Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz Thesis by Mahmoud Nafe In Partial Fulfillment of the Requirements For the Degree of Masters of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia July, 2015 2 The thesis of Mahmoud Nafe is approved by the examination committee Committee Chairperson: Assist. Prof. Dr. Atif Shamim Committee Member: Assoc. Prof. Dr. Hakan Bagci Committee Member: Assoc. Prof. Dr. Khaled Salama 3 Copyright 2015 Mahmoud Nafe All Rights Reserved 4 ABSTRACT Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz Mahmoud Nafe Nowadays, there is a growing demand for high frequency-bandwidth mm-wave (30-300 GHz) electronic wireless transceiver systems to support applications such as high data-rate wireless communication and high resolution imaging. Such mm-wave systems are becoming more feasible due to the extreme transistor downscaling in silicon-based integrated circuits, which enabled densely-integrated high-speed elec- tronics operating up to more than 100 GHz with low fabrication cost. To further enhance system integrability, it is required to implement all wireless system compo- nents on the chip. Presently, the last major barrier to true System-on-Chip (SoC) realization is the antenna implementation on the silicon chip. Although at mm-wave frequencies the antenna size becomes small enough to fit on chip, the antenna performance is greatly deteriorated due the high conductivity and high relative permittivity of the silicon substrate. The negative e↵ects of the silicon substrate could be avoided by using a metallic reflecting surface on top of silicon, which e↵ectively isolates the antenna from the silicon. However, this approach has the shortcoming of having to implement the antenna on the usually very thin silicon oxide layer of a typical CMOS fabrication process (10’s of µm). This forces the antenna to be in a very close proximity (less than one hundredth of a wavelength) 5 to the reflecting surface. In this regime, the use of conventional metallic reflecting surfaceforsiliconshieldinghasseveree↵ectsontheantennaperformanceasittendsto reducetheantennaradiationresistanceresultinginmostoftheenergybeingabsorbed rather than radiated. In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps. 6 ACKNOWLEDGEMENTS IthasbeenanhonorandprivilegetoworkundersupervisionofProfessorAtifShamim towhomIwouldliketoexpressmysincereappreciationandgratitudeforthegenerous support, guidance and encouragement prior to and during the course of this thesis work. Also, I would like to thank my loving family for their continuous moral support and for always believing in me. My father: Dr. Ali Nafe, thank you for keeping me a top priority above your needs. My mother: Dr. Ola El-amrawi, thank you for your overwhelming love and care. My brother Ahmed Nafe: thank you for always being a friend at need. My sincere appreciation goes to my colleges at the IMPACT Lab for their fruitful discussions and beneficial exchange of opinions during the weekly group meetings. Finally, I would like to thank Eng. Ahad syad for time and help in understanding essential nano-fabrication concepts and technicalities and in teaching me to carry out independently fabrication of my proposed on-chip antennas modules using KAUST nano-fabrication cleanroom. 7 TABLE OF CONTENTS Examination Committee Approval 2 Copyright 3 Abstract 4 Acknowledgements 6 List of Figures 9 List of Tables 13 1 Introduction 14 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 System-on-Chip Overview 20 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Challenges related to On-Chip Antennas’ Low Gain . . . . . . . . . . 22 2.3 Gain Enhancement Techniques . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Silicon Hemispherical Lens . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Micro-Electro-Mechanical Systems in CMOS . . . . . . . . . . 28 2.3.3 Micromachining and Proton Implantation . . . . . . . . . . . 30 2.3.4 Shielding Silicon Substrate . . . . . . . . . . . . . . . . . . . . 30 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Artificial Magnetic Conductor Surfaces: Theory, Design, and Simu- lations 36 3.1 Antenna-Reflecting Surfaces . . . . . . . . . . . . . . . . . . . . . . . 36 8 3.2 Surface Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Surface Impedance as a Boundary Condition . . . . . . . . . . 38 3.2.2 Reflection from Surface Impedance . . . . . . . . . . . . . . . 39 3.3 AMC Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 AMC Implementations . . . . . . . . . . . . . . . . . . . . . . 41 3.4 AMC Design, Simulation, and Optimization at 94 GHz . . . . . . . . 45 3.4.1 Floquet Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 Unit-Cell Simulation Model . . . . . . . . . . . . . . . . . . . 46 3.4.3 Investigated AMC Unit-Cell Designs . . . . . . . . . . . . . . 48 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Antenna on Chip 55 4.1 Investigations on 94 GHz Dipole Antennas . . . . . . . . . . . . . . . 55 4.1.1 Dipole on Silicon Substrate . . . . . . . . . . . . . . . . . . . 55 4.1.2 Dipole on AMC Surface . . . . . . . . . . . . . . . . . . . . . 59 4.2 Folded Dipole Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 Principal of Operation . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 Folded Antenna Simulations . . . . . . . . . . . . . . . . . . . 66 4.3 Integrated AMC-Backed Folded Dipole Antenna . . . . . . . . . . . . 68 4.3.1 Planar Feeding Network . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 End-to-End Structure . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Fabrication and Measurement 75 5.1 Fabrication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Metrology of the fabricated prototype . . . . . . . . . . . . . . . . . . 80 5.3 On-Chip Antenna Measurements . . . . . . . . . . . . . . . . . . . . 82 5.4 Post-Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 Conclusions and Future Work 95 References 97 9 LIST OF FIGURES 1.1 Millimeter wave frequencies are more attractive for wireless communi- cation applications: (a) available bandwidth [1] and (b) atmospheric attenuation [2] for the di↵erent frequency bands. . . . . . . . . . . . . 15 2.1 The di↵erent integration techniques of a wireless communication sys- tem: (a) multi-chip-module, (b) system-in-package, (c) system-on- package and (d) system-on-chip [3, 4]. . . . . . . . . . . . . . . . . . . 21 2.2 Typical silicon based CMOS stack-up. . . . . . . . . . . . . . . . . . 23 2.3 Illustration showing that most of the radiated power of on-chip anten- nas is coupled into the substrate[3]. . . . . . . . . . . . . . . . . . . . 24 2.4 Curving the backside of silicon into a hemispherical lens to convert surface waves into useful radiation [5]. . . . . . . . . . . . . . . . . . 27 2.5 Photos of the fabricated MEMS based on-chip antenna [6]. . . . . . . 28 2.6 The fabrication steps proposed by [6] to realize the BCP, in order to lift the antenna of the lossy silicon. . . . . . . . . . . . . . . . . . . . 29 2.7 Electromagneticallycoupledmicrostrippatchantennadesignedonquartz substrate, which is placed on top of a silicon chip [7]. . . . . . . . . . 31 2.8 Perfect Magnetic Conductor (PMC) is artificially engineered by the periodic arrangement of shaped metals on top of grounded substrate: (a) square patches [8] and (b) Uniplanar Compact Photonic Bandgap (UC-PBC) [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.9 AMC ground plane locations in a typical CMOS stack-up: (a) under- neath the silicon substrate and (b) on top of silicon using the metal layers embedded in the oxide. . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Mushroom-like AMC surface proposed by Dan Sievenpiper [10]. . . . 41 3.2 Cross-sectionalviewofthemushroom-basedAMCalongwiththeequiv- alent parallel LC circuit [11]. . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Mushroom-based AMC: (a) surface impedance and (b) reflection phase [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10 3.4 Examples of partially reflective surfaces: (a) square patches and (b) wire grids [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 Optical ray model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6 CST-MWS AMC unit cell simulation model . . . . . . . . . . . . . . 47 3.7 Simulation model of the square patch based AMC unit cell. . . . . . . 49 3.8 Simulated reflection phase response of square patch based AMC unit cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.9 Square-patch sensitivity study (a) f is plotted against the gap for AMC di↵erent values of periodicity for a fixed oxide thickness of S=100 µm and (b) f is plotted against the oxide thickness for di↵erent values AMC of periodicity and a fixed gap of G=5 µm. . . . . . . . . . . . . . . . 51 3.10 Ring-based AMC: (a) f decreases with the increase in slot width AMC and (b) AMC bandwidth decreases with the increase in slot width. . . 52 3.11 Reflection phase of the optimized ring based AMC . . . . . . . . . . . 53 4.1 Dipole antenna in air: (a) simulation model and (b) input impedance at 94GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Radiation pattern of a dipole antenna in air at 94 GHz: (a) 3D pattern and (b) principal planes: E-plane (XZ plane) and H-plane (YZ plane). 57 4.3 Dipole on silicon: (a) simulation model, (b) input impedance at 94 GHz. 57 4.4 Dipole on silicon: (a) 3D pattern and (b) principal planes: E-plane (XZ plane) and H-plane (YZ plane) at 94GHz for substrate size of 2.4mm 2.4mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ⇥ 4.5 Dipole on silicon: (a) 3D pattern and (b) principal planes: E-plane (XZ plane) and H-plane (YZ plane) at 94GHz for substrate size of 2mm 2mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ⇥ 4.6 Dipole antenna with a PEC/PMC/AMC underneath as a reflector . . 59 4.7 Maximum gain versus the number of unit cells. . . . . . . . . . . . . 61 4.8 Radiation pattern at 94GHz for dipole antenna on the di↵erent reflec- tors: (a) PEC, (b) PMC and (C) ring-based AMC. . . . . . . . . . . 62 4.9 Foldedantenna: (a)model, (b)transmissionlinemodeand(c)antenna mode [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.10 Folded dipole in air: (a) model and (b) input resistance. . . . . . . . 66 4.11 Folded dipole on a 4 4 ring-based AMC: (a) model and (b) input ⇥ resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Description: