J. van Paradijs H. M. Maitzen (Eds.) Galactic High-Energy Astrophysics High-Accuracy Timing and Positional Astronomy LecturesH eld at the Astrophysics School IV Organized by the EuropeanA strophysics Doctoral Network (EADN) in Graz, Austria, 19-31 August 1991 Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Editors Jan van Paradijs Astronomical Institute “Anton Pannekoek” and Center for High-Energy Astrophysics Kruislaan 403, NL-1098 SJA msterdam, The Netherlands Hans Michael Maitzen Institut fur Astronomie der Universitat Wien Ttirkenschanzstral3e 17, A- 1180 Wien, Austria ISBN 3-540-56874-3 Springer-Verlag Berlin Heidelberg New York ISBN O-387-56874-3 Springer-Verlag New York Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustra- tions, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. 0 Springer-Verlag Berlin Heidelberg 1993 Printed in Germany 5813140-543210 - Printed on acid-free paper PREFACE The 4th Predoctoral Astrophysics School of the European Astrophysics Doctoral Network (EADN) was held from August 19 - 31, 1991 at Graz-Marialrost with the participation of 7 teachers, and 34 students from 11 European countries. With this School EADN has completehda lf a decade of European collaboration in the field of academic teaching in astrophysics. After the EADN Schools at Les Houches (France, 1988), Ponte de Lima (Portugal, 1989) and Dublin (Ireland, 1990) Austrian astronomy hosted the fourth School and chose Graz as its venue. Graz is related to both subjects of the School - Galactic High-Energy Astrophysics, and High Accuracy Timing and Positional Astronomy - through historical and contemporary circumstances. It is known as one of the Kepler cities. In 1994 Graz will celebrate the 400th anniversary of Kepler's arrival there where he started both his teaching and scientificca reers. Keplewro rked on the most accurate and numerous positional observations available att hat time through the efforts of Tycho Brahe; he can be said to have also contributed to thef ield of HighE nergy Astronomy by his book on the detection of a STELLA NOVA; which in fact was the last naked-eye supernovad iscovery (1604) before the recent famous supernova SN 1987A. We would like to mention here alsot hat the discoverer of cosmic rays - part of the fast topic of the Graz School - was the Nobel Prize winner Viktor F. Hess who conducted his research at the Karl-Franzens University of Graz. Other wen-known scientists, who at somet ime in their careers worked at this University, include Boltzmann, Schr6dinger (Nobel Prize 1933) and Mach. Like the other two classical Austrian universities of Vienna and Innsbmck the Karl-Franzens University has an Institute for Astronomy. We would like to express our deep gratitude to this institute, especially to its head Prof. Dr. Hermann Haupt and two of his students, Karin Muglach and Robert Greirnel, for their support during the preparatory phase and the School weeks. We acknowledge with grateful appreciation financial support for the School from: SCIENCE, the scientific stimulation programme of the Commission of the European Community; - the Austrian Ministry of Science and Research; - the Government of the Land Steiermark (Styria); - - the City of Graz, in addition to a truly delightful reception by its mayor Alfred Stingl and City Counsellor Helmut Strobl; the Granholm Foundation (Sweden), and - the Oesterreichiscbe Forschungsgemeinschaft. - Extensive cooperation and help came from the home institute of the Local Organizer, the Vienna Institut f'tir Astronomic (head Prof. Dr. Paul Jackson), and especially from its collaborators Dr. Anneliese Schnell, Dr. Ernst Goebel and Mag. Franz Kerschbaum. Thanks go also to the staff of the Bildungshaus Mariatrost whichp rovided not only dormitories and meeting rooms, but also a relaxed and friendly atmosphere surrounded by magnificent natural beauty. Last but not least, we wish to specially thank the Coordinator of EADN, Prof. Dr. Jean Heyvaerts who completed with his participation in the Graz School a period of five years at the helm of EADN. The 4th EADN School in Graz was pronounced successful by teachers and students alike. It occurred at a very critical pointi n recent European history, since its beginning coincided with the coup d'etaitn the former Soviet Union. Together with the scientific educational values and the charming Graz downtown atmosphere this may have contributed to a very special feeling of togetherness of young European doctoral students in astrophysics during those two weeks in August 1991. Amsterdam/Vienna, October 1992 J. van Paradijs, H.M. Maitzen Contents Part I Galactic High-Energy Astrophysics A. Achterberg Particle Acceleration in Astrophysics ............................. 3 1. Introduction ............................................... 3 2. Particle Acceleration: General Principles ...................... 4 2.1 Stochastic and Regular Fermi Acceleration .................. 4 2.2 The Spectrum due to Stochastic Fermi Acceleration ........... 8 2.3 Stochastic Acceleration by Plasma Waves and Turbulence ...... 9 2.4 "Fermi Deceleration": Expansion Losses .................... 15 2.5 The Energy Balance in Stochastic Fermi Acceleration ......... 16 3. Particle Acceleration near Astrophysical Shocks ................ 17 3.1 A Simple Statistical Model ............................... 19 3.2 Diffusive Shock Acceleration of Charged Particles ............ 20 3,3 Cycle Time and Momentum Gain for Particles in Shock Acceleration ................................... 24 3.4 The Maximum Energy Attainable in Shock Acceleration ....... 25 3,5 Gyro-Resonant Scattering by Alfvtn Waves ................. 26 3.6 Maximum Energy for Specific Loss-Mechanisms ............. 28 3.7 Astrophysical Sites for Shock Acceleration .................. 30 3.8 Observational Evidence for Shock Acceleration .............. 32 3.9 "Realistic" Shock Acceleration: Non-Linear Effects ........... 34 3.10 Outstanding Problems ................................... 35 3.11 Relativistic Shocks ...................................... 37 3.12 Shock-Drift Acceleration ................................. 40 3.13 Conclusions ........................................... 41 References ..... . ................. ........,.., ............ . .... 41 E.A. Dorfi Interstellar Medium and Supernova Remnants ..................... 43 Introduction .................................................. 43 1. Theories of the Interstellar Medium ......................... , 44 1.1 Constituents of the ISM ................................. 44 1.2 Interstellar Plasmas ..................................... 47 1.3 Radiation Fields ........................................ 56 1.4 Cosmic Rays .......................................... 60 IIIV 1.5 Magnetic Fields ........................................ 69 1.6 Further Remarks ....................................... 77 2. Supernova Remnants ....................................... 83 2.1 Free Expansion Phase ................................... 84 2.2 Sedov-Taylor Phase ..................................... 88 2.3 Cooling Phase ......................................... 92 2.4 Final SNR Evolution .................................... 95 2.5 Particle Acceleration in SNR's ............................ 99 2.6 X-Ray Emission from SNR's ............................. 111 2.7 Gamma-Ray Emission from SNR's ........................ 116 Conclusions ................................................... 122 References .................................................... 123 L. Vlahos High Energy Emission from Normal Stars ......................... 129 1. Introduction ............................................... 130 1.1 Energy Flow and Particle Acceleration ..................... 130 1.2 Basic Concepts ......................................... 133 2. Spontaneous Emission ...................................... 134 2.1 Bremsstrahlung Emission ................................. 134 2.2 Cyclotron and Synchrotron Emission ....................... 138 3. Collective Plasma Emission .................................. 144 3.1 Plasma Radiation ....................................... 144 3.2 Electron Cyclotron Maser Instability ....................... 148 4. Observations .............................................. 152 4.1 Hard X-Ray Emission .................................. . 153 4.2 Radio Observations ..................................... 154 5. Summary and Conclusions .................................. 157 References .................................................... 158 A.R. King Accretion in Close Binaries ..................................... 161 1. Introduction ............................................... 161 1.1 Energy Yields .......................................... 161 1.2 Radiation Spectrum ..................................... 162 1.3 Rotational Energy ....................................... 163 2. Accreting Binaries .......................................... 164 2.1 The Sizes of Binaries ................................... 164 2.2 The F~ldington Limit .................................... 164 3. Tidal Effects ............................................... 165 4. The Roche Potential ........................................ 166 5. Roche Lobe Overflow ....................................... 166 5.1 Occurrence ............................................ 166 5.2 The Degree of Roche Lobe Filling ......................... 168 5.3 Driving Mass Transfer ................................... 169 XI 6. Stellar Wind Accretion ...................................... 171 6.1 OB Supergiant X-Ray Binaries ............................ 171 6.2 Be-Star X-Ray Binaries .................................. 171 6.3 Mass and Angular Momentum Capture in Wind Accretion ..... 171 7. The Fate of the Accreted Matter ............................. 172 7.1 Roche Lobe Overflow ................................... 173 7.2 Stellar Wind Accretion .................................. 174 8. Accretion Discs ............................................ 174 8.1 Viscosity .............................................. 175 8.2 Viscous Dissipation ..................................... 176 8.3 The Magnitude of Viscosity .............................. 177 9. Disc Structure ............................................. 178 9.1 Steady Discs ........................................... 178 9.2 Vertical Disc Structure ............... .................... 180 10. Disc Stability .............................................. 180 11. Discs in Other Binaries ..................................... 182 12. Short.Period Binary Evolution ............................... 183 13. Secular Evolution of CVs ................................... 183 13.1 The Maximum Period ................................... 185 13.2 The Minimum Period ................................... 185 13.3 The Period Gap ........................................ 186 14. Short.Period LMXB Evolution ............................... 188 References ..................................................... 189 Part II High Accuracy Timing and Positional Astronomy D.C. Backer Pulsars - The New Celestial Clocks ............................... 193 1. Pulsars ................................................... 193 1.1 A Brief History of Neulxon Stars .......................... 193 1.2 Standard Model of Pulsars ............................... 195 1.3 Origin and Evolution of Isolated Neutron Stars ............... 198 2. Radio Astronomy Fundamentals ............................. 201 2.1 Radiation Properties ..................................... 201 2.2 Radio Telescopes ....................................... 203 2.3 Radio Astronomy Receivers .............................. 204 2.4 Propagation in the IntersteLlar Medium ..................... 206 2.5 Search Techniques ...................................... 209 2.6 Pulsar Timing Systems .................................. 211 3. Further Topics on Radio Wave Propagation ................... 213 3.1 Absorption ............................................ 213 3.2 Birefringence .......................................... 213 3.3 Scattering ............................................. 214 3.4 Solar Wind and Ionosphere ............................... 215 3.5 Relativistic Delay in Solar System Potential ................. 215 . Pulsar Timing 216 4.1 Arrival Time Measurement ............................... 217 4.2 Time Correction ........................................ 219 4.3 Space Correction ....................................... 221 4.4 Pulsar Parameter Estimation .............................. 222 4.5 Rotation Noise ......................................... 224 4.6 Astrometry ............................................ 226 5. Binary, Millisecond and Globular Cluster Pulsars .............. 226 5.1 Origin and Evolution ..................................... 226 5.2 Keplerian Binary Pulsar Timing ........................... 230 5.3 Relativistic Binary Pulsars ............................... 232 5.4 Globular Cluster Pulsars ................................. 233 5.5 Planets Around Pulsars .................................. 234 6. Pulsar Timing Array ....................................... 235 6.1 Time Coordinate ....................................... 235 6.2 Space Coordinate 237 6.3 Gravitational Wave Background ........................... 240 6.4 Pulsar Timing Array Experiments ........................... 247 References ..................................................... 250 J. Kovalevsky The Mission HIPPARCOS ....................................... 255 1. What is Stellar Astrometry? .................................. 255 1.1 What is Stellar Astrometry? .............................. 255 1.2 Methods of Astrometry .................................. 255 1.3 Why Stellar Astrometry? ................................. 256 1.4 Present Situation and Expectations from HIPPARCOS ......... 257 2. Principles and Problems of Stellar Astrometry ................. 258 2.1 What Direction is of Interest to Astronomy? ................. 259 2.2 Astronomical Reference Frames ........................... 259 2.3 Application to Space Astrometry .......................... 260 3. The HIPPARCOS Mission ................................... 261 3.1 General Principle of HIPPARCOS ......................... 262 3.2 Description of the Satellite and of Its Payload ............... 263 3.3 Observing Strategy ..................................... 264 3.4 The INPUT Catalogue ................................... 266 4. Reduction of Grid Data ..................................... 267 4.1 Light Modulation by a Periodic Grid ....................... 267 4.2 Photon Counts Produced by the Modulation ................. 268 4.3 Light Modulation by a Single Slit ....... . ................. 270 4.4 Precision of the Results .................................. 271 5. Attitude Determination ..................................... 272 5.1 Satellite to Sky Transformation ............................ 272 5.2 Equations for Attitude Determination ....................... 274 5.3 Representation of the Attitude ............................ 275 5.4 Precision of Attitude Determination ........................ 277 IX 6. Reduction on a Great Circle ................................. 277 6.1 The Equations .......................................... 278 6.2 The Design Matrix ...................................... 279 6.3 Geometric Solution ..................................... 280 6.4 Attitude Smoothing ..................................... 280 6.5 Passive Stars .......................................... 281 6.6 Accuracy of the Solution ................................. 281 7. Computation of Astrometric Parameters ...................... 282 7.1 Sphere Reconstitution .... , .............................. 282 7.2 Astrometric Parameter Determination ....................... 283 8. Double and Multiple Star Treatment .......................... 284 8.1 First Approximation, Double Stars ......................... 285 8.2 Improvement of the Solution ............................. 286 9. Iterations ................................................. 287 9.1 Principle of Iterations ................................... 287 9.2 Setting the Sphere Rotation ............................... 288 9.3 Double and Multiple Star Inclusion ........................ 289 9.4 Expected Final Accuracies ............................... 289 10. TYCHO Program .......................................... 290 10.1 Preparation of the Reduction .............................. 291 10.2 Detection of Stars ...................................... 291 10.3 Identification .......................................... 292 10.4 Astrometry ............................................ 292 References .................................................... 293 List of participants Anastasios Anastasiadis, (Greece) Thessaloniki Jose Aparicio, .M Barcelona )niapS( Bernhard Aringer, Wien )airtsuA( Beeharry, Girish K. (France) Meudon Theodora Boncheva, I. (Bulgaria) Shoumen Marie-Helene Boulard, (France) Toulouse Cognard, Ismael (France) Meudon Francisco Colomer, G6teborg (Sweden) Francois Cuisinier, (France) Strasbourg Del Rio, Evileo Barcelona )niapS( Petya Dimitrova, Shoumen )airagluB( Egonsson, Jim Lund (Sweden) Jonathan Ferreira, (France) Grenoble Robert Greimel, Graz )airtsuA( Milen Ivanov, Sofia )airagluB( Kerschbaum, Franz Wien )airtsuA( Mathias Kunz, (Germany) Ttibingen Kuulkers, Eric Amsterdam )sdnalrehteN( Rodger Manning, (England) Birmingham Sergios Maravelias, (Greece) Athens Josep Marti-Ribas, Barcelona )niapS( Karin Muglach, Graz )airtsuA( Marta Peracaula, Barcelona )niapS( Benoite Pfeiffer, (France) Toulouse Prins, Sacha Amsterdam )sdnalrehteN( Eric Quemerais, (France) Buisson le Verrieres Margaret Saphonova, Moscow )aissuR( Christine Schmitz-Fraisse, (France) Toulouse Mathias Schultheis, Wien )airtsuA( Siopis, Christos (Greece) Ioannina Torkelsson, Ulf Lund (Sweden) Massimo Villata, (Italy) Torino Wyn, Graham Leicester )dnalgnE( Zamanov, Radoslav Smoljan )airagluB(
Description: