse,EgertonWharf,Birkenhead,CH411LD,UK 1 10SchoolofPhysics,MonashUniversity,Clayton,Victoria3800,Australia 7 11EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748,Garching,Germany 1. 12InstituteforComputationalCosmology,DepartmentofPhysics,DurhamUniversity,SouthRoad,Durham,DH13LE,UK 0 13SchoolofPhysics&Astronomy,UniversityofNottingham,UniversityPark,NottinghamNG72RD,UK 3 14SchoolofPhysics,UniversityofQueensland,BrisbaneQLD4072,Australia 1 15AstronomyCentre,UniversityofSussex,Falmer,BrightonBN19QH,UK : 16MaxPlanckInstituteforNuclearPhysics(MPIK),Saupfercheckweg1,69117,Heidelberg,Germany v 17JeremiahHorrocksInstitute,UniversityofCentralLancashire,PrestonPR12HE,UK i 18CerroTololoInter-AmericanObservatory,LaSerena,Chile X 19DepartmentofPhysicsandAstronomy,UniversityofCanterbury,PrivateBag4800,Christchurch,NZ r 20SchoolofPhysicsandAstronomy,CardiffUniversity,TheParade,CardiffCF243AA,UK a 21CentreforAstrophysics&Supercomputing,SwinburneUniversity,Hawthorn,VIC3122,Australia 22InstitutdeCie`nciesdelCosmos,FacultatdeF´ısica,Mart´ıiFranque`s1,E-08028Barcelona,Spain 23DepartmentofPhysics&Astronomy,UniversityofWaterloo,Waterloo,ONN2L1Z5,Canada 24UniversityofOxford,DepartmentofPhysics,DenysWilkinsonBuilding,KebleRoad,Oxford,OX13RH,UK 25PhysicsDepartment,UniversityoftheWesternCape,PrivateBagX17,Bellville7535,SouthAfrica 26Max-PlanckInstitutfuerAstrophysik,Karl-Schwarzschild-Str.1,85741Garching,Germany 27LeidenObservatory,LeidenUniversity,POBox9513,2300RALeiden,TheNetherlands 28DepartmentofPhysicsandAstronomy,MacquarieUniversity,NSW2109,Australia 29CarnegieInstitutionforScience,813,SantaBarbaraStreet,Pasadena,California,91101,USA 30DepartmentofPhysics,UniversityofBristol,TyndallAvenue,BristolBS81TL,UK 31SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UK 32UniversidadedeSa˜oPaulo,IAG,RuadoMato1226,Sa˜oPaulo05508-900,Brazil 33AstronomyUnit,QueenMaryUniversityLondon,MileEndRd,LondonE14NS,UK 34UniversityofBritishColumbia,Vancouver,BCV6T2C2,Canada 35AstrophysicsGroup,ImperialCollegeLondon,BlackettLaboratory,PrinceConsortRoad,LondonSW72AZ,UK Accepted2013January4 (cid:13)c 2013RAS,MNRAS000,2–19 Mon.Not.R.Astron.Soc.000,2–19(2013) Printed31January2013 (MNLATEXstylefilev2.2) ABSTRACT TheGalaxyAndMassAssembly(GAMA)surveyisamultiwavelengthphotometricandspec- troscopicsurvey,usingtheAAOmegaspectrographontheAnglo-AustralianTelescopetoob- tainspectraforupto∼ 300000galaxiesover280squaredegrees,toalimitingmagnitudeof r <19.8mag.Thetargetgalaxiesaredistributedover0<z .0.5withamedianredshift pet of z ≈ 0.2, although the redshift distribution includes a small number of systems, primar- ily quasars,athigherredshifts,upto andbeyond z = 1.The redshiftaccuracyrangesfrom σv ≈ 50kms−1 toσv ≈ 100kms−1 dependingonthesignal-to-noiseofthespectrum.Here we describetheGAMA spectroscopicreductionandanalysispipeline.We presentthesteps involvedin takingthe raw two-dimensionalspectroscopicimagesthroughto flux-calibrated one-dimensionalspectra.TheresultingGAMA spectracoveran observedwavelengthrange of 3750 . λ . 8850A˚ at a resolutionof R ≈ 1300.The final flux calibrationis typically accurateto 10−20%,althoughthereliabilityisworseattheextremewavelengthends,and poorerinthebluethanthered.Wepresentdetailsofthemeasurementofemissionandabsorp- tionfeaturesintheGAMAspectra.Thesemeasurementsarecharacterisedthroughavariety of quality controlanalyses detailingthe robustnessand reliability of the measurements.We illustratethequalityofthemeasurementswithabriefexplorationofelementaryemissionline propertiesofthegalaxiesintheGAMAsample.Wedemonstratetheluminositydependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Hα vs [OIII]/Hβ spectral diagnostic diagram, com- monlyusedtodiscriminatebetweenstarformingandnuclearactivityingalaxies. Keywords: galaxies:evolution–galaxies:formation–galaxies:general 1 INTRODUCTION separation, and target prioritisation is presented by Baldryetal. (2010), with the tiling algorithm described by Robothametal. Galaxysurveysthathavemoderateresolution(R∼1000−2000) (2010) and the photometric analysis by Hilletal. (2011). Stel- opticalspectroscopicmeasurements,suchastheTwo-degreeField lar masses for the GAMA galaxies have been quantified by Galaxy Redshift Survey (2dF; Collessetal. 2001) and the Sloan Tayloretal. (2011), and the low redshift stellar mass function is DigitalSkySurvey(SDSS;Yorketal. 2000)areamong themost detailed in Baldryetal. (2012). The broadband luminosity func- productiveresourcesforunderstandinggalaxyformationandevo- tions are derived by Lovedayetal. (2012), and the Hα lumi- lution.Theastrophysicalinformationencodedintherest-frameop- nosity functions and evolution presented in Gunawardhanaetal. tical region of the spectrum is among the most well-understood (2013). Galaxy nebular metallicity measurements are detailed in and well-calibrated aspect of galaxy evolution studies, and pro- Fosteretal. (2012) and Lara-Lo´pezetal. (2013). Galaxy groups videsawealthofdetailregardingthephysicalprocessesoccurring in GAMA have been quantified by Robothametal. (2011), and withingalaxies.Thisrangesfromquantitativemeasurementsofstar galaxystructuralparametersmeasuredbyKelvinetal.(2012). formationrate(SFR),metallicity,velocitydispersion,obscuration, andmore,throughtodiagnosticsdistinguishingbetweenthepres- TheGAMA survey used 68 nights of observing timeon the enceof starformationoranaccretingcentral supermassive black Anglo-AustralianTelescope(AAT)over2008–2010.Thistimewas hole(anactivegalacticnucleus,AGN).Incombinationwithbroad- usedtoconductahighlycompletesurveyinthreeEquatorialfields bandphotometricmeasurementsspanningultravioletthroughtora- torpet <19.4magoveratotalof144deg2,48deg2ofwhichwas diowavelengths,theredshiftandotherphysicalinformationfrom observedtothedeeperlimitofrpet <19.8mag.Thisinitialphase galaxyspectraprovidesapowerfultoolforexploringthedetailsof ofthesurvey,usuallyreferredtoas“GAMAI,”allowedtheacqui- galaxyevolution. sitionofover112000newgalaxyspectraandredshifts,foratotal The Galaxy And Mass Assembly (GAMA)1 survey is a ofover130000redshiftsintheoriginalGAMAsurveyarea.Subse- large multiwavelength photometric and spectroscopic galaxy sur- quentlythesurveyhasbeenextended,withtheawardof110nights vey (Driveretal. 2009, 2011) that provides exactly this compre- of AATtimeover2010–2012, toexpand the surveyby including hensive selectionof photometric and spectroscopic data.Thekey twoSouthernfieldsandbroadeningthethreeEquatorialfields(re- scientific goals are to use the galaxy distribution to conduct a ferred to as “GAMA II”). This expands the total survey area to series of tests of the cold dark matter (CDM) paradigm, in ad- 280deg2,whileachievingauniformdepthofrpet <19.8magover dition to carrying out detailed studies of the internal structure the full survey region. The goal is to compile ∼ 300000 galaxy and evolution of the galaxies themselves. The scientific moti- spectraoverthisarea.Atthetimeofwriting,wehavealreadyob- vation for GAMA, the survey footprint, data processing, cata- tainedover220000spectra.Indetail,todateGAMAhasobserved logueconstructionandqualitycontrolaredescribedbyDriveretal. 224465 spectraof which222294 aregalaxy targets.Thesenum- (2011). The target selection, including survey masks, star-galaxy bers include repeat observations, and not all are main survey tar- gets, as they include “filler” targets that take advantage of fibres unabletobeallocatedtomainsurveytargetsonanygivenobser- ⋆ E-mail:[email protected] vationplate(seeBaldryetal.2010).Includingspectrafromother 1 http://www.gama-survey.org/ surveyswithintheGAMAregions,(SDSS,2dFGRSandothers,see (cid:13)c 2013RAS GAMAspectroscopicanalysis 3 Baldryetal.2010,fordetails),wehave299980spectra,ofwhich dispersionof1A˚/pixelandgivesacoverageof2100A˚.The385R 297067areofgalaxytargets(notallaremainsurveytargets).We gratingisusedintheredarm,centredat7250A˚.Thisgratinghas have233777uniquegalaxytargets,ofwhich215458(92.2%)have a dispersion of 1.6A˚/pixel and gives a coverage of 3200A˚. This redshift quality nQ > 3 (seeDriveretal. 2011, fordefinition of leadstospectrawitharesolutionthatvariesasafunctionofwave- nQ,butinbriefnQ = 3or nQ = 4correspond toreliablered- length,fromR≈ 1000attheblueenduptoR ≈1600atthered shifts). end. The survey has already led to a number of published re- The“Two-degreeField”(2dF)instrument(Lewisetal.2002) sults making use of the detailed emission and absorption line consistsofawidefieldcorrector,anatmosphericdispersioncom- measurementsfromtheGAMAspectroscopicdata.Theseinclude pensator(ADC),andarobotgantrywhichpositionsopticalfibres identification of the lowest-mass star forming galaxy population toanaccuracyof0′.′3onthesky.Thefibreshavea2′′diameterpro- (Broughetal.2011),aself-consistentapproachtogalaxystarfor- jectedonthesky(Lewisetal.2002).Atumblingmechanismwith mationrateestimatesandtheroleofobscuration(Wijesingheetal. two field plates allows the next field to be configured while the 2011a,b), and evidence for a star formation rate dependence currentfieldisbeingobserved.The392targetfibresfrom2dF are in the high-mass slope of the stellar initial mass function fed to the AAOmega spectrograph, and eight guide fibre-bundles (Gunawardhanaetal.2011),amongmanyotherGAMAteampub- areusedtoensureaccuratetelescopepositioningoverthecourseof lications(forafullandcurrentlistseetheteamwebpage), along eachexposure.ForGAMAobservations,the2dFrobotfibreposi- withadditionalworkledbycollaboratingsurveyssuchasHerschel- tionerisusedtoconfiguretypically345fibrestoobservegalaxies ATLAS2. withinatwodegreefieldonthesky.Duetoavarying numberof Inordertobestfacilitatesubsequentscientificanalysesofpub- damagedorunusablefibres(typicallyaround20),theactualnum- licsurveydata,itiscrucialtoprovidefulldetailsof theobserva- beroffibresabletobeusedforgalaxytargetsisnotconstant.To tions, processing and data product derivations (e.g., Boltonetal. quantifythis,thefirst-quartile/median/third-quartile numberoffi- 2012). Here we describe the spectroscopic pipeline process- bresongalaxytargetsforGAMAIwas332/345/348. Forthefull ing for the GAMA survey. This encompasses an overview of survey to date, these numbers are 324/341/348. This distribution the observations (§2), the steps involved in processing the raw has remained fairlysteady overthe duration of thesurvey so far. two-dimensional spectroscopic images through to extracted one- Around25additionalfibresareusedtomeasuretheskyspectrumin dimensional spectra and the initial redshift measurement process eachfield.Skypositionswereidentifiedusingaskymask,detailed (§3),andfluxcalibrationoftheone-dimensionalspectra(§4).We inBaldryetal.(2010).Threefibresareallocatedtospectroscopic alsopresenttheprocessesusedinmeasuringtheemissionandab- standardstars. sorptionfeaturesofthespectra(§5)thatarerecordedintheGAMA TheintegrationtimeforeachGAMAfieldistypically60min, database and made publicly available through the staged data re- splitintothree1200sexposures.Accountingfortheread-outtime leases.NotethattheGAMAspectroscopicreductionandanalysis oftheCCDs(2min)andtheacquisitionofthecalibrationframes pipelineisstillevolvingaswecontinuetoimprovesomeaspects. comprising flat-fieldsand arc-line exposures for wavelength cali- Herewedescribethepipelinethatwasusedtoconstruct thefinal bration,thetimespentoneachfieldiswell-matchedtothetimere- GAMAIdataset.Itwasthisdatasetthathasbeenusedintheinthe quiredforthe2dFpositionertoconfigurethefollowingobserving variousinvestigationscitedabove.Thespectraandassociatedmea- plate,ensuringanefficientoverallsurveystrategy.Between20and surements that will be available in GAMA DR2, the public data 30biasframesaretakenduringeachobservingsession.Startingin release due in January 2013, also rely on the pipeline described 2011, we also began to use dark frames to refine the calibration, here.Forthepurposesofthispaperweusethedataassociatedwith with from 10 to 30 dark frames, each of 1200s exposure, being GAMASpecCatv08. acquiredeachobservingsession. Throughout, allmagnitudesaregivenintheABsystem,and weassumeacosmologywithH0 =70kms−1Mpc−1,ΩM =0.3 andΩΛ =0.7. 3 DATAPROCESSINGANDREDSHIFT MEASUREMENTS 2 OBSERVATIONSATTHEAAT 3.1 Obtaining1Dspectra TheGAMAspectroscopicobservationsusetheAAOmegaspectro- TherawdataareprocessedusingsoftwaredevelopedattheAAO graph (Saundersetal. 2004; Smithetal. 2004; Sharpetal. 2006) called 2DFDR, (Croometal. 2004; Sharp&Birchall 2010). The on the 3.9m Anglo-Australian Telescope (Siding Spring Obser- 2DFDR processing applies the standard sequence of tasks for 1D vatory, NSW, Australia) for measuring the spectra of the target spectralextractionfrom2Dimages.Thisincludesbiassubtraction, galaxies.Thisspectrographisstationedinthethermallystableen- flat-fielding,fibretrace(or“tramline”)fitting,andwavelengthcal- vironment of one of the telescope Coude´ rooms. AAOmega pos- ibration.First,amasterbias(andforGAMAIIdataamasterdark) sesses a dual beam system which allows coverage of the wave- are created using the available bias (and dark) frames. For each lengthrangefrom3750A˚ to8850A˚ withthe5700A˚ dichroicused new plate configuration observed, the raw AAOmega frames are by GAMA, in a single observation. Each arm of the AAOmega runthrough2DFDRatthetelescopetoprovidetheprocessedspec- systemisequippedwitha2k×4kE2VCCDdetectorandanAAO2 tra. CCDcontroller. Theblue armCCDisthinnedforimproved blue Thestandardparametersareusedinrunning2DFDR,withthe response. The red arm CCD is a low fringing type. The grating followingmodifications.Weconsidernotonlythemasterbias(and used intheblue armisthe580V, centred at4800A˚, whichhasa master dark), but also an overscan correction using a ninth-order polynomial fit for the blue spectra, and second-order for the red spectra.Thehighorderisnecessaryintheblueduetoaverystrong 2 http://www.h-atlas.org/ gradientinthefirst∼100pixelsthatisnotwell-modelledbylower (cid:13)c 2013RAS,MNRAS000,2–19 4 A. M. Hopkinsetal. Figure1.ExampleGAMAspectraforaselectionofgalaxies,illustratinghighqualityspectraandspectraaffectedbyinstrumentalandprocessingartifacts.The spectrahavebeensmoothedwithafive-pixelrunningboxcaraveragetoaidinclarityofdisplay.Fromtoptobottom:Starforminggalaxyspectrum;Absorption linegalaxyspectrum;Spectrumaffectedbyfringing;Spectrumaffectedbybadsplicing.EachspectrumincludesaninsetshowingtheSDSScolourgalaxy image,aswellasidentifying commonemissionorabsorption features.EachgalaxyhasitsGAMAID,redshiftandstellarmass(fromTayloretal.2011) listed,alongwithBalmerdecrement,Hαluminosityandstarformationrateforstarforminggalaxyspectra.Onlyabout3%ofGAMAspectraareaffectedby fringingorbadsplicing. (cid:13)c 2013RAS,MNRAS000,2–19 GAMAspectroscopicanalysis 5 orderfits.Thewavelengthsolutionisdeterminedbyathird-order isthenimplementedbydividingeachindividual spectrumbythis polynomial fit to the arc-lines, with thesolution tweaked using a correctionspectrum. first-order(blue) or third-order (red) polynomial to the sky lines. Finally, 2DFDR splices together the blue and red spectra for The higher order is required for the red CCD as there are more eachgalaxybydoingafirst-passfluxcalibrationtobestmatchthe sky lines and the sky is brighter at the red end of the spectrum. spectraatthesplice-wavelength(5700A˚).Thepixelscaleis1A˚ in The wavelength calibration is referenced to arc line wavelengths theblueand1.6A˚ inthered,althoughduringthesplicingstepthe in air rather than vacuum, contrary to the convention adopted by red spectra are resampled to the same pixel scale as the blue, so SDSS,andisaccuratetobetterthan0.1A˚,asmeasuredfromkey thefinalpixelscaleis∼ 1A˚ pix−1.Thisisdonewithaquadratic strong sky line features. Cosmic rays are cleaned in each object interpolationensuringthatfluxisconserved,andwithappropriate frameusinganimplementationofLaplaciancosmicrayidentifica- treatmentofmaskedorotherwisebadvalues.Thesameresampling tion(vanDokkum2001),andapplyingclippingthresholdsof10σ isappliedtothevariancearraystocorrectlypropagatethe errors. in the blue and 5σ in the red. The scattered light is subtracted Theoverlapregionbetweentheblueandredspectrais250A˚,from assuming a first-order polynomial fit. The throughput calibration typically5650A˚ to5900A˚,althoughthisvariesslightlyfromspec- methodconsidersafluxweightedvalueofthenightskyemission trumtospectrumdependingonthelocationonthedetector. linestonormalisethefibrethroughputs. As2DFDRiscontinuingtobedevelopedandimproved,andto mitigateagainstreductionmistakesatthetelescopeduringobserv- Extraction of spectra is performed by first identifying fibres ing,theentireGAMAdatasetisperiodicallyre-reduced,toensure in a flat field frame and then fitting their locations as a function thatthefinalspectroscopicdataproductsarehomogeneousandin- ofCCDpositionusingamodelofthespectrographopticaldistor- tion.Oncethetramlinesarelocated,aminimumvarianceGaussian ternally self-consistent. The version of 2DFDR used in producing weightedextraction(Sharp&Birchall2010;Horne1986)isused thefinalGAMAIspectrawas2DFDRv4.42. Fig. 1 shows examples of GAMA spectra after the 1D ex- toobtainthefluxineachfibreperspectralpixel.Whileoptimally tractionandflux-calibrationprocess(see§4below)arecompleted. weighted,thisdoesnottakeintoaccountcross-talkbetweenfibres, ThisFigureshowstwohighqualityspectra,andtwopoorquality but given the restricted dynamic range of the GAMA targets (a spectraillustratingsome of theinstrumental andprocessing limi- rangeoflessthanthreemagnitudes)thelevelofcross-talkhasbeen tationsinthesurvey.Thetwohighqualityspectraareanemission showntobenegligible(Sharp&Birchall2010,theirFigure2).For lineobject andanabsorption lineobject, bothwithredshift qual- each 1D spectrum there exists a variance array determined from ity of nQ = 4 (see Driveretal. 2011, for the definition of red- the Poisson noise in the bias corrected 2D frame, the read noise shiftqualityflagsandconventions).Thefirstpoorqualityspectrum and the gain, and propagated through the reduction pipeline. Ex- showngivesanexampleoffringing,visibleasthehigh-frequency amination of repeat spectrashows that theuncertainties perpixel oscillation in the continuum level, and accompanied by poor re- arewellcharacterisedbythemeasurementsinthevariancearray, exceptaroundthestrong5577A˚ skyline,andattheextremeends moval oftheskyfeatures(Sharpetal.2006,2013).Thefringing, which is time-variant, is only present for some fibres, and arises ofthewavelengthrange.Wheretherearedifferencesbetweenthe duetoairgapsinthegluebetweentheprismandtheferrule.Over repeatmeasurementsandthevariancearraysduetosuchsystemat- timethesefibreshavebeenre-terminatedwithnew glueand new ics,thedifferencesarealwayslessthanafactorof1.4. ferrules.Whileitdoesn’tresolvetheproblemforexisting GAMA Theinitialskysubtractionisperformedusingthe∼25fibres spectrathatareaffected,theAAOhasrecentlycompletedatotalre- allocatedineachplatetoskypositions.Acombinedskyspectrum placementofall2dFfibreswithoptimalglueandferrulesthathas ismadebytakingthemedianofthecorresponding pixelsineach now eliminatedthisproblem. Inthisparticularexamplespectrum ofthenormalisedskyfibres,discardingthetwobrightestskyfibres aredshiftisstillabletobereliablymeasured,with nQ = 4.The toavoidpotentialproblemsintheeventofinadvertentnon-skyflux secondpoorqualityspectrumshownisanexampleofabadsplice, (due to an asteroid, passing satellite, orother moving object per- characterisedbyadramaticchangeincontinuumlevelatthesplice haps),attheskyfibrelocation.Thecontinuumskysubtractionac- wavelengthof5700A˚.Thisfeatureisaconsequenceofpoorcon- curacy istypically 2-3% of the sky level, although for especially tinuumlevelestimationduetopoorflat-fieldinginoneorbothof strongskylinessuchasthatat5577A˚,theresidualscanbeworse theblueandredarms,inestimatinghowtoscalethetwocompo- (for details see Sharp&Parkinson 2010). This is then followed nents for the splice. The reliability of the splicing of AAOmega by an improvement to the sky subtraction based on subtracting a spectraisanareathatisthesubject ofongoing work, bothat the combinationofprincipalcomponenttemplates(Sharp&Parkinson AAO withcontinued development of 2DFDR, and within GAMA 2010).Thisreducestheamplitudeoftheskysubtractionemission throughinvestigationofindependentfluxcalibrationprocessesfor lineresidualstobelow1%inmostcases. theblueandredarmsseparately.Forthisspectrum,againaredshift Strongatmospherictelluricabsorptionfeaturesintheredpart isstillable tobe measured withhigh reliability, nQ = 4. These ofthespectrumneedtobecorrectedfor.Thetelluriccorrectionin- examples illustrate a key point, that a high quality redshift mea- volves constructing a flux and variance weighted combination of surementcanbeobtainedfromapoorqualityspectrum,although allthespectrainagivenfield,whichistheniterativelyclippedto subsequent measurements of emission or absorption features for remove residual emission or absorption features (such as galaxy thatspectrummaynotbereliable. emission lines). This process relies on the fact that in any one fieldthereareabroadrangeofgalaxyredshiftssofeaturesarenot 3.2 Redshiftmeasurements presentatthesamewavelengthinmanyspectra.Theresultingaver- agespectrumisfitbyaloworderpolynomialintheregionaround Redshifts are measured from the one-dimensional galaxy spectra thetelluricfeatures,whileexcludingtheregionswheretheabsorp- assoonaseachfieldisfullyreducedusingtheaboveprocess(i.e., tion ispresent. Dividing through by thispolynomial fit resultsin typicallyonthenightofobservationorthefollowingday).Thisis atelluriccorrectionspectrumwhichissettobeequaltounityev- doneusingtheGAMA-specificversionofRUNZ,originallydevel- erywhere outside of the telluric absorption bands. The correction opedbyWillSutherlandforthe2dFGRS,andnowmaintainedby (cid:13)c 2013RAS,MNRAS000,2–19 6 A. M. Hopkinsetal. Figure2.Thefluxcorrectionvectorsfromeachstandardforone2dFplate, shownhereasanexample.Thegreylinesshowtheindividualfluxcorrec- tionvectorsforeachstandardstar.TheblacklineshowstheB-splinefitto themeanvector. ScottCroom.ThisprocessisdescribedinDriveretal.(2011),and furtherdetailswillbepresentedbyLiskeetal.(inprep),including there-redshiftinganalysis,whichquantifiesthereliabilityofeach measured redshift by having multiple team members re-measure redshiftsforalllow-qualityflaggedmeasurements,andforasubset ofhigh-qualityredshifts. TheRUNZcodeusesacross-correlationapproachtoidentify- inganautomatedredshift,butallowstheusertomanuallyidentify aredshift intheevent of apoorresult fromthecross-correlation, beforeallocatedaredshiftqualityflag(Q),from0to4,with4be- ingacertainredshift,3beingprobablycorrect,2indicatingapos- sibleredshift needing independent confirmation, 1indicatingthat noredshiftcouldbeidentified,and0meaningthatthespectrumis somehowflawedandneedstobereobserved.Followingthisinitial inspection,theprocessisrepeatedbymultipleteammembers,inor- dertodefinearobust,probabilisticallydefined“normalised”qual- Figure3.(a)Afterdividingouttheaveragefluxcorrectionvector(Fig.2) ityscale,nQ(Driveretal.2011).Detailsoftheerrorestimateson toremovethelowordershape,thelow orderresiduals foreachstandard theredshiftsareprovidedbyDriveretal.(2011).There-redshifting starareshowningrey.Theresidualsarethenfitwitha4thorderLegendre processandderivationoftheprobabilitiesassociatedwiththenQ polynomialandthemedianofthesepolynomialsisshownbytheblackline. qualitywillbepresentedinLiskeetal,(inprep.). ThedottedlineistheB-splinefit.(b)Thehighordertermsarefitbyfirst A small fraction (∼ 3%) of theGAMA spectraare affected dividingouttheloworder(grey)andthentakingthemedianoftheresult byfringing,asdeterminedmanuallyduringtheredshiftingandre- (black). redshifting processes. Of these ∼ 50% still yield a good quality redshift,althoughotherspectroscopicmeasurementssuchasemis- sionlineproperties(see§5below)arelikelytobeunreliable. spectrophotometryfortheGAMAsurveypresentsachallengedue to the 2′′ optical fibres used for spectroscopy, in addition to ob- servinginconditionsthatarenotalwaysphotometric.Startingwith 4 SPECTROPHOTOMETRICCALIBRATIONAND thetwo-dimensional spectraloutputfrom2DFDR,wespectropho- QUALITY tometricallycalibratethedatafollowingtheidlspec2dpipeline usedfortheSDSSDR6(Adelman-McCarthyetal.2008).Wede- 4.1 Fluxcalibration termineacurvaturecorrectionandrelativefluxcalibrationforeach The main purpose of flux calibration is to first correct the platefromthestandardstarsobservedoneachplate.Theabsolute wavelength-dependence of the system throughput (atmosphere, spectrophotometric calibrationisdeterminedsuchthatthefluxof residual wavelength dependence of fibreentrance losses afterthe eachobjectspectrumintegratedovertheSDSSfiltercurvematches ADC, optics, and CCD quantum efficiency), and second to pro- thepetrosianmagnitudeoftheSDSSphotometryforthatobject. videanapproximate absolutefluxcalibration. Obtainingaccurate We typically assign three of the fibres on each 2dF plate (cid:13)c 2013RAS,MNRAS000,2–19 GAMAspectroscopicanalysis 7 thefinalfluxcalibrationvectorhasbeendetermined,itisappliedto eachindividual spectrumontheplate,resultingineachspectrum beingcorrectlyfluxcalibrated,inarelativesense. The final step in obtaining an absolute flux calibration then involves tying the spectrophotometry directly to the r-band Pet- rosianmagnitudesmeasuredbytheSDSSphotometry.Thisisac- complishedbymultiplyingeachindividualspectrumbytheSDSS r-band filter response. The SDSS magnitudes are based on pho- toncounting,sothiscalculationisdonebyintegratingfν/ν times thefiltertransmissionfunction.Wethendeterminetheratioofthis fluxwiththatcorrespondingtotheSDSSPetrosianr-bandmagni- tudeforeach object. TheGAMA spectraarethenlinearly scaled accordingtothisvalue.Itisstraightforwardtomodifythisscaling factorifalternativephotometricreferencesarepreferred.Inpartic- ular, we are exploring the utility of Sersic r-band magnitudes as an alternative, although for the present the direct comparisons to SDSSmeasurementsprovideimportantconsistencychecks. Figure4.Themedian ratio ofcommonGAMAandSDSSspectra. This To test how well the applied flux calibration method agrees resultisderivedfrom574objectsoutofthe637objectsthatwereobserved withthemethodsappliedtoSDSSfibrespectroscopy, welookto bybothsurveys. The63spectra excluded wereduetoparticularly noisy objectsobservedbybothsurveys.Thereare 637objectsobserved GAMAspectra,orredshiftmismatchesbetweenthesurveys.Thespectra bybothSDSSandGAMA,whicharemostlygalaxies,butalsoin- arefirstnormalisedbythemedianfluxvalueoftheflux-calibratedspectrum, cluding120standardstars.Afterremovingasmallnumberofspec- (sincetheabsolutefluxcalibrationisscaleddifferentlybetweenGAMAand SDSS).Thespectraarethenmedianfilteredby7A˚ andinterpolatedtothe tratoexcludeparticularlynoisyspectraorthosewithmismatched samewavelengthscalebeforetheratiowastaken.Thedarklineshowsthe redshifts,Fig.4showsthemedianand68thpercentilesoftheratio medianofthefluxratios,andtheouter,greylinesshowthe68thpercentile ofthenormalisedGAMAandSDSSspectraasafunctionofwave- rangeofthedistributionofratiosforindividualobjects. length, afterthefluxcalibrationisapplied totheGAMA spectra. The spectra are normalised by the median flux of each spectrum before taking the ratio, due to the different absolute flux calibra- forobservingstandardstars.Thespectroscopicstandards aretypi- tionsapplied(tothefibremagnitudeinSDSS,andtothePetrosian cally colour-selected to be F8 subdwarfs, similar in spectral type magnitude inGAMA).Itisclearfromthesolidlinethattheflux to the SDSS primary standard BD+17 4708. The spectrum of calibrationappliedtotheGAMA spectraresultsinagood agree- each standard star is spectrally typed by comparing it to a set ment across the entire wavelength regime with high fidelity, and of theoretical spectra generated from Kurucz model atmospheres bestinthemid-wavelengthrangeofthespectra.Theextremeblue (Kurucz 1992), using the spectral synthesis code SPECTRUM andredendsofthespectrumarenoisier,andworstintheblue,but (Gray&Corbally 1994; Grayetal. 2001). A flux correction vec- theoverallagreementresultingfromthefluxcalibrationappliedto tor, a one-dimensional array of wavelength-dependent correction theAAOmegaspectrafromGAMAisstillrobust.Overall,wefind factors tied to the wavelength scale, is derived for each standard anaccuracyofaround10%inthefluxcalibratedspectra,rangingto starbytakingtheratioof itsspectrum(inunitsof countsandaf- somewhatworsethan20%attheextremewavelengthendsofthe ter correcting for Galactic reddening, Schlegeletal. 1998) to its spectra.Thereremainsanunresolvedissueassociatedwiththelevel best-fitmodel (inunits of ergss−1cm−2A˚−1). Thisisillustrated oftheresponseintheblueendofthespectra,whichisthefocusof in Fig. 2. There are a small number of plates (2 out of a total of ongoing work. For this reason, we advise caution when working 392forv08oftheGAMAdata)thatincludednostandardstarob- withthebluestspectraldiagnostics(suchasthe[OII]emissionline servations.Fortheseplates,weusedthestandardstarsobservedon andthe4000A˚ break)inthecurrentgenerationofmeasurements. theplateobservedeitherjustbeforeorjustaftertheplate lacking Basedonthisanalysis,weestimatethatthefluxcalibratedGAMA standardstars. spectraaretypicallyaccuratetobetween∼10−20%,althoughthe Wefirstcalculateanaveragefluxcorrection vectorfromthe smallfractionofpoorlysplicedspectraandthoseaffectedbyfring- standardstarsoneachplate.Weselecthighsignal-to-noiseregions ing are likely to be much worse. We note that this precision has ofthestandardstarspectra,anddivideoutthisaveragecorrection been estimated using bright spectroscopic targets. For the fainter vector(Fig.3a).Byremovingtheoverallaverageofthelow-order GAMA spectra it is likely that the spectrophotometric precision shape in the standard star continuum in this way, we can fit the willnotachievethislevel,andwearealsocontinuingtoworkon residualstoderiveaplate-specificaveragecurvaturecorrection,to quantifyingthedependencewithmagnitude. account for the declining CCD response at the extreme blue and red wavelengths. These residuals are fit with 4th order Legendre 4.2 Spectralsignal-to-noise polynomials(Fig.3a),andtheaverageloworderresidualisfound bytakingthemedianoftheLegendrecoefficients.Forspectralre- Here we detail the continuum signal-to-noise (S/N) distribution gionswherethestandardstarspectrahaveS/N >12,higherorder fortheGAMAspectraasafunctionofapparentmagnitude(Fig.5). fluctuationsarealsocorrected.Thesehigherordertermsarefound The S/N per pixel isquantified by measuring the median of the fromthemedianLegendrecoefficientsafterthelowordertermsare ratio of the observed flux to the noise in a 200A˚ window at the dividedout.Thefluxcalibrationvectorappropriateforeachplate centreoftheblueandredarms.Thenoiseisdeterminedfromthe is constructed by multiplying the lower order residual fit and the variancearraysdescribedin§3.1.Intheblue,thewavelengthrange highorderresidualfit.ThisvectoristhenfitwithaB-spline,and 4600−4800A˚ wasselected,and7200−7400A˚ inthered.Itcan thecoefficients areused asthe final fluxcalibration vector. Once beseenthattheS/N propertiesvaryasexpected,withbrightertar- (cid:13)c 2013RAS,MNRAS000,2–19 8 A. M. Hopkinsetal. Figure5.TheS/Nintheblue(left)andred(right)armsoftheGAMAspectra,asafunctionofg-orr-bandPetrosianmagnitude,respectively.Thesolidand dashedlinesshowthemedianand68thpercentiles.ItisclearthatbrightertargetshavehigherS/N,andalsothattheredarmoftheAAOmegaspectrograph isrelativelymoresensitiveforagivenexposuretime.Themagnitudelimitofr ≈17.7magatthebrightendcorrespondstotheSDSSmaingalaxysample limitofr=17.77mag.TheGAMAselectionlimitofr=19.8magatthefaintendisalsoapparent.Theobjectsoutsidetheselimitsincludebrighttargets notobservedbySDSSduetofibre-collisionlimitations,andfainttargetsincludedthroughtheadditionalKandz-bandselectionlimits(Baldryetal.2010), togetherwithspecificadditionalfillertargets(Chingetal.inprep.). targetsshownthatextendfainterthanournominalsurveyselection Table1.GAMAspectralemissionlinesmeasuredbyGANDALF. limitofr=19.8mag.Theseenterthesurveyasaresultofoursup- Emissionline wavelength(A˚) plementaryK-andz-bandselectionlimits(Baldryetal.2010),as wellastheadditionofaselectionof“filler”targets.Duetogalaxy HeII 3203 clusteringandthelimitationofhowcloselyfibrescanbepositioned [NeV] 3345 with2dF,therearefrequentlyanumberoffibresonanygivenplate [NeV] 3425 thatcannotbeassignedtoaprimarysurveytarget.Inthiscase,and [OII] 3727 inordertomaximisethescientificreturnfromthesurvey,weallow [NeIII] 3869 fibrestobeassigned tosupplementary targetsselectedtosupport H5 3889 specific scientific programs (Driveretal. 2011). In particular, we [NeIII] 3967 Hǫ 3970 allocatesuchfillerfibrestotargetsystemsidentifiedasinteresting Hδ 4102 objectsinthefar-infraredbytheHerschel-ATLASsurvey,aswell Hγ 4340 as to radio sources with carefully identified optical counterparts, [OIII] 4363 thatotherwiselackredshiftorspectroscopicmeasurements(Ching HeII 4686 etal.inprep.). [ArIV] 4711 [ArIV] 4740 Hβ 4861 [OIII] 4959 [OIII] 5007 5 MEASUREMENTOFSPECTRALFEATURES [NI] 5199 The flux-calibrated 1D spectra are those used for all subsequent HeI 5876 measured spectroscopic properties. Both emission lines and ab- [OI] 6300 sorptionfeaturesaremeasured.Avarietyofstandardgalaxyprop- [OI] 6364 [NII] 6548 erties are catalogued based on these measurements, including Hα 6563 Balmer decrements and star formation rates from the Hα and [NII] 6583 Hβ emission lines (Gunawardhanaetal. 2013), spectral diagnos- [SII] 6716 tics(Baldwinetal.1981)todiscriminateAGNfromstarforming [SII] 6731 objects(Gunawardhanaetal.2013),metallicitymeasurementsfor thenebulargasfromtheemissionlinefeatures(Fosteretal.2012, Lara-Lo´pez et al., in prep.), stellar velocity dispersions from ab- sorptionfeaturesandtheD4000 age-estimateparameterfromthe getsshowinghigherS/N.TheredarmoftheGAMAspectradis- 4000A˚ break,andmore.Thissectiondetailsthemeasurementpro- playsatypicalS/N ofafewatthefaintestobservedmagnitudes, cessesforquantifying thespectral featuresusedinderiving these increasingtowellover10atthebrightest.InthebluearmtheS/N nowstandardpropertiesforGAMAgalaxies.Themeasurementof is typically between 1−5 from the faintest to brightest sources. thespecificpropertiesthemselvesaredetailedinthevariouspapers ThereareaverysmallfractionofspectrawherethemeasuredS/N presentingtheanalysisofthoseparameters,referencedabove. intheblueisnegative.Thisisaconsequenceofthecontinuummea- Emissionlines aremeasured intwo ways. Wefirstfit Gaus- surementbeingnegativeforthesespectra,andisanartifactarising sians to a selection of common emission lines at appropriate ob- frompoorflat-fieldingorscatteredlightsubtraction.Therearealso served wavelengths, given the measured redshift of each object. (cid:13)c 2013RAS,MNRAS000,2–19 GAMAspectroscopicanalysis 9 Figure6.Upperleft:Thedistributionoftheratioof[OIII]λ4956/[OIII]λ5007,showingconsistencywiththevaluefixed,foragivendensityandtemperature, byquantummechanics.Thesolidlineisthemedian,andthedashedlinesarethe68thpercentiles.Theexpectedratioof1/2.98(Storey&Zeippen2000)is shownasthedot-dashedline.Upperright:Thefluxratioshownnowasafunctionofthefluxinthebrighterline.Thedashedlinehereistheexpectedvalue. Thebottompanelsreproducethisanalysisfor[SII]λ6716/[SII]λ6731,wheretheexpectedratiois1/1.4(Osterbrock1989). Thisisperformedforasubsetofcommonemissionlinesviaasi- aticcases,includingfailedmeasurementsorlinesfallinginmasked multaneousiterativeχ2 fittingofpositiveemissionpeakstothese spectralregions,linesthatareapparentlytoonarrowtobefit(usu- emissionlinesinthreeindependentlinegroups,aroundthewave- allycausedbybadpixels),andlinesthatarefitbythemaximumal- lengthsofthe[OII],Hβ,andHαlines.Thelocalcontinuumspan- lowedwidthofthefittingroutine(aGaussianσ=10A˚),typically ningeachfittingregionisapproximatedwithalinearfit.Alllines duetothepresenceofanintrinsicallybroadline.Thisprovidesa ineachgrouparefittedsimultaneously.Aswellasthecontinuum baseline set of emission line fluxes, equivalent widths, and S/N coefficientsandpeakintensities,asmallvelocityoffset(fromthe estimates.Forthose(smallfractionof)objectssuchasbroad-line underlyingGAMAredshift)isallowed,andalinewidthcommon activegalacticnuclei(AGN)andsourcesthatexhibitlinesplitting to all lines in the group is also fit. Line width is constrained to (indicativeofeithermergingsystemsorstarburstwinds), thesim- lie between 0.5-5 times the instrumental PSF (3.4 CCD pixels, plesingleGaussianemissionapproximationwillnotprovideuseful 3-5A˚). Each line group is fitted with independent values for the estimates. freeparameterstoaccommodatesmalllocalvariationsinthespec- Independently, we also pursue a more sophisticated spectral tral sampling. Flux values for individual lines are rejected if in- measurement approach, in order to self-consistently derive both clusion of a lineinthe global fitfailsto improve thereduced χ2 stellarkinematicsandemissionlineproperties.Todothis,weuse valuesignificantly(byafactorof 3).Typical GAMA sourcesex- thepubliclyavailablecodespPXF(Cappellari&Emsellem2004) hibit only marginally resolved emission lines at the resolution of andGANDALF(Sarzietal.2006).Wefirstextractthestellarkine- the AAOmega spectra. No attempt has been made to fit multiple maticsusingpPXF,matchingtheobservedspectratoasetofstellar emission components to composite emission linestructures, such populationtemplatesfromMaraston&Stro¨mback(2011)basedon asthe[OII]doublet,atthistime.Integratedlineflux,EWandthe theMILESstellarlibrary(Sa´nchez-Bla´zquezetal.2006),masking associatedstatisticalerrorsareestimatedfromthefittingprocess. the regions which could potentially be affected by nebular emis- TheerrorsarethoseassociatedwiththeformalGaussianfittingpro- sion,giventheobservedredshift.Forthisstep,wedowngradethe cess, and as shown in §6.2 below, the error estimates are robust spectralresolutionoftheMaraston&Stro¨mback(2011)modelsto although likely to be somewhat underestimated for fainter galax- matchtheGAMAspectral resolution, adopting avalueof 2.54A˚ ies.Inaddition,flagsareprovidedtoidentifyavarietyofproblem- (FWHM)fortheMILESresolution(Beifiorietal.2011).Next,we (cid:13)c 2013RAS,MNRAS000,2–19 10 A. M.Hopkinset al. use GANDALF v1.5 to simultaneously fit both Gaussian emis- temperature, with the [OIII], [NII] and [SII] line pairs being ob- sionlinetemplatesandthestellarpopulationtemplates,whichare vious choices. Due to the stellar absorption of Hα in the vicin- broadenedtoaccountforthederivedstellarkinematics,tothedata, ity of the [NII]λ6548 line, and (to a lesser degree) its proxim- whilealsocorrectingfordiffuse(stellarcontinuum)obscuration.It ity to the Hα emission line itself, this particular ratio is less ro- isimportanttonotethatdiffuseobscuration,i.e.thatcausedbydif- bust. Using the measurements from the Gaussian fits, in Fig. 6 fusedustinthegalaxy,affectstheentirespectrum,andnoobscura- weshowthedistributionof[OIII]λ4956/[OIII]λ5007comparedto tioncorrectionisappliedpurelytoemissionlinesduringthefitting theexpected ratioof 1/2.98 (Storey&Zeippen 2000). The same process (even though this option is available). We made this de- is shown for [SII]λ6716/[SII]λ6731, where the expected ratio is cisioninordertominimisethenumberofpoorspectralfitscaused 1/1.4(Osterbrock1989).Lineratiosareonlyincludedinthisanal- bylowspectralS/Nthatotherwiseledtoambiguousemission-line ysisfor pairswhere the brighter of the twolines has aflux mea- fluxes,whennoisewasamoresignificantfactorthanreddening.A surement above 3σ. In the right panels, the ratio is shown as a Calzetti(2001)obscurationcurveisusedinestimatingtheobscura- functionofthefluxofthebrighterline.Atlowerflux(morespecif- tioncorrectionstothestellarcontinuum,andisappliedthroughout icallylowerS/N),thefainterlineislesseasilydetected,andabias theGANDALFmeasurementprocess.Thenebularemissionlines towardhighervaluesoftheratiocanbeseen.Thisresultdemon- fromGANDALFaresubsequentlycorrectedforobscurationusing strates the robustness of the line fitting and measurement within a Milky Way obscuration curve (Cardellietal. 1989), as recom- eachspectrum. mendedbyCalzetti(2001). GANDALF’ssimultaneousfittingmechanismallowsustoac- 6.2 Duplicatemeasurements curately extract ionised gas emission from the stellar continuum, minimisingcontaminationfromstellarabsorption,inordertocal- AsmallnumberofGAMAspectraduplicateobservationsofpartic- culateemissionlinefluxesandgaskinematics(velocitiesandve- ulartargets,oftenduetothere-observationofobjectswherealow locitydispersions)fromtheGaussianemissionlinetemplates.The redshift quality was initially obtained. This is typically a conse- outputs from this analysis are line fluxes and equivalent widths, quenceoftheobjectsbeingatthefainterendoftheGAMAtarget velocitydispersions (fromthestellarabsorption linesin thebest- selection, and the resultshere are consequently illustrativeof the fitting SEDs), and associated derived products such as Balmer robustness of the measurements for the fainter population. There decrement. A listof emissionlinesforwhichfluxand equivalent isnoattemptmadetocombinetheseduplicateGAMAspectra,or widthmeasurementsareextractedisgiveninTable1.Thewave- themeasurements fromthem,due tothecomplexsystematicsin- lengthsgivenfortheselinesarethewavelengthsasmeasuredinair, volved inthe flux calibration stepsdetailed above. Wecan, how- asopposedtothevaccuumwavelengthsusedbySDSS(Yorketal. ever,takeadvantageoftheseduplicateobservationstounderstand 2000). theprecision towhichwecan measure ouremission lineequiva- Our final set of measurements includes the flux, equivalent lentwidthsandfluxes.Todothis,weselectthoseduplicatemea- width and signal-to-noise ratio for each emission line, as well as surementswherebothspectrahavebeenallocatedaredshiftquality avelocitydispersioninferredfromthelinewidth.Wecalculatean 36nQ 64(Driveretal.2011).Weillustratethedifferencesbe- emission line ratio diagnostic classification (Baldwinetal. 1981) tween these duplicate measurements, using both the GANDALF for each galaxy based on these measurements. The stellar veloc- andtheGaussianfits,forlinefluxes(Fig.7)andequivalentwidths itydispersion and E(B −V) values from theSED fits,for both (Fig.8)oftheHαand[OII]emissionlines.Thesetwolinespecies diffuseandnebularobscuration (ifapplicable), arealsorecorded. were chosen for the following reasons. First, they represent the While stellar velocity dispersions are measured for all spectra, best-andworst-casescenarioswithHαbeing(typically)astrong thesearetypicallyonlyrobustforspectrahavinghigh S/N (e.g., line in a high S/N region of the spectrum, and [OII] being both Proctoretal.2008;Shuetal.2011,Thomasetal.,inprep.).Inad- weak(inmanycases)andsituatedatthelowS/N endofthespec- dition, the best-fit SED templateand associated χ2, along witha trum. Thus, these two lines give an idea of the spread expected cleanemission-linefreeabsorptionspectrumareavailable. in the precision of the measurements across the full wavelength andS/N range.Second,theHαlineisaffectedbyunderlyingab- sorption due to the stellar continuum which is corrected for dur- ingtheGANDALFfittingprocess.However,thiscorrectionrelies 6 QUANTIFYINGMEASUREMENTRELIABILITY criticallyonarobustmodelfittotheunderlyingstellarcontinuum and errors in this fit may add systematic uncertainties to the flux We explore the quality of our spectroscopic measurements thor- andequivalent widthmeasurements.Suchsystematicsarequanti- oughly. Here we detail the internal reliability for measurements fied by comparing the differences in the duplicate measurements withineachspectrum(§6.1),therepeatabilityofourmeasurements usingduplicateobservations(§6.2),andtheself-consistencyofour to the quadrature sum of the uncertainties on the measurements (Fig. 9 and Fig. 10). The 68th percentiles are typically 1.5 to 2 measurements between the two independent approaches we use unitsfromthemedian,suggestingthattheformalstatisticalerrors (§6.3).Wegoontooutlinetheimpactofstellarabsorptiononthe GaussianfitBalmerlinemeasurements(§6.4),thereliabilityofve- onthelinemeasurementsaresomewhatunderestimatedfromboth locitydispersionestimates(§6.5),andtheextentofapertureeffects theGANDALFandtheGaussianfits.Thisislikelyrelatedtothe (§6.6). factthattheduplicatespectraaredominatedbyfaintergalaxytar- gets.Forthefainterorlower S/N targets,thecontinuumlevelin the spectra tends to be noisier, and more affected by systematics such as poor scattered light subtraction or sky subtraction. This 6.1 Internalconsistency leadsinturntogreatervariationbetweentherepeatmeasurements, Asimpletestoftheinternalconsistencyofourlinemeasurements asthecontinuumlevelestimatedforeithertheGaussianfittingor is to measure the ratios of emission lines from ionised species byGANDALFcanbemoreeasilyover-orunder-estimated.Theer- that should befixed by quantum mechanics forfixed density and rorsonthelinefittingmaynotaccuratelyreflecttheuncertaintyin (cid:13)c 2013RAS,MNRAS000,2–19

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.