ebook img

Galactic angular momenta and angular momentum couplings in the large-scale structure PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Galactic angular momenta and angular momentum couplings in the large-scale structure

Mon.Not.R.Astron.Soc.000,1–10(2008) Printed25January2011 (MNLATEXstylefilev2.2) Galactic angular momenta and angular momentum couplings in the large-scale structure 1 Bjo¨rn Malte Scha¨fer1,2,3⋆ and Philipp M. Merkel4 1 0 1InstituteofCosmologyandGravitation,UniversityofPortsmouth,DennisSciamabuilding,BurnabyRoad,PortsmouthPO13FX,UnitedKingdom 2 2Institutd’AstrophysiqueSpatiale,Universite´deParisXI,baˆtiment120-121,Centreuniversitaired’Orsay,91400OrsayCEDEX,France 3AstronomischesRecheninstitut,Zentrumfu¨rAstronomie,Universita¨tHeidelberg,Mo¨nchhofstraße12,69120Heidelberg,Germany n 4Institutfu¨rTheoretischeAstrophysik,Zentrumfu¨rAstronomie,Universita¨tHeidelberg,Albert-Ueberle-Straße2,69120Heidelberg,Germany a J 4 2 25January2011 ] O ABSTRACT C Inthispaper,werevisittheaquisitionofangularmomentumofgalaxiesbytidalshearingand compute the angular momentum variance σ2 as well as the angular momentum correlation h. functionC (r) froma peak-restrictedGaussiLan randomprocess.Thisstochastic processde- L p scribing the initial conditions treats both the tidal shear as well as the inertia as dynamical - o fieldsandexplicitlyaccountsforthediscretenessoftheinertiafield.Wedescribethewayin r which the correlationsin angularmomentumresult froman interplayof long-rangedcorre- t s lationsinthetidalshear,andshortrangedcorrelationsin theinertiafield andwhichreflects a thecorrelationbetweentheeigensystemsofthesetwosymmetrictensors.Weproposeanew [ formoftheangularmomentumcorrelationfunctionwhichisabletodistinguishbetweenpar- 1 allelandantiparallelalignmentofangularmomentumvectors,andcommentonimplications v ofintrinsicalignmentsforweaklensingmeasurements.WeconfirmthescalingL/M M2/3 ∝ 4 and find the angularmomentumdistribution of Milky Way-sized haloesto be correlatedon 8 scalesof 1Mpc/h.Thecorrelationfunctioncanbewellfitted byanempiricalrelationof 5 theformC∼ (r) exp( [r/r ]β). L 0 4 ∝ − . Keywords: cosmology:large-scalestructure,gravitationallensing,methods:analytical 1 0 1 1 v: 1 INTRODUCTION Blazeketal.2011)inparticularwithSDSS-data,andconfirmations i ofthesealignmentsinnumericalsimulations(Arago´n-Calvoetal. X Inthecurrentparadigm,haloesacquireangularmomentumbytidal 2007;Betancort-Rijo&Trujillo2009;Schneider&Bridle2010). shearingfromtheambientmatterdistribution(Heavens&Peacock r Inthispaper,werevisittheacquisitionofangularmomentum a 1988; Catelan&Theuns 1996a,b; Lee&Pen 2000; Lee 2006; ofcosmological objectsinlineartheoryandrecomputethecorre- Lee&Park 2006; Scha¨fer 2009, for a review), which was first lationfunctionofangularmomenta.Werestrictourselvestolinear proposed by Hoyle (1949) and Sciama (1955). Tidal shear- structureformation,usingtheZel’dovichmappingforthedescrip- ing is well supported by numerical simulations (White 1984; tionofthetidalshearingmechanism.Inthispaper,wehopetoim- Sugermanetal.2000;Catelanetal.2001;Hahnetal.2007,2010) provepreviousworksonthistopicintheseaspects: and leads to alignments of theangular momentum direction with the local tidal shear field. An important observational conse- (i) Weemployanimprovedfunctionalformforthecorrelation quenceofangularmomentumalignmentsinthelarge-scalestruc- functionwhichisabletodistinguishbetweenparallelandantipar- ture, are induced intrinsic ellipticty alignments between neigh- allelalignmentsofangularmomenta,andwhichmayassumeneg- bouring galaxies (Catelan&Porciani 2001; Jing 2002), which ativevalues for antiparallelorientation oftheangular momentum can be expected to be a significant source of systematics vectors.Thisrequiresthattheangularmomentumcorrelationfunc- in weak lensing surveys (Croft&Metzler 2000; Heavensetal. tioncannotbeamerequadraticforminthetidalshearandinertia 2000; Crittendenetal. 2001; Hirata&Seljak 2004; King 2005; tensorfields,whicharetherelevantquantitiesforangularmomen- Sembolonietal.2008)andevengalaxysurveysastheyintroduce tumbuild-up,butneedstobeantisymmetric. selectioneffectsduetocorrelatedanglesofinclinationofthegalac- (ii) Both the inertia and tidal shear fields will be consistently ticdisks(Krause&Hirata2011).Bynow, thereisreliableobser- computed from a correlated Gaussian random process, such that vationalevidence oftidal-shearinginducedellipticitycorrelations thefieldshaveconsistentphaserelations.Theangularmomentum (Mandelbaumetal. 2006; Hirataetal. 2007; Jonesetal. 2010; correlationwillreflectthedifferentcorrelationlengthsoftheinertia andtidalshearfields. (iii) Treating both fields as dynamical quantities improves ⋆ e-mail:[email protected] on the parameterisation introduced by Lee&Pen (2000) and 2 B.M. Scha¨ferandPh.M.Merkel Crittendenetal.(2001)fortheaveragemisalignmentbetweenthe L(t)= d3r (r ¯r) υ(r,t)ρ(r,t), (1) eigensystemsofbothtensorsandreflectschangesinaveragemis- ZV − × alignmentwithincreasingdistance. whereυ(r,t) isthe(rotational) velocityof thefluidelement with (iv) Weexplicitlytakeaccountofthediscretenatureoftheiner- density ρ(r,t) = ρ (1 + δ(r,t)) at position r around the cen- tiafieldastherandomprocessrestrictedtogalaxyformationsitesin tre of gravity r¯. Ihniperturbation theory, δ 1 and the den- thelarge-scalestructurehasadifferentweightingofcertaininertia- sity field can be approximated by assuming≪a constant density shearcombinations comparedtothatofcontinuous fields,i.e.the ρ = Ω ρ inside the protogalactic region. Following White angularmomentumdistributionisbiased. h(19i84),Camteclraitn&Theuns(1996a)andCrittendenetal.(2001),we describethegrowthofperturbationsonanexpandingbackground ThetheoryisdevelopedinSect.2,whereweoutlinetheGaus- in Lagrangian perturbation theory: The trajectory of dark matter sian model used for determining the angular momentum correla- particles in comoving coordinates is given by the Zel’dovich ap- tions in the large-scale structure and where we propose an im- proximation(Zel’dovich1970): provedformoftheangularmomentumcorrelationfunction.Inad- dition, wecomment onthe influenceof dark energy cosmologies x(q,t)=q D (t) Ψ(q) x˙ = D˙ Ψ, (2) + + on the angular momentum acquisition. The results are presented − ∇ → − ∇ which relates the initial particle positions q to the positions x at inSect.3,where wecompute theangular momentum correlation timet.Theparticlevelocityx˙ followsfromtheZel’dovich-relation functionalongwiththeangular momentumvariance, andinvesti- bydifferentiationbythetime-variable.ThegrowthfunctionD (t) gate their mass-dependence, followed by a discussion in Sect. 4 + describesthehomogeneoustimeevolutionofthedisplacementfield where we summarise our main results and comment on the con- Ψandcontainstheinfluenceoftheparticulardarkenergymodel. sequencesoftheimprovedangularmomentummodelonintrinsic IntheLagrangianframe,theexpressionfortheangularmomentum ellipticitycorrelations. becomes Throughout, the cosmological model assumed is a spatially flat ΛCDM cosmology with Gaussian adiabatic initial perturba- L=ρ a5 d3q (x x¯) x˙ ρ a5 d3q(q q¯) x˙, (3) tionsinthecolddarkmatterdistribution.Choicesfortherelevant 0 − × ≃ 0 − × ZVL ZVL parameter values are: Ω = 0.25 with Ω = 0.04, Ω = 0.75, m b Λ where theintegration volume is defined in comoving coordinates H0 =100hkms−1Mpc−1withh=0.72,ns =1andσ8=0.9. as well. Assuming that the gradient Ψ(q) of the displacement ∇ fieldΨ(q) doesnot vary muchacross theLagrangianvolume V , L a second-order Taylor expansion in the vicinity of the centre of gravityq¯ isapplicable: 2 FORMALISM ∂ Ψ(q) ∂ Ψ(q¯)+ (q q¯) Ψ , (4) ThissectiondescribestheGaussianmodelusedforderivingthean- α ≃ α − β αβ β gularmomentumcorrelationsinthelarge-scalestructure.Sect.2.1 X explainshow haloesacquirerotationbytidalshearingandrelates TheexpansioncoefficientisthetidalshearΨσγatthepointq¯: theangularmomentum LtotheinertiaI andgravitationalshear αβ Ψ (q¯)=∂ ∂ Ψ(q¯), (5) σγ σ γ Ψ in the Zel’dovich-approximation. In Sect. 2.2, we outline a αβ model for deriving the correlations of shear and inertia from the becausetheZel’dovichdisplacement fieldΨisrelatedtogravita- fluctuation statistics of the density field, based on a joint multi- tionalpotentialΦandcanbecomputedasthesolutiontoPoisson’s variate Gaussian probability density. The covariances take a par- equation∆Ψ=δfromthecosmologicaldensityfieldδ.Thegradi- ticularlysimpleformifexpressed inspherical coordinates,asex- ent∂αΨ(q¯)oftheZel’dovichpotential displacestheprotogalactic plainedinSect.2.3andweelaborateontheshapeofthecorrela- object,whichisneglectedinthefurtherderivation,asweonlytrace tionmatricesinSect.2.4.Thecorrelationfunction L (x)L (x) differential advection velocities responsible for inducing rotation. h α α′ ′ i of theangular momenta is determined in Sect. 2.5 by integrating Identifyingthetensorofsecondmomentsofthemassdistribution outtheGaussianprobabilitydensityrestrictedtopeaksintheden- oftheprotogalacticobjectastheinertiaIβσ, sityfield. Wediscuss a technical issue, namely the misalignment intheshearandinertiaeigensystemsinSects.2.6and2.7.Dueto Iβσ=ρ0a3 d3q(q−q¯)β(q−q¯)σ (6) thehighdimensionalityoftheintegration,weemployanumerical ZVL Monte-Carlointegrationscheme,asexplainedinSect.2.8. oneobtainsthefinalexpressionoftheangularmomentumLα: L =a2D˙ ǫ I Ψ . (7) α + αβγ βσ σγ σ X 2.1 Acquisitionofangularmomentumbytidalshearing Itisconvenient torewritethetimedependence of D intermsof + Doroshkevich(1970)andWhite(1984)suggestedthattheangular thescalefactorabydD+/dt=aH(a)dD+/da,yielding: momentumofgalaxiesoriginatesfromtidaltorquingbetweenthe dD protogalacticregion and thesurrounding matterdistributionprior Lα=a3H(a) da+ ǫαβγ IβσΨσγ. (8) to collapse. Assuming a non-spherical shape of the protogalactic Xσ region,theangularmomentumgrowsatfirstorderandlinearlyin Thetheoryofangularmomentumacquisitionbytidalshearinghas timeinEinstein-deSitteruniverses, whereasinspherical regions, been extended to nonlinear stages by using second order pertur- theacquisitionofangularmomentumisonlyasecondordereffect bationtheory(Catelan&Theuns1996b)andtoincludeeffectsof duetoconvectivematterstreamsontheboundarysurface,asshown non-Gaussian initial perturbations (Catelan&Theuns 1997), but byPeebles(1969). for reasons of analytical computability, we restrict our model of Quitegenerally,theangularmomentum Lofarotatingmass angular momenta tothe linear regimeof structureformation of a distributionρ(r,t)containedinthephysicalvolumeVisgivenby: Gaussianrandomfield. Galacticangularmomentum couplings 3 0.95 densityfieldρ(x),δ(x)=(ρ(x) ρ )/ ρ ,withtheaveragedensity −h i h i ρ =Ω ρ .Theseperturbationsareconvenientlydecomposedin 0.9 h i m crit Fouriermodesδ(k): 0.85 δ(k)= d3xδ(x)exp( ikx). (13) a) 0.8 Z − Q( SpecifyingthepowerspectrumP(k)sufficestodescribethestatis- 0.75 o ticalpropertiesofahomogeneous andisotropicGaussianrandom rati 0.7 field: h owt0.65 hδ(k)δ(k′)∗i=(2π)3δ3D(k−k′)P(k). (14) r g 0.6 Thepowerspectrum,forwhichwechoosetheansatzP(k) kns ∝ · T2(k),isnormalisedtoexhibitavarianceofσ =0.9onscalesof 0.55 8 R=8Mpc/hbytherelation: 0.5 1 σ2 = dkk2W2(kR)P(k), (15) 0.45 R 2π2 0 0.1 0.2 0.3 s0.c4alef0a.5ctor0a.6 0.7 0.8 0.9 1 Z withaFourier-transformedsphericaltop-hatforthefilterfunction W(y),i.e.W(y) = 3 sin(y) ycos(y) /y3.Acommonparameteri- Figure1.Theinfluenceofthedarkenergymodelonthetimeevolutionof − aanndguwlaar=mo0m,seonltiad:lQin(ea)),afsoarqfuuninctteiosnseonfcesc(awle0f=acto2r/a3foanrdΛwCaDM=0(w,d0a=sh−ed1 wsaatisopnrofoprotsheedsbhyapBearo(cid:2)dfetehneettraanl.sf(e1r98fu6(cid:3)n)c:tionT(q)forCDMmodels − line)andadarkenergymodelwithvariableequationofstate(w0 = −2/3 ln(1+2.34q) andwa=1/3,dash-dottedline). T(q)= 2.34q 1 Fig.1comparesthetimeevolutionoftheangularmomentum 1+3.89q+(16.1q)2+(5.46q)3+(6.71q)4 −4 , (16) × indarkenergycosmologieswithSCDM.Wedefinetheratio wherehthewave-vectorkisgiveninunitsofthesihapeparameterΓ, Q(a) qDE(a) (9) firstintroduced byEfstathiouetal.(1992).Aconvenient parame- ≡ q (a) terisationofthevalueofΓasafunctionofthematterdensityΩ SCDM m andthebaryonicdensityΩ isgivenbySugiyama(1995): with q(a) = a3H(a)dD /da (with D (a) normalised to unity to- b + + day and we parameterise the dark energy equation of state with q=q(k)= k/Mpc−1h withΓ=Ω hexp Ω 1+ √2h . (17) (Chevallier&Polarski2001;Linder&Jenkins2003) Γ m − b Ω   m  w(a)=w0+(1−a)wa. (10) The mass scale of the objects of interest isset by imposing a smoothingonhighspatialfrequencies,wherethediameterRofthe InSCDMtheseformulaesimplifyto H(a) = H a 3/2, D (a) = a 0 − + isotropicfilterfunctionS (k)correspondstothesizeoftheobjects andconsequentlyq = H a3/2.Fig.1suggeststhatthespin-up R SCDM 0 attheonsetofcollapse.Fornumericalreasons,weuseaspherically ofhaloesindarkenergymodelsissignificantlyslowercomparedto symmetricGaussianforS (k): SCDM,andthechoiceoftheequationofstateaffectsthetimeevo- R dluDtio/ndasigfonlilfiocwasntnluy.mTehriecaglrlyowatshafsuonlcuttiioonntDo+t(hae)garnodwtihtsedqeuraivtiaotniv,e P(k)−→P(k)SR2(k)withSR(k)=exp(−k2R2/2). (18) + In order to predict the correlation of the angular momenta L of d2 1 dlnH d 3 objectswhichformatpeaksintheGaussiandensityfield,oneneeds D + 3+ D = Ω (a)D (a), (11) da2 + a dlna da + 2a2 m + to relate the density gradient δ (x), the second derivatives δ (x) ! α αβ inwhichthedarkenergy model affectsthescalingof theHubble andthetidalfieldΨαβ(x)tothedensityfieldδ(x): function H(a) andofthematterdensityparameter Ωm(a).Inspa- d3k tially flat dark energy cosmologies, the Hubble function H(a) = δ(x) = δ(k)exp(ikx), (19) (2π)3 dlna/dtisgivenby Z ∂δ(x) d3k δ (x) = =i k δ(k)exp(ikx), (20) HH2(02a) = Ωa3m +(1−Ωm)exp 3Za1dlna′(1+w(a′))!, (12) δ α(x) = ∂∂2xδα(x) =Z (2π)d33kαk k δ(k)exp(ikx), (21) with the dark energy equation of state w(a). The value w ≡ −1 αβ ∂xα∂xβ −Z (2π)3 α β correspondstothecosmologicalconstantΛ. Thetidalshear followsfromthesolutionof thePoissonequation ∆Ψ(x) = δ(x)linkingtheZel’dovichpotentialΨ(x)tothedensity fieldδ(x): 2.2 Gaussianmodeloftheangularmomentumcorrelations ∂2Ψ(x) d3k k k Thegoalofthissectionistoderivethe2-pointcorrelationfunction Ψ (x)= = α βδ(k)exp(ikx). (22) αβ ∂x ∂x (2π)3 k2 oftheangularmomentaofobjectsthatformatpeaksinthecosmic α β Z densityfield.ThequantitiesneededarethethetidalshearΨ (x)as Animportant consequence ofeqns. (21)and(22)willbethefact αβ wellastheinertiaI (x)ofapeakregion,whichbothcanberelated thattheangularmomentumcorrelationisdeterminedbytwomech- αβ tothedensityfielditselfanditssecondderivatives.Incosmology, anismswithdifferingcorrelationlength: ashort rangecorrelation fluctuationsinthedistributionofmatteraredescribedbytheover- ofthepeakshapesandhencetheinertia,andalongrangecorrela- densityδ(x),whichisdefinedasthefractionalperturbationinthe tionmediatedbythetidalshear. 4 B.M. Scha¨ferandPh.M.Merkel Thejointdistributionoftheamplitudesofthedensityfield,its agonalinthemasstensoreigenframe.Carryingouttheintegration derivativesandthetidalshearfollowsfromaGaussianprobability yields: density(Bardeenetal.1986): η I = 0 Γdiag A2+A2,A2+A2,A2+A2 . (30) 1 1 αβ 5 y z x z x y p(υ)dυ= exp υtV−1υ dυ, (23) (cid:16) (cid:17) (2π)N/2√detV −2 Theevolutionofthedensityfieldisassumedtobehomogeneousto ! firstorder,η ρ a3 = ρ a3,with ρ =Ω ρ . wherethequantitiesofinterestatthepoint xhavebeenarranged 0≡ 0 0 h i h i m crit ina15-dimensional vector υ,i.e.,3values forthedensity gradi- entδ (x),6valuesforthesecondderivativesδ (x)ofthedensity α αβ 2.3 Describingthecorrelationsinsphericalcoordinates field(duetotheinterchangabilityofthesecondderivatives)and6 valuesforthetidalshearΨαβ(x),whichissymmetricunderindex Following the example of Regos&Szalay (1995) and exchangeaswell.ThecovariancematrixVfollowsfromtheouter Heavens&Sheth (1999), we express the correlations between pbreoedxutcetndVeijd≡tohiυnicυl∗ujid,e(it,hje)fi=el1d.v.a.l1u5e.sTυh′isatparosbeacboinlditypodienntsxit′y, can cthoeorddeinnasitteys.fiTehled,twitospdeearkivsautinvdeseracnodnstihdeertaitdiaolnsahreeaarssinumsepdhetroicbael positionedonthez-axis,symmetricabouttheorigin,andseparated 1 1 p(w)dw= exp wtW−1w dw, (24) byadistancer,i.e.theyhavethecoordinates x = (0,0,+z/2)and (2π)N√detW −2 ! x =(0,0, z/2).Thecorrelationstakeaparticularlysimpleshape ′ wherethe30-dimensionalvectorw=(υ,υ)combinesthevectors in the basi−s given by the set of dimensionless complex variables ′ υ and υ at the two points x and x under consideration and the yn (x): ′ ′ ℓm covariancematrixW,W ww ,(i,j) = 1...30,isdefinedin ij ≡ h i ∗ji iℓ+2n d3k completeanalogy. yn (x)= √4π kℓ+2nδ(k)Y (kˆ)exp(ikx), (31) Apeculiarityworthwhilementioningisthefactthattheden- ℓm σℓ+2n Z (2π)3 ℓm sityfieldδ(x)isdegeneratewiththetracetrΨαβ(x)ofthetidalshear with kˆ = k/k as the direction of the wave-vector k. σ2 are the becauseofPoisson’sequation∆Ψ=trΨ =δ.Forthatreason,the j αβ weightedmomentsofthe(smoothed)matterspectrumP(k): densityfieldwillappearintheaboveoutlinedrandomprocessasa derivedquantity,whereastheentriesofthetidalshearmatrixwill σ2= 1 dkk2j+2P(k). (32) bedrawnfromtheGaussiandistribution,withthepeakrestriction j 2π2 Z inplace. Thetransformationbetweenthephysicalframeandtheyn -frame The inertia tensor I of an object forming at a peak in the ℓm αβ forthescalardensityfieldδ(x)isgivenby densityfieldatpositionx isrelatedtothesecondderivativesδ of p αβ thedensityfieldatthatparticularpoint(Catelan&Theuns1996a): σ0y000(x)=δ(x). (33) Intheeigenframeofthemasstensor δ ∂ ∂ δatthepeak,the densityfieldcanbeapproximatedby−aαpβar≡ab−oliαcdβensityprofile, Forthevectorialdensitygradientδα(x,theyread: σ y0 (x) = √3δ(x), (34) 1 3 1 10 z δ(x)=δ(xp)− 2 λα(x−xp)2α, (25) σ1y011(x) = − 3/2 δx(x)+iδy(x) . (35) α=1 X Thetensorδ (x)pcanbe(cid:16)determinedfro(cid:17)mtheyn -coefficientsby: whereλ ,α =1,2,3aretheeigenvaluesofthemasstensor.Ifthe αβ ℓm α boundary∂ΓofthepeakregionΓisdefinedbytheisodensitysur- σ y0 (x) = 5/4 δ (x)+δ (x) 2δ (x) , (36) faceδ =0andifthepeakheightisexpressedinunitsofthevari- 2 20 − xx yy − zz Γ anceσ ,δ(x)=νσ ,theboundarysurfaceisgivenintheparabolic σ y0 (x) = p15/2(cid:16) δ (x)+iδ (x) , (cid:17) (37) 0 0 2 21 − xz yz approximationbyanellipsoidequation: σ y0 (x) = +p15/8 (cid:16)δ (x) δ (x)(cid:17)+2iδ (x) , (38) 2 22 xx − yy xy ∂Γ: 3 (x−xp)α 2 =1, (26) σ2y100(x) = +pδxx(x)+(cid:16) δyy(x)+δzz(x) . (cid:17) (39) A Xα=1 α ! Therelationlinkin(cid:16)gthetidalshearΨ to(cid:17)theyn -coefficientscan αβ ℓm wherethesemi-axesAαoftheellipsoidarerelatedtotheeigenval- bederivedincompleteanalogytoeqns.(36)through(39).Theynℓm- uesλαby coefficientsofthetidalsheartensorfielddiffermainlybyafactor ofσ /σ fromthoseofthemasstensorfield,apartfromthetrace 2νσ 2 0 A = 0. (27) ofthetidalshear: α λ r α The volume Γ of ellipsoidal peak region bounded by isodensity σ0y−201(x) = − 5/4 Ψxx(x)+Ψyy(x)−2Ψzz(x) , (40) contourδΓ=0intheparabolicapproximationisthengivenby: σ0y−211(x) = −p15/2(cid:16) Ψxz(x)+iΨyz(x) , (cid:17) (41) Γ= 43π AxAyAz, (28) σ0y−221(x) = +p15/8 (cid:16)Ψxx(x)−Ψyy(x)(cid:17)+2iΨxy(x) , (42) σ y0 (x) = +pΨ (x)(cid:16)+Ψ (x)+Ψ (x) , (cid:17) (43) whichwouldimmediatelyyieldanestimateforthemassoftheob- 0 00 xx yy zz ject: emphasisingthed(cid:16)ifferenceincorrelationle(cid:17)ngthbetweentheden- 4π sityfieldandthepotential. M=η0Γ=η0 3 AxAyAz. (29) Theynℓm(x)-basisinheritsitssymmetryundercomplexconju- gationfromthesphericalharmonicsY : ℓm TheinertiatensorI followsfromthesecondmomentsofthemass αβ distribution,restrictedtothevolumeΓofthepeakregion,andisdi- ynℓm(x)∗=(−1)mynl,−m(x), (44) Galacticangularmomentum couplings 5 whichwillbecomeimportantatthestageofinvertingtherelations 2.4.2 Cross-correlationmatrix givenabove.Similarlytothevectorυcontainingthephysicalvari- Thecross-correlationmatrixC(r)isdefinedanalogously, ables,theyn (x)-coefficientscanbearrangedinavectorybymap- ℓm panindgtthheef3raimndeicoefstnh,eℓya-nvdalmuetsoaarenerwelainteddexbyi.aThlienepahrysuinciatlarυy-ftrraanmse- C(r)=Cℓnℓn′′mm′(r)=hynℓm(x)ynℓ′′m′(x′)∗i. (51) The steps in simplifying this expression consist in inserting the formation.Forclarity,weabbreviatey y(x)andy y(x). ≡ ′ ≡ ′ definition of the yn (x)-coefficients, in replacing the variance ℓm δ(k)δ(k′)∗ withthematter power spectrum P(k)and inexpand- h i ingtheFourierwaveexp(ikr), r x x,byvirtueofRayleigh’s ′ ≡ − 2.4 Shapeofthecorrelationmatrices formula, A(1s99d5e)m, othnestcraotrerdelaitniotnhemfaotrrimceaslisnmeedperdopionsethdebGyauRsesgiaons&proSbzaablaily- exp(ikr)=4π ∞ iLjL(kr) +L YLM(rˆ)∗YLM(kˆ). (52) L=0 M= L itydensities(eqns.23and24)assumeaparticularlysimpleshape X X− intheframegivenbytheyn -coefficientsandcanbeexpressedan- The integration over the three spherical harmonics Y (kˆ) can be ℓm ℓm alyticallyintermsofmomentsofthedarkmatterpowerspectrum. simplified by inserting the definition of the Wigner-3j symbols ThecorrelationmatrixYinthisframeisdefinedastheexpectation (Messiah1962;Abramowitzetal.1988), value dΩYℓ1m1(kˆ)Yℓ2m2(kˆ)∗Yℓ3m3(kˆ)= Yij ≡h(y,y′)i(y,y′)∗ji (45) Z oftheproductsoftheelementsinthevector(y,y′)andcanbesplit ( 1)m2 Π3i=1(2ℓi+1) ℓ1 ℓ2 ℓ3 ℓ1 ℓ2 ℓ3 . (53) intotwo15×15submatrices:theauto-correlationmatrixA,defined − s 4π 0 0 0 ! m1 −m2 m3 ! asA = yy andthecross-correlationmatrixC=C(r),givenby ij h i ∗ji Further reduction is reached by taking advantage of the fact that C = yy , which depends on the distance r between the two ij h i ′j∗i bothpeaksareassumedtolieonthez-axis, pointsxandx, ′ 2L+1 A C Y (rˆ)=δ , (54) Y= C+ A , (46) LM M0r 4π ! whichyieldsthefinalformofthecross-correlationmatrixC(r): where C+ is the Hermitean adjoint of C. The transformation be- btmwyaetterhinextmhReaatyrcnℓimtxi-nSfgr,aocmnoemtahpneudtvitenhcgeto(pryh,yυysia)cnfadrlofrmreasmwulet=iins(ggυii,vnυenth)b,eyvtehcetocromy,palnexd Cℓnℓn′′mm′(r)=δmm′σ(−ℓ+12n)σm+ℓn′+−2nn′′ L=Xℓ|+ℓ−ℓ′ℓ′|(2L+1)iL+ℓ−ℓ′KL,ℓ+ℓ′+2(n+n′+1)(r) ′ ′ ℓ ℓ L ℓ ℓ L S= R 0 . (47) × (2ℓ+1)(2ℓ′+1) 0 0′ 0 m m′ 0 , (55) 0 R p ! − ! ! where the kmj (kr)-weighted spectral moments are abbreviated ℓ The matrices R and S can be constructed from the relations be- withK (r), ℓm tweentheyn (x)-coefficientsandthephysicalvariablesδ(x),δ (x), ℓm α 1 δ (x)andΨ (x)compiledinSect.2.3. K (r)= dkkmj (kr)P(k). (56) αβ αβ ℓm 2π2 ℓ Z j (kr) are the spherical Bessel functions of the first kind ℓ (Abramowitzetal.1988).TheCnn′ -coefficientsarealwaysreal: 2.4.1 Auto-correlationmatrix TheWigner3j-symbolsareuneqℓℓu′maml′tozeroif L+ℓ ℓ iseven, ′ − Theauto-correlationmatrixAintheyn -frameisdefinedby: inwhichcaseiL+ℓ−ℓ′ isarealnumber.Furthermore,thesummation ℓm over L can be restricted to the range ℓ ℓ 6 L 6 ℓ+ℓ due ′ ′ | − | A=Anℓℓn′′mm′ =hynℓm(x)ynℓ′′m′(x)∗i. (48) ctorotshse-ctorriraenlgalteioncomndaittriioxnCacpapnliebdebtorotuhgehWttoigbnleorc-3kjdsiaygmobnoallss.hTaphee InsertingtheFourierexpansionofthevariables,replacingthevari- bysuitablearrangementoftheyn -coefficientsinthevectory,more ℓm anceofthedensityfield δ(k)δ(k′)∗ withthematterpower spec- specifically,bygroupingcoefficientswithconstantvalueofmand h i trum P(K), and using the orthogonality relation of the spherical increasingthemodulusofmwithincreasingindexi. harmonicsYℓm(kˆ), IncontrasttotheconstantvaluesinthematrixA,theentriesof thematrixCdependonthedistancer= x x ofthetwopointsx ′ dΩYℓ1m1(kˆ)Yℓ2m2(kˆ)∗=δℓ1ℓ2δm1m2, (49) andx′.ThesymmetryoftheentriesofC| u−nder| interchangeofthe Z pointsxandx isgivenbytherelation ′ yieldsfortheauto-correlationmatrix: σ2 hynℓm(x)ynℓ′′m′(x′)∗i=(−1)ℓ−ℓ′hynℓm(x′)∗ynℓ′′m′(x)i. (57) Anℓℓn′′mm′ =Anℓmn′δℓℓ′δmm′ =(−1)n−n′σℓ+2ℓn+σn+ℓn+′2n′δℓℓ′δmm′, (50) rTyapreicadlepciocrtreedlaitnioFnigc.oe2ffi.TchieentssmCooℓnℓnt′′hmimn′gasscfaulencRtio(cn.sf.oefqsne.p1a8ra)thioans wherethedefinitionoftheσ -coefficientsineqn.(32)wasusedfor beensettoR = 1Mpc/handthedensitythresholdwaschosenas j substitutingthe(2j+2)thmomentsofthepowerspectrumP(k).The ν = 2, inorder torepresent galaxies. Withthe choice of Ω , the m structureofthematrixAisremarkablysimple:Itisdiagonalinthe smoothingofthepowerspectrumatscaleRcorrespondstoamass indicesℓandmandthesignofitsentirelyrealentriesisdetermined scale of M = 4πρ Ω R3 3.1 1011M /h. For illustration bywhethern−n′isanevenoroddnumber. purposes, tshcaelecova3riancrcite mmatri≃x Cℓnℓn′′m×m′ has b⊙een transformed to 6 B.M. Scha¨ferandPh.M.Merkel 1 densityp(w)dw,constrainttopeakregionsinthefluctuatingdensity field.Theregionstowhichtheintegrationisrestrictedarerequired 0.8 toexceedathresholdνindensity,δ(x) > νσ ,tobeofvanishing ) 0 r ( densitygradient,δ (x)=0,andofnegativecurvature,δ (x)<0. ′mm0.6 Thenumberdαensityofmaximainthedensityfieldαisβmodeled ′nnC′ℓℓ by a point-process (Bardeenetal. 1986; Regos&Szalay 1995; nt 0.4 Heavens&Sheth1999): e ffici 0.2 n = δ3(x x). (58) e peak D − i o i c X n 0 Close to the maximum i at x a Taylor expansion of the density o i elati−0.2 gradientδα(x)isapplicable: r cor−0.4 δα(x)= δαβ(xi)(x−xi)β. (59) β X Withthisexpansiononeobtainsforthepeakdensity: −0.6 0 1distan2cer≡3 |x−4x′|in5units6ofR7=1M8pc/h9 10 npeak = δ3D δ−αβ1(xi)δα = detδαβ δ3D(δα). (60) Fttarioiifgxnr.uamorTefhed2,ei.wssCtmhaoenorrcoreeethltahritnei≡goanus|xctcoao−-leceffixoR′rc|riewienlnaattusisonsCnietsℓtnmℓnt′o′omafmtRrt′ih(xe=r)Afi1=nℓlℓnt′Me′hmrympnℓsm′cc/(iasxhle)eyiqnRnℓ′u′,moat′rlrd(axteon′rs)t∗fthooierarmusenpeadirtfeusimnneantco--t tTthehmreeeorefrleatXahtliieoenmigtaea(cid:16)snksvetaselanusesosimrλ−p(cid:17),lδeiαrβ(cid:12)(cid:12)(cid:12)=:shBa1epi.en.g.w(cid:12)(cid:12)(cid:12)3ahewsnyhmcicomhnesaitldrlieocrwitnesgntsotohrer,eeiptilgahecanessytthhsee- i galaxies. determinantbytheinvariantquantity λ λ λ . Theconstraintscanbecombined|in1a2m3a|sk (υ),whichisde- finedasafunctiononthevectorυ containingthCederivatesofthe 6 Gaussian random field under consideration: Peaks in the density fieldaredefinedaspointswithamplitudesinunitsofthevariance 5 ()r σ20 =hδ2iexceedingacertainthresholdνandexhibitingavanish- ′mm4 inggradientδαaswellasnegativecurvatureδαβ: ′nnC′ℓℓ (υ)=δ3 [δ (x)] λ λ λ Θ(λ)Θ[δ(x) σ ν]. (61) nt 3 C D α | 1 2 3| i i − 0 e Y ffici 2 Θ(x)denotestheHeavisidestep-function. Thepeak densitynpeak, e i.e. the expecation value for the number density of peaks in the o c n 1 fluctuatingdensityfieldδwhichexceedathresholdνσ0 canthen atio bederivedfromthemultivariateGaussianrandomprocessp(υ)dυ, el 0 corr npeak = dυ p(υ)C(υ), (62) −1 Z which corresponds to the integral of the differential peak density −2 n (ν)dνdefinedbyBardeenetal.(1986). 0 1distan2cer≡3 |x−4x′|in5units6ofR7=1M8pc/h9 10 peak In analogy, the expectation value of the angular momentum restrictedtopeakregionsinthedensityfieldcanbeobtainedwith: Ftfiinroiaggnmusoecrf,aelwd3ei.hsRCtearwonercartesehlesraeta≡itoutnto|ox-cR−coo=exrffir′1e|cliMainetinpuotcnns/iCthmsℓnioaℓnn′tf′mroitmxhr′de(Aerfirnℓ)ℓlntt=′′oemrmrheys′pcnℓimarsel(edsxei)Ranyg,nℓt′′otgmrnaa′aln(axls.x′f)ioTe∗rhism.eaessdmaifonuotnothca-- hLi= npeak1(>ν)Z dυ p(υ)C(υ)L(υ), (63) andthevarianceoftheangularmomentumfieldcanbecomputed using: aframe,wheretheauto-correlations Ann′ arediagonalandnor- 1 ℓℓ′mm′ L2 = dυ p(υ) (υ)L2(υ). (64) malisedtounity. h i n (>ν) C Fig. 3 shows the distance dependence of the entries of peak Z Cdiℓnaℓng′′momn′a(rl)ininstaeafdraomfee,qwuhalerteotthheeauuntoit-cmoarrterilxa.tioNnotmabalterixdiAffnℓeℓnr′′memn′ceiss Idniscbroetthenfeosrsmouflathee, tmheeansuorremdaqliusaantitoitny.factor n−pe1ak accounts for the to Cnn′ in this frame compared to the frame where to auto- Generalisation of the above relations to include a second cgoartiroeℓnlℓa′mtoimfo′nthseariesoupnriotybainbcilliutydectohnetofaucrtst,hwathCicℓnhℓn′′mams′suinmdeicsaetemsit-haexieslorna-- pgeualakrrmesoumltesnitna,thweitchotrhreelaGtiaounssfiuanncptiroonbahbLiαli(txy)Ldαe′n(sxi′t)yi po(fwt)hdewan=- tiosof 5andalessoscillatorybehaviour. p(υ,υ′)dυdυ′: ≃ hLα(x)Lα′(x′)i= (65) 2.5 Ansatzfortheangularmomentumcorrelations n2 1(>ν) dυC(υ) dυ′C(υ′)Lα(υ)Lα′(υ′)p(υ,υ′). Thecorrelationfunctionoftheangularmomentainthelarge-scale peak Z Z structurefollowsfromintegratingoutthe30dGaussianprobability In general, the thresholds ν, ν imposed on the peaks are equal. ′ Galacticangularmomentum couplings 7 AsderivedinSect.2.1,theangularmomentumL dependsonthe with(X+)t =+X+.InthederivationoftheangularmomentumL, α productoftheinertiatensorI andthetidalshearΨ : βσ σγ L =a2D˙ ǫ I Ψ =a2D˙ ǫ X , (76) α + αβγ βσ σγ + αβγ βγ L =a2D˙ ǫ I Ψ =a2D˙ ǫ X , (66) σ α + αβγ βσ σγ + αβγ βγ X σ thepermutationsymbolǫ picksouttheantisymmetriccontribu- X αβγ if the acquisition of angular momentum of a protogalactic object tionX−,byvirtueof ǫαβγ(Xβ+γ +Xβ−γ) = Xβ−γ,because thecontrac- isdescribedintheZel’dovichapproximation.Forconvenience,we tionof thesymmetrictensor X+ withtheantisymmetricpermuta- introducethematrixXwiththecomponents: tionsymbolvanishes,ǫαβγXβ+γ =0. Hence,theprotogalacticobjectswillonlyacquireangularmo- Xβγ(x)= Iβσ(x)Ψσγ(x). (67) mentum if the commutator X− between the inertia and the tidal Xσ shear isnon-zero, which means that the inertia and shear tensors Then, the correlation of the angular momentum components be- are not supposed to be simultaneously diagonisable, i.e. they are comes: notallowedtohaveacommoneigensystem.Inordertocapturethis mechanism, Lee&Pen (2000) and Crittendenetal. (2001) have hLα(x)Lα′(x′)i=a4D˙2+ǫαβγǫα′β′γ′hXβγ(x)Xβ′γ′(x′)i. (68) used an effective, parameterised description of the average mis- Inthenextstepwereplacethe1dvarianceofthecomponentsL in alignment oftheshear andinertiaeigensystems, gauged withnu- α thecorrelationfunctionbythe3dvarianceofthefullvector Lby mericaln-bodydata. takingthetraceofeqn.(68), In the correlation function of the angular momenta CL(r) = tr Lt(x)L(x) (c.f.eqn.71),thedependenceofLonthecommuta- ′ CL(r)≡trhLα(x)Lα′(x′)i=hLα(x)Lα(x′)i, (69) tohrX− translaitesintotheasymmetricquadraticform X(x)X(x′) which has the advantage of being a coordinate-frame indepen- X(x)Xt(x′) withthematrixtransposeinthesecondthermcarryin−g i dent quantity and allows the usage of the relation ǫ ǫ = thesignal:Acommoneigensystemoftheinertiaandsheartensors, αβγ αβ′γ′ beingboth symmetricmatrices,would havetheconsequence that 3 δ δ δ δ for reducing the product of the two ǫ - ββ′ γγ′− βγ′ β′γ αβγ Xwouldbeasymmetricmatrix,X = X+ = Xt,andthecorrelation symbols: (cid:16) (cid:17) functionC (r)wouldvanish. L hLα(x)Lα(x′)i=3a4D˙2+ hXβγ(x′)Xβγ(x)i−hXβγ(x)Xγβ(x′)i , (70) In contrast, the signal is maximised, if the shear and inertia eigensystemsareunaligned,i.e.ifXispurelyantisymmetric,X = wheretheorder oftheihndicesinthelasttermisinterchaniged. In matrixnotation,thecorrelationfunctionCL(r)reads: Xm−omanednXtu+m=au0t.oI-nctohraretlcaatsioenXftu=nc(tXio−n)tC=m−axX(r−)=is−trXulyanqdutahderaatnicg:ular L CL(r)=trhL(x)Lt(x′)i=3a4D˙2+tr hX(x)Xt(x′)i−hX(x′)X(x)i ,(71) a4D˙2 whichisnon-vanishingforgeneralhasymmetricmatricesXβγduieto CLmax(r)=6n2 (>+ν) dυC(υ) dυ′C(υ′)tr X(υ)Xt(υ′) .(77) peak Z Z thematrix transposition inthelast term. Finally, one canexpress h i theangularmomentumcorrelationarisingfromtheGaussianprob- Thecorresponding1-pointvariancewouldbegivenby: abilitydensityinthenaturalvariableX,Xβγ =IβσΨσγ: L2 = 1 dυ p(υ) (υ)L2 (υ), (78) tr L(x)Lt(x) =3 a4D˙2+ (72) h maxi npeak(>ν)Z C max h ′ i n2 (>ν) × which illustrates the effect of partial alignment of the shear and peak inertia eigensystems, reducing the variance compared to the case dυ (υ) dυ′ (υ′)tr X(υ)Xt(υ′) X(υ′)X(υ) p(υ,υ′). where the shear and inertia eigensystems are maximally mis- C C − aligned. Z Z Inthecalculationoutlinedabohveweaimtoavoidadeciomposition The symmetric contribution X+, which measures the degree ofthetidalshearandinertiacorrelationsaccordingto of alignment of the inertia and shear eigensystems, causes an anisotropic deformation of the protogalactic region during the I(x)Ψ(x)I(x′)Ψ(x′) =P(IΨ)P(IΨ) Ψ(x)Ψ(x′) , (73) courseoflinearstructureformationpriortogravitationalcollapse. h i | | h i whichusesthedifferenceincorrelationlengthsoftheΨandI-fields Consequently,thedeterminationofellipticitydistributionsislikely andisvalidonscalesonwhichtheI-tensorsareuncorrelated. tobeaffectedeven inthestageof linear structureformation, and predictionsoftriaxialitybasedonpeakshapesinGaussianrandom fields(Bardeenetal.1986)couldberefinedusinganadaptationof 2.6 Misalignmentoftheshearandinertiaeigensystems theformalismoutlinedabove. ThetensorX = IΨcanbedecomposedaccordingtoX = X++X− intoanantisymmetriccontributionX−,definedviathecommutator 2.7 Symmetryofthecancellationmechanism [I,Ψ], A possible objection concerning the symmetry of the correlation 1 1 X− ≡ 2[I,Ψ], Xβ−γ = 2 IβσΨσγ−ΨβσIσγ , (74) functionCL(r), wmiatthritxhetrsaynmspmoseittriyon(X(I−)atn=dXσΨ21(Ia(cid:16)Ψre−syΨmI)mte=tri21c(ΨmIa(cid:17)−triIcΨe)s)=an−dXi−nutondtheer CmLig(rh)t∝beDtthra(cid:16)tXt(hxe)Xmte(cxh′)a−nisXm(xc′o)Xm(pxa)r(cid:17)iEn,gthealignmentsofthesh(7e9a)r andinertiaeigensystemsoutlinedaboveisonlypresentinthema- corresponding symmetricmatrixX+ byusing theanticommutator trix X(x) at position x, which appears transposed in the second I,Ψ betweeninertiaIandtidalshearΨ: ′ ′ { } term, but not in the matrix X(x) at position x. The expression, X+ ≡ 21{I,Ψ}, Xβ+γ = 12 IβσΨσγ+ΨβσIσγ , (75) thro(Xw(exve)rX,(cxa)n be(Xr(exf)oXrm(xul)at)tte)d=ustirn(gX(txr()XX((xx′))X(xX)(−xX)X(x(x)X)t(),x′u)st)in=g Xσ (cid:16) (cid:17) ′ − ′ ′ − ′ 8 B.M. Scha¨ferandPh.M.Merkel thepropertiesofthetracetr(A+B)=tr(A)+tr(B),tr(AB)=tr(BA) 102 athnedmtre(Acht)an=istmr(Ais),paresswenetllinasth(Aetfi)trs=ttAenasnodra(sAwBe)tll=. BtAtsuchthat 2] σσLL//MM−∝v Mal0u.e64s6 w9±i0th.0 0e1rrors × 100 h) theoretical expectation AnotherobjectionmightbethatthecorrelationfunctionC (r) / L c vanishesifoneofthematricesXissymmetric.Asymmetricshape Mp ofthematrixX,however, neveroccursintheangular momentum [( build-up,becauseofthefactthatsymmetricmatricesformagroup M /L undermatrixmultiplication:AsymmetricmatrixXcouldonlyhave σ emergedfromsymmetricmatricesIandΨwithacommoneigen- on101 systemduetoavanishingcommutator[I,Ψ],makingitimpossible ati vi forthehalotoacquireangularmomentumasdiscussedearlier,and e d consequently,thecorrelationfunctionhastobezero. d r a d n a 2.8 NumericsoftheconstraintGaussianintegration st ThecovariancematrixYintheframegivenbytheyn -coefficients 100 ℓm 1011 1012 1013 is transformed to the physical frame yielding the correlation ma- halomass[M⊙/h] trixW.Then, wedeterminenumerically thecorrelationfunctions C (r) = tr Lt(x)L(x) of the angular momentum L as a func- Figure4.Standard deviation σL/M ofthespecificangular momentumas L h ′ i a function of halo mass, as obtained from numerical sampling (circles) tion of distance r = x x , by carrying out the integration over | − ′| including error bars (artificially enlarged byafactor of100), along with the multivariate Gaussian probability density p(w)dw, subjected a power-law fit to the data (solid line) and the theoretical expectation to(wbe)i=ng c(oυn)str(aυin)t.tTohteheinperetaiaksIinotfheandeonbsjietcytfifoerlmdibnygtahteampeaaskk σL/M ∝M2/3(dashedline). C C C ′ αβ inthedensityfieldisconsistentlyderivedfromthelocalcurvature ∂ ∂ δ(x)ofthedensityfieldatthepeak. sampleswecouldreproducetheiranalyticalresulttoarbitraryaccu- α β Due to the high dimensionality the numerical constraint in- racy.Wecouldalsorecoverthelimitingcaseν .Toprovide →−∞ tegrationisadifficultandtimeconsuming task.Thistaskismost anerrorestimateforourresultsoftheangularmomentumcorrela- efficientlyaddressedbyexploitingourpriorknowledgeoftheun- tionfunctionsgiveninthenextsectionwecarriedouteverysam- derlyingprobabilitydensityfunction:Sincethedistributionisjust plingprocessseveraltimesseedingtherandomnumbergenerator – tough very high dimensional – Gaussian, it is advantageous to differentlyandcomputedtheresulting1σerror.Forallnumerical sampletheintegralofeqn.(72)directlyinsteadofrelyingblindly calculationsweassuredthatthenumberofacceptedsamplesisof onacommonMonte-Carloscheme.Generatingsampleswhichfol- theorderof105foreachstepindistance. lowthedistributiongivenineqn.(23)andeqn.(24)respectivelyis straightforward since this can be mapped onto the generation of unit Gaussian variates, for example via theCholesky decomposi- 3 RESULTS tionofthecorrespondingcovariancematrix.Gaussian(unit)vari- ates,however,canbeobtainedfromavarietyofveryfastandeffi- Forvisualisation,wedefinethespecificangularmomentum cientrandomnumbergenerators,e.g.thezigguratmethod. L L˜ = , (80) Following thestrategy of reducing thenumerical integration H M 0 scale of eqn. (72)toadirect sampling process whichonly requiresthe generation of unit Gaussian variates is the most important sim- normalisedbythemassscale Mscale = 43πρcritΩmR3 anddivideout plification and acceleration in comparison to the use of standard theHubble-constant H0 definingthecosmologicaltimescalesuch Monte-Carlo techniques. In addition, our method allows to carry thattheresultingquantityhasunitsofasquared lengthscaleand outthesamplinginthephysicalframewheretheconstraintsCcan depends only on a single fundamental unit, for which we choose beevaluatedmost easily.Furtheraccelerationcanbeachieved by Mpc/h. usingsimplelinearalgebrainordertominimizethenumberofdi- AsshowninPeebles(1969)andHeavens&Peacock(1988), agonalisationsofthemasstensorMαβ=∂α∂βδ.Insteadofchecking thestandarddeviationσL/Mofthisquantityscales∝M2/3,whichis whetheralleigenvaluesofthemasstensorarenegativewecheckits avaluablecheckforournumericalsamplingcode.Infact,asshown negativedefinitenessbycombiningtheinvariantstr(Mn),n = 1,2 inFig.4, werecover thisbehaviour toahighdegree of accuracy andthedeterminantdet(M).Finally,itisimportanttonotethatthe overtwoordersofmagnitudeinhalomass.Afittothedatapoints actualdimensionalityoftheintegrationisreducedbytherequire- includingtheirsamplingerroryields mineonutrosfabmepinligngatparopceeaskstihnethdeerdiveantsiviteysfioefldth,ei.ed.enδsDi(t∇yδfi(exl)d).aTrehunso, σL/M = M 0.6469±0.001, (81) σ M degree of freedom but rather fixed (namely to be zero). This re- L/M,0 0! quirestoadjusttheoverallnormalisationofourconstrainedGaus- withσ = 11.362σ (Mpc/h)2 and M = 1012M /h,within3% L/M 0 0 siansamplingprocessbyanappropriatefactor,i.e.wehavetouse of the theoretical value. For convenience, we hav⊙e divided L/M thenormalisationoftheunconstrainedGaussiandistribution. in Fig. 4 by σ . Physically, the 1σ value of L/M corresponds to 0 Inordertoinvestigatetheperformance andreliabilityofour a homogeneous sphere with the radius 1 Mpc/h and a mass of samplingstrategyusedtoevaluateintegralslikethoseofeqn.(64) 1012M /hrevolvingonceevery 109years. and eqn. (72) we computed in a first step the mean peak density T⊙hecorrelationfunctionCL˜∼(r)ofthespecificangularmomen- givenineqn.(62)andcomparedourresultwiththeanalyticalso- tumisdepictedinFig.5foramassscaleof1012M /hcorrespond- lutionderived by Bardeenetal.(1986).Increasing thenumber of ingtoaMilkyWay-sizedhalo.Itisdecreasingrap⊙idlyafteradis- Galacticangularmomentum couplings 9 105 weightingofthetidalshear-configurationscomparedtoacontinu- correlation C(r) L ousfield.Theinertiaof apeakregion isdetermined fromalocal fitting model parabolicdensityprofile,andintegratedwithintheboundarygiven 4] byδ = 0,whichmightbeatoocoarseapproximationinthecom- /h)104 putationoftheinertia,becauseoftheweightingofmasselements c p withthesquareofthedistancefromthecentreofgravity. M ( (iv) Thecovariancematricesusedfordescribingtherelationbe- [ ) tweentheindividualGaussianderivates,areexpressedintheyn - (r103 ℓm ˜L basis(i.e. inspherical coordinates), and transformed tothe phys- C n ical variableswithalinear transformation. Animportant detail is o ati the degeneracy of the density field δ with the trace of the tidal rel102 shear α∂α∂αΨ = ∆ΨduetothePoissonequation. Forthatrea- r o sonthedensityfielditself,althoughitisusedforderivingtherela- c P tionsbetweenallvariablesintheGaussianrandomprocess,isnot partoftherandomprocessitself,butderivedfromthetidalshear. 101 Consequentlythesamplingcanapriorinotberestrictedtovalues 1/3 1 3 distancer[Mpc/h] δ > νσ , but δ needs to be recomputed for each sampling point, 0 andeventually berejected, whichresultsinasamplingefficiency Figure5.AngularmomentumcorrelationfunctionCL˜(r)foraMilkyWay- amountingto 2.5%forthe2-pointfunction. sizedhaloof1012M /h(circles)includingsamplingerrors,togetherwith (v) Compu≃ting the standard deviation from of the distribu- anempiricalfittingfo⊙rmulaoftheformCL˜(r)∝exp(−[r/r0]β)(solidline). tion of the specific angular momentum L/M confirms the ex- pectedscaling M2/3 proposedbyPeebles(1969)andderivedby ∝ Heavens&Peacock(1988)inananalyticalapproach,andprovides tance of 1 Mpc/h corresponding to the correlation length of avaluablecheckforourcode. ∼ theangularmomentumfieldandassumestheasymptoticvalueof (vi) TheresultingcorrelationfunctionCL˜(r)ofthespecifican- CL˜(r) → σ2L˜/npeak forr → 0infulfilmentoftheCauchy-Schwarz gularmomentum L˜ = L/(H0Mscale)(wheretherescalingmakesit inequalitywithourvaluesforthepeakdensity.Anempiricalfitto possibletostatetheangularmomentuminunitsofasinglefunda- thespectrumisgivenby mentalunit)isdeterminedbytheinterplayoftwofieldswithdif- CL˜(r)=aexp −[r/r0]β (82) rfeelraetnitoncos,rraenldattihoentliednagltshhse:aTrhΨeinehratsiathIαeβseaxmheibcitosrrsehloartitornanlegnegdtchoars- αβ witha=(2501(cid:16)0 165)σ(cid:17)2(Mpc/h)4,r =(0.8628 0.008)Mpc/h thedensityfield.Theresultingcorrelationsinangularmomentum ± 0 0 ± (both error bounds correspond to 1σ) and β = 3/2. In addition, have a range of about 1 Mpc/h for Milky Way-sized haloes, and wefindtheangularmomentaofhaloestobepositivelycorrelated, canbefittedwellwithanempiricalformulaCL(r)∝exp(−[r/r0]β). i.e.angularmomentumvectorstendtobealignedinaparallelway, Futureinvestigationswillincludetheapplicationoftheangu- becausetheformofourcorrelationfunctionwouldbeabletodis- larmomentumcorrelationfunctionforcomputingellipticitycorre- tinguishbetweenparallelandantiparallelalignment. lationfunctions,whichplayanimportantroleingravitationallens- ing:There,acommonassumptionareuncorrelatedgalaxyshapes, butcoupledangularmomentagiverisetotheeffectthatthegalac- ticdisksofneighbouringgalaxiesareviewedundersimilarangles 4 SUMMARY of inclination, such that their ellipticitiesarenaturally correlated. In this paper, we recompute the angular momentum correlation Theformalismoutlinedabovecanservetocomputetheellipticity function arising from tidal torquing in an improved statistical correlationfunction,andfurthermore,theintrinsicshapeE-andB- model,whichisbasedonapeak-restrictedGaussianrandompro- modecorrelationfunctions,CE(ℓ)andCB(ℓ)ofthe(tensor-valued) ǫ ǫ cess. ellipticityfieldǫ–apaperaboutthistopicisinpreparation. (i) Darkenergyinfluencesangularmomentumaquisitionbythe timederivativeH(a)dD /daofthegrowthfunctionD (a).Angular + + ACKNOWLEDGEMENTS momentumbuild-upindarkenergymodelsissignificantlyslower comparedtotheSCDM-cosmology:Atearlytimestheangularmo- We would like to thank in particular Rob Crittenden, Matthias menta grow 30% slower in ΛCDM and 20% slower in classical BartelmannandAlanHeavensforvaluable comments, andSarah quintessencewithw0 = −2/3,withqualitativedifferencesindark Bridlefororganisingtheworkshoponintrinsicalignments.BMS’s energymodelswithepoch-varyingequationofstatew(a). work is supported by the German Research Foundation (DFG) (ii) Duetothefact thattheangular momentum arisingintidal withintheframeworkoftheexcellenceinitiativethroughtheHei- shearing is proportional to the commutator X− = [I,Ψ] between delberg Graduate School of Fundamental Physics, and PMM ac- the inertiaI and the tidal shear Ψ theangular momentum field is knowledges funding from the Graduate Academy Heidelberg as sensitivetotherelativemisalignmentsoftheprincipalaxissystems wellasfromtheGraduateSchoolofFundamentalPhysics. ofthetidalshearandinertiatensors.Forthatreasonbothfieldsare includedintheGaussianrandomprocess. (iii) Theangularmomentumcorrelationfunctionandvarianceis REFERENCES computedfromapeak-restrictedGaussianrandomprocess,dueto thefactthatgalaxyformationisassociatedwithlocalpeaksinthe AbramowitzM.,StegunI.A.,RomerR.H.,1988,AmericanJour- densityfield.Technically,thepeakrestrictionintroducesadifferent nalofPhysics,56,958 10 B.M. Scha¨ferand Ph.M.Merkel Arago´n-CalvoM.A.,vandeWeygaertR.,JonesB.J.T.,vander HulstJ.M.,2007,ApJL,655,L5 Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304,15 Betancort-RijoJ.E.,TrujilloI.,2009,ArXive-prints BlazekJ.,McQuinnM.,SeljakU.,2011,ArXive-prints CatelanP.,Kamionkowski M.,BlandfordR.D.,2001,MNRAS, 320,L7 CatelanP.,PorcianiC.,2001,MNRAS,323,713 CatelanP.,TheunsT.,1996a,MNRAS,282,436 CatelanP.,TheunsT.,1996b,MNRAS,282,455 CatelanP.,TheunsT.,1997,MNRAS,292,225 ChevallierM.,PolarskiD.,2001,InternationalJournalofModern PhysicsD,10,213 CrittendenR.G.,NatarajanP.,PenU.-L.,TheunsT.,2001,ApJ, 559,552 CroftR.A.C.,MetzlerC.A.,2000,ApJ,545,561 DoroshkevichA.G.,1970,Astrophysics,6,320 EfstathiouG.,BondJ.R.,WhiteS.D.M.,1992,MNRAS,258, 1P Hahn O.,CarolloC.M.,Porciani C.,Dekel A.,2007, MNRAS, 381,41 HahnO.,TeyssierR.,CarolloC.M.,2010,MNRAS,405,274 HeavensA.,PeacockJ.,1988,MNRAS,232,339 HeavensA.,RefregierA.,HeymansC.,2000,MNRAS,319,649 HeavensA.F.,ShethR.K.,1999,MNRAS,310,1062 Hirata C. M., Mandelbaum R., Ishak M., Seljak U., Nichol R., PimbbletK.A.,RossN.P.,WakeD.,2007,MNRAS,381,1197 HirataC.M.,SeljakU.,2004,Phys.Rev.D,70,063526 HoyleF.,1949,MNRAS,109,365 JingY.P.,2002,MNRAS,335,L89 Jones B.J. T., van de Weygaert R.,Arago´n-Calvo M. A.,2010, MNRAS,408,897 KingL.,2005,arXiv:astro-ph/0506441 KrauseE.,HirataC.M.,2011,MNRAS,410,2730 LeeJ.,2006,ApJL,644,L5 LeeJ.,ParkD.,2006,astro-ph/0606477 LeeJ.,PenU.,2000,ApJL,532,L5 LinderE.V.,JenkinsA.,2003,MNRAS,346,573 MandelbaumR.,HirataC.M.,IshakM.,SeljakU.,BrinkmannJ., 2006,MNRAS,367,611 Messiah A., 1962, Quantum mechanics. Amsterdam: North- HollandPublication,1961-1962 PeeblesP.J.E.,1969,ApJ,155,393 RegosE.,SzalayA.S.,1995,MNRAS,272,447 Scha¨ferB.M.,2009,IJMPD,18,173 SchneiderM.D.,BridleS.,2010,MNRAS,402,2127 SciamaD.W.,1955,MNRAS,115,2 SemboloniE.,HeymansC.,vanWaerbekeL.,SchneiderP.,2008, MNRAS,388,991 SugermanB.,SummersF.J.,KamionkowskiM.,2000,MNRAS, 311,762 SugiyamaN.,1995,ApJSuppl.,100,281 WhiteS.D.M.,1984,ApJ,286,38 Zel’dovichY.B.,1970,A&A,5,84 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe author.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.