ebook img

GaAs integrated quantum photonics: Towards dense and fully-functional quantum photonic integrated circuits PDF

4.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GaAs integrated quantum photonics: Towards dense and fully-functional quantum photonic integrated circuits

August2,2016 AbstractTherecentprogressinintegratedquantumopticshas setthestageforthedevelopmentofanintegratedplatformfor quantum information processing with photons, with potential applicationsinquantumsimulation.Amongthedifferentmaterial platformsbeinginvestigated,direct-bandgapsemiconductors andparticularlygalliumarsenide(GaAs)offerthewidestrange offunctionalities,includingsingle-andentangled-photongener- ationbyradiativerecombination,low-lossrouting,electro-optic modulationandsingle-photondetection.Thispaperreviewsthe 6 1 recentprogressinthedevelopmentofthekeybuildingblocks 0 forGaAsquantumphotonicsandtheperspectivesfortheirfull 2 integrationinafully-functionalanddenselyintegratedquantum photoniccircuit. g u A 1 GaAs integrated quantum photonics: Towards compact and ] multi-functional quantum photonic integrated circuits l l a h Christof P. Dietrich1,*, Andrea Fiore2, Mark G. Thompson3, Martin Kamp1, and Sven - s Ho¨fling1,4 e m . t a 1. Introduction asdesiredbyincreasingthenumberofresources(ancilla m photons).Inaddition,itwasproposedthatquantumlogic - networks can be simulated by simple one-way quantum d Quantuminformationscienceusingtheuniquefeaturesof computationusingaparticularclassofentangledstates,so n quantummechanics-superpositionandentanglement-can called cluster states [5]. On a parallel line, a particularly o greatlyenhancecomputationalefficiency,communication c security, and measurement sensitivity. The generation of simple class of linear-optics quantum simulators, boson [ samplingcircuits,weretheoreticallyshowntoimplement quantumbits(qubits)andtherealizationofquantumgates computationalproblemswhichareclassicallyintractable[6]. 2 aretheprerequisitesforconductingquantuminformation By following these approaches of only using linear opti- v science.Theuseofphotonsasqubitshasbeenwidelycon- 6 sideredasoneoftheleadingapproachestoencode,transmit cal components, two-qubit [7] and three-qubit gates [8], 5 simple quantum algorithms [9,10] as well as boson sam- andprocessquantuminformationbecauseoftheirlowde- 9 pling[11–14]couldalreadybeexperimentallydemonstrated. coherence,high-speedtransmissionandcompatibilitywith 6 Earlydemonstrationsoflinear-opticsquantumprocessing classical photonic technology [1–3]. Photonic qubits can 0 havereliedoninefficientandbulkysinglephotonsources easily be encoded in many different degrees of freedom, . 1 basedonspontaneousparametricdownconversion(SPDC), e.g. polarization, path, frequency and orbital angular mo- 0 modestefficiency(atnear-infraredwavelengths)singlepho- mentum,makingtheimplementationofqubitsusingsingle 6 ton detectors based on avalanche photodiodes (APDs) or photonsveryattractive.However,singlephotonsaresubject 1 superconductingnanowires,andopticalcircuitswithbulk to substantial losses. Furthermore, nonlinear interactions : v betweensinglephotonsareweakanddonotprovideπ cross opticalelements.However,similartointegratedelectron- i ics,thepracticalityandscalabilityofquantuminformation X phasemodulationinnaturalnonlinearmaterials,whichis technologyultimatelyrequirestheintegrationofindividual therequirementforachievingatwo-qubitgate. r componentsonasinglechip.Integratedquantumphotonics a In 2001, a major breakthrough known as the KLM is emerging as a promising approach for future quantum scheme [4] showed that scalable quantum computing is informationscience,sinceitenablesasubstantialimprove- possiblebyonlycombiningsingle-photonsources,linear mentinperformanceandcomplexityofquantumphotonic optical circuits and single-photon detectors. In this case, circuits and provides routes to scalability by the on-chip thenon-linearityinthedetectionreplacesadirectoptical generation,manipulationanddetectionofquantumstates non-linearity.Theresultingquantumgatesareprobabilistic, of light. Major progress has been made recently towards buttheprobabilityofsuccesscanbemadeasclosetoone 1TechnischePhysik,Universita¨tWu¨rzburg,AmHubland,97072Wu¨rzburg,Germany 2COBRAResearchInstitute,EindhovenUniversityofTech- nology,5600MBEindhoven,TheNetherlands 3CentreforQuantumPhotonics,H.H.WillsPhysicsLaboratoryandDepartmentofElectricaland ElectronicEngineering,UniversityofBristol,WoodlandRoad,BristolBS81UB,UnitedKingdom 4SUPA,SchoolofPhysicsandAstronomy,Univer- sityofStAndrews,NorthHaugh,StAndrewsKY169SS,UnitedKingdom *Correspondingauthor:e-mail:[email protected] Copyrightlinewillbeprovidedbythepublisher 2 C.P.Dietrichetal.:GaAsintegratedquantumphotonics highlyefficientintegratedsinglephotonsources,singlepho- tondetectorsandintegratedphotoniccircuits. Inparticular,linearquantumphotonicintegratedcircuits (QPICs)fortwo-photoninterference,CNOT-gatesanden- tanglementmanipulationcouldalreadybedemonstratedon variousplatformsandwithvariousmaterials.Theseinclude e.g.silica-on-silicon[13,15,16],laserdirect-writingsilica [17],galliumnitride[18],lithiumniobate[19],silicon-on- insulator[20,21]andGaAs[22].Indiumarsenide/gallium arsenide (InAs/GaAs) quantum dots (QDs) are routinely embedded in photonic crystal waveguides/cavities and Figure1 Left:TransmissionelectronmicrographofanInAsQD havebeenestablishedasrobustandefficientsingle-photon (brightarea)inaGaAsmatrix(darksurrounding)grownbyMBEin sources[23–27].Moreover,high-efficiencysuperconduct- Stranski-Krastanovgrowthmode.Thewhitescalebarrepresents ingnanowiresingle-photondetectorsbasedonGaAsandSi 10nm.Right:SEMimageofuncappedInGaAsQDs. waveguideshavebeensuccessfullydemonstrated[28–31]. Amongalltheseplatforms,GaAsisawell-known,ma- ideallycreatedondemandinatwo-levelsystem.Besides ture material system for classical integrated photonics. It naturaltwo-levelsystemssuchassingleatoms,molecules allows for the fabrication of low-loss waveguides and its ordefectcenters,alsonanometer-sizedinclusionsofalow- highrefractiveindexenablestightconfinementoflightand gapsemiconductingmaterialincorporatedintoahigh-gap thereforecompactdevicesandcircuits.Ithasbeenemployed matrixdeliversatwo-stateconfigurationbyformingaquasi inGHzmodulatorsduetoitshighχ(2)nonlinearity[32].In zero-dimensional potential trap. Those energy traps are thecontextofquantuminformationscienceapplications,the called semiconductor QDs (QDs). Single-photon sources largeelectro-opticeffectinGaAsmakesitaverypromis- based on QDs have the huge advantage that they can be ingcandidateforfastroutingandmanipulationofsingle- grownmonolithicallywithmonolayerprecisionundercon- photons.Single-photonemissioninGaAscanberealizedby trolled conditions by well-established growth techniques eitherspontaneousparametricdown-conversioninwaveg- suchasmolecularbeamepitaxy(MBE)[39–42]ormetal- uides[33],takingadvantageofthehighχ(2),orbyintegrat- organicvaporphaseepitaxy(MOVPE)[43–45].Theunique ingsingleQDsintonanophotonicstructures.Single-photon opticalpropertiesofsemiconductorQDshaveenabledexten- sourcesbasedonparametricgenerationofphotonpairsand siveresearchandtremendouslyincreasedthescientificin- heraldingmustbeoperatedatrelativelylowaveragephoton terestinrealizingphotonicQDdevices.QDsarenowadays numbers,resultinginalowsingle-photonprobability,un- widelyusedinapplicationssuchaslight-emittingdiodesor lesscomplexmultiplexingschemesareemployed[34].The solarcells.Regardingintegratedquantumphotonics,numer- QD approach, facilitated by the direct bandgap of GaAs, ousproof-of-principleexperimentswerecarriedoutonQDs, enables efficiencies close to 100% [35] and represents a includingsinglephotonemission[46],two-photoninterfer- fundamentaladvantageofGaAsQPICswithrespecttoSi ence [47,48], polarization-entanglement [49] and strong orLiNbO circuits. coupling[50,51],underpinningtheirpromisingapplicabil- 3 Besidessingle-photonemission,alsosingle-photonde- ityasqubitsourceinquantumcommunicationschemes. tectorsonGaAswaveguideshavealreadybeensuccessfully The most extensively studied QD materials are InAs demonstrated [28]. Therefore, GaAs waveguide circuits and InGaAs in GaAs matrices (see Figure 1). The huge monolithicallyintegratedwithsingle-photonsourcesand differenceinband-gapenergiesbetweenInAs(E (2K)= g superconductingsingle-photondetectorsofferapromising 0.422eV)andGaAs(1.522eV)andthethree-dimensional approach to large-scale quantum photonic integrated cir- quantum confinement makes it possible to tune the QD cuits.Here,wereviewrecentdevelopmentsinInAs/GaAs emission in a very large spectral window - from almost QDsingle-photonsources(Sections2-4),ridgewaveguide 850nmupto1400nm-byadjustingtheQDdimensions.In quantumphotoniccircuits(Section5)andGaAswaveguide thefollowing,wewillhighlightachievementsinthegrowth single-photon detectors (Section 6), and we also discuss ofQDs(Section2.1),theirpositioningondeterminedsites thechallengeofmonolithicintegrationofindividualcom- (Section2.2)andtheiropticalproperties(Section2.3). ponents (Section 7) towards the realization of dense and fully-functionalquantumphotonicintegratedcircuits.Re- centpromisingdevelopmentsinparametricgenerationof 2.1. Self-assembled quantum dots photon pairs [33] and entangled photons [36], including byelectricalinjection[37],havebeenreviewedrecentlyin Ref.[38]andarethereforenotdiscussedhere. ThelatticemismatchbetweenInAsandGaAsisabout7% givingrisetoconsiderablestrainwhenthetwomaterialsare depositedontopofeachother.Thiscircumstanceisused 2. Semiconductor quantum dots inthemostexploitedgrowthmodeforQDs-theStranski- Krastanovgrowthmode[52]-whichmakesuseofthefact Integratedquantumphotonicexperimentsrelyonthegener- thatcoherent,dislocation-freeislandsformself-assembled ation,manipulationanddetectionofsinglephotonsthatare asresultofstraincompensation.Thesizeoftheislandsis Copyrightlinewillbeprovidedbythepublisher 3 Figure2 SchematiccappingprocessofapyramidalInAsQD Figure3 Toprow:AtomicforcemicrographsfromQDsgrownby (a)overgrownbyGaAslayerswithincreasingthicknesses(b-e). dropletepitaxybefore(left)andafterannealing(right)at400◦C. Reprintedwithpermissionfrom[53].©2008,AIPPublishingLLC. ©IOPPublishing.Reproducedwithpermission.Allrightsreserved. Bottomrow:Scanningtunnelmicrographsofmonolayerfluctu- ations just after growth interruption for bottom and top QW in- therebyextremelysensitivetotheamountofmaterialthatis terfaces(leftandright).AdaptedwithpermissionfromRef.[70]. deposited. CopyrightedbytheAmericanPhysicalSociety. The growth of InAs on a GaAs (100) surface ini- tiallyresultsinathin2Dwettinglayer.Duetothelattice- mismatch,thetwo-dimensionalgrowthmodeturnsintoa sionpropertiesofQDsaredeterminedbythestrengthofthe three-dimensionalgrowthafterdepositionofafewmono- quantumconfinementeffectwhichcanbealteredinseveral layersresultinginthecreationofrandomlypositionedQDs differentways.BesideschangingtheverticalheightofQDs withapyramidalshape.Inordertopreventthedotsfrom bye.g.partialcapping,thecappinglayercompositioncan oxidationandtoseparatethemfromthesurface(forthein- be optimized to alter the strain state and heterostructure tegrationintophotonicnanostructures,seeSection4),they potentialintheQD,orQDscanbeannealedaftergrowth arecommonlyovergrownbyacappinglayerofGaAscom- leadingtoaninter-diffusionofgalliumandindiumatthe pleting the three-dimensional quantum confinement. The QD surface. The diffusion process undermines the quan- capping changes the shape of the QDs from purely pyra- tum confinement and causes a blueshift [56–58] whereas midal to truncated pyramidal (see Figure 2) [53]. During anInGaAscappinglayerreducesthestrainintheQDand thecappingprocess,intermixingbetweenthecappingma- reducestheinter-diffusion,leadingtoared-shiftoftheQD terialandtheQDsmightoccurleadingtotheformationof emission[59,60]. In(Ga)As QDs. This intermixing strongly affects the QD ThecontrolofthedensityofQDsiscrucialfortheper- compositionandpotentialprofileaswellastheQDemis- formance of single photon experiments since it requires sion. theabilitytoopticallyaddressindividualQDsbyconven- Inrecentyears,severaltechniqueshavebeendeveloped tionalspectroscopicmethods.Severalrouteswerealready thatfacilitatethedirectmanipulationofQDpropertiesin- demonstratedincludingthechangeofgrowthparameters cludingtheirsize,theirsizedistribution,theirdensity,their suchasgrowthtemperature[61],III/V-ratio[62]orgrowth shapeandemissionwavelength.TheQDsizecanbevar- interruptions[63].Oneofthemostreliablewaystocontrol iedbychangingthecompositionofthedots[54].Thesize the density of QDs (over several orders of magnitude) is distributionofQDsdirectlydeterminestheinhomogeneous the change of the growth rate, or by varying the amount linewidthoftheQDensembles:largesizevariationsleadto ofdepositedmaterial(approachingthe2Dto3Dmaterial anunwantedbroadeningoftheemission.Awaytoreduce growth transition range that can be controlled by system- the size distribution spread would be partial capping and aticallyapplyingmaterialfluxgradients).Inthisway,den- annealing:analmostuniformheightofQDscanbeachieved sitiesofself-assembledQDsaslowas<0.1µm−2canbe byintroducinganannealingstepduringtheprocessofQD achieved[61,64]. capping [56]. This process is usually accompanied by a Alternatives to growing self-assembled QDs in the blueshiftoftheQDemissionduetotheheightreduction. Stranski-Krastanov growth mode are techniques such as Besidesthecontroloftheuniformity,thegrowthcondi- dropletepitaxy[65]orthecontrolofmonolayerfluctuations tionscanbeusedtochangetheshapeoftheconfinement inquantumwells[66,67](seeFigure3).Dropletepitaxy potentialandtherebytheemissionenergy.Indeed,theemis- isbasedontheaffinityofsomegroup-IIIelementstoform Copyrightlinewillbeprovidedbythepublisher 4 C.P.Dietrichetal.:GaAsintegratedquantumphotonics dropletsonasemiconductorsurfaceandhastheadvantage thatitdoesnotrequirealattice-mismatchbetweenthein- volvedmaterials[68,69].Fordropletepitaxy,dropletsof group-IIIelementsareannealedaftergrowthinanarsenic atmosphereand,underoptimumannealingconditions,form defect-freeQDsbysaturatingwithAs(seeFigure3top). ComparedtotheStranski-Krastanovgrowth,QDsgrownby dropletepitaxyarerelativelylarge.Alternatively,strain-free QDs can be achieved by interrupting the growth of thin quantum wells. These growth interruptions intentionally introducemonolayerfluctuations(Figure3bottom)atthe interfaceeffectivelycreatinganadditionalquantumconfine- mentwithinthequantumwellplane.ThistypeofQDhasa largerlateralextensioninthelayerplanethanQDsgrownby theStranski-Krastanovmodeordropletepitaxy[70],lead- ingtoalargeroscillatorstrength.Theyfurtherbenefitfrom thefactthattheyarenotsubjecttomaterialintermixing. Figure4 Atomicforcemicrographofsite-controlledQDswith 1µmlatticeperiodinasquarelatticegrownonamesastructure. Thescalebarrepresents1µm.Reprintedwithpermissionfrom 2.2. Site-controlled quantum dots [93].©2008,AIPPublishingLLC. TheimplementationofsemiconductorQDsassourcesof beenfoundtostronglydependontheproximitytoheteroin- flying qubits into quantum integrated circuits requires a terfacesandfreesurfaces,duetotheeffectoffluctuating precise control over the relative position of the QD with charge states [89]. For optimized growth conditions and respect to the circuit. Small misalignment (e.g. of a QD advancedsampledesigns,recordlinewidthvaluesaslowas in the center of a defined PhC cavity) can lead to severe 7µeVwerereportedforrandomlyoccupiedQDsites[90] reductionsindeviceefficiency. andaround20µeVweredemonstratedforQDpatternswith Adequatecontrolcanbeachievedbyeitherplacingthe only one QD at each site [79,91] (p-shell excitation, see circuitaroundtherandompositionofaself-assembledQD Section3.1).Inthisregard,site-controlledQDsarecompa- [71,72]orbypredeterminationofboththeQDandcircuit rabletoself-assembledQDsintermsofemissionlinewidths. location. The first approach makes a pre-characterization Anothercrucialfeatureforphotonicapplicationsisthespec- oftheQDdistributionnecessary,followedbyatop-down tralwidthoftheQDensemble,whichismainlydetermined etchingaroundachosendot.However,thisprocessistech- bysizeandshapefluctuationsofthegrowndots.Whereas nologicallyverychallengingandseemsincompatiblewith self-assembledQDsexhibitinhomogeneousbroadeningin theupscalingtolargequantumphotoniccircuits,asthede- therangeofseveraltensofmeV,thenucleationonpredeter- vice layout must be adapted to the QD spatial positions. minedsitescanreducethisvaluetoonlyafewmeV[92]. The growth of QDs on predetermined sites provides ac- curate alignment (see Figure 4) of single photon sources with respect to photonic circuits [73] and facilitates high yielddevicefabrication.Severalstrategiesweredeveloped 2.3. Optical properties of quantum dots inthepasttopreciselypositionQDsonasemiconductor platform[74].Thisincludese.g.thedepositionofoptically MostcommonbarrierandQDmaterialcombinations,in- activeQDsonanopticallyinactivestresslayer[75].Amore cludingtheextensivelyinvestigatedcombinationofInAs commonstrategyisthepre-patterningofthesemiconductor QDsinGaAsbarriers,formatype-Iheterostructureresult- surface by e.g. drilling holes into it [76–83]. This can be inginstrongquantumconfinementforbothelectronsand achieved by a combination of electron beam lithography holes. In good approximation, it can be assumed that the andionetching,byatomicforcenano-lithography[84],by QDbehavesasatwo-levelsystem,wherethelowest-energy nanoimprint lithography [85] or by local oxidation nano- electronicexcitation(heavy-holeexciton,X)involvesone lithography[86].Duringsubsequentregrowththeadatoms electronintheconductionbandandoneholeinthevalence preferentiallynucleateatthepatternedsitesandformQDs. bandwithstrongheavy-holecharacter(notethatbyapply- ThisprocesscanprovideanaccuracyoftheQDposition ingelasticstresstoinitiallyunstrainedQDstheexcitonic ofabout±50nmwhichinmanycasesissufficientforthe groundstatecanalsohavelight-holecharacter[94]).Higher application in photonic circuits [87]. Similar results can occupiedstatessuchasbiexcitonsortrionsaredetunedin beobtainedbygrowingsite-controlledQDsusingmasked energy due to Coulomb interactions. The degeneracy of surfaces[88]. the QD valence band is usually lifted by the asymmetric In experiments and applications exploiting multipho- shape of the confinement potential and by strain causing toninterference(seesection3.3),QDemissionlinewidths anon-vanishingenergysplittingbetweenheavyandlight are an important figure of merit and should ideally reach holelevelsontheorderofseveraltensofmeV.Fortypical transform-limitedvalues.Inthisregard,thelinewidthhas self-assembledQDsthesplittingissolargethatthetransi- Copyrightlinewillbeprovidedbythepublisher 5 excitons (X), biexcitons (XX) as well as trions (X−, X+) canbeseeninFig.5. Biexcitonsareparticularlyinterestingsincetheyposses a net projection of the angular momentum of 0 and are thereforenotsubjecttoexchangeinteractions.Ifthefine- structure splitting is suppressed, this leads to the decay intotwobrightexcitonswithoppositecircularpolarization. This decay scheme has extensively been investigated for thecreationofpolarization-entangledphotonpairsinQDs systems[49,102–104].Fortheentanglement,thetwodecay paths σ+ →σ− and σ− →σ+ (with σ being the pho- XX X XX X ton polarization state) need to be indistinguishable. This Figure5 Non-resonantphotoluminescencespectrumofaGaAs is typically not the case due to finite fine structure split- QDshowingexciton(X),biexciton(XX)andtrion(X−,X+)tran- tings.Therefore,inQDsystemswithfinestructuresplittings sitions. The upper panel schematically depictsthe QD charge smallerthantheexcitonlinewidths(asforQDsgrownon configurationforeachtransition.Adaptedwithpermissionfrom GaAs(111)layers[105]),entangledphotonpairscandeter- Ref.[95].CopyrightedbytheAmericanPhysicalSociety. ministicallybecreated[106].Othertechniquessuchasther- malannealing[107],theapplicationofelectricfields[108], tionbetweenconductionbandandlight-holevalenceband strain[109],aswellastheshapingoftheconfinementpo- caneasilybeneglectedmakingthesystematruetwo-level tential[104]arealsoabletoreducetheFSSandproduce system. entangledphotonpairs. ThetotalangularmomentumJofheavy-holeexcitons isasumofheavy-holeangularmomentumandelectronspin allowingfourdifferenttransitionconfigurationshavingan 3. Quantum dots as single photon sources angularmomentumalongthegrowthdirection:J =±1 z,1 andJ =±2.TheJ configurationsaretermedbrightex- z,2 z,1 On-chipsingle-photonsourcescanberealizedbyexploit- citonstatesastheycoupletotheopticalfieldandtherefore ingtheradiativerecombinationfromanexcitonicstateofa preferentiallydecaythroughradiativerecombinationchan- singleQD[46].SingleQDshavebeenwidelyinvestigated nels.Incontrast,configurationswithtotalangularmomen- assingle-photonandentangled-photonsources(see[110] tumJ aretermeddarkexcitonstatesanddecaythrough z,2 forareview).Ascomparedtosingle-photonsourcesbased non-radiativerecombinationchannels.Duetothecloseprox- onparametricdown-conversionandheralding,QD-based imity of both electrons and holes in semiconductor QDs, sourcespresenttheadvantageofdeterministic,on-demand exchangeinteractionsofelectron-holepairsareenhanced singlephotonemission,mucheasierfilteringofthepump and cause an energetic splitting between dark and bright duetothelowerpowersneeded(tensofnWlevel)andthe states as well as the formation of mixed dark and mixed possibilityofpumpingfromthetop-thisisparticularlyrel- brightstates.Brightanddarkexcitondecaybi-exponentially evantinthecontextofquantumphotonicintegratedcircuits caused by radiative and non-radiative recombination as asitreducesthecouplingofpumplightintothechip. wellasspinflipprocesses(turningbrightstatesintodark states,andviceversa,undercreationorannihilationofLA phonons)[96,97]. 3.1. First- and second-order coherence Whilethepurestatesarecircularlypolarized,theymix asaconsequenceofexchangeinteractionsandofthepref- In general, quantum emitters can be classified regarding erentialQDelongationalongthein-plane[110]-direction their coherence properties and photon statistics. The de- forgrowthonGaAs(100)substrates,givingrisetomixed greeoffirst-ordercoherenceisquantifiedbythefield-field stateswithlinearpolarizationplanesparalleltothe[110]- and[110]-crystaldirection[98,99].Thoselinearlypolarized correlationfunctiong(1)andthedegreeofsecond-orderco- transitionscandirectlyberecordedinluminescenceexperi- herenceisdescribedbytheintensity-intensitycorrelation ments[100].Theirenergeticseparationistheso-calledfine functiong(2).g(1) ofaquantumemitterisusuallyprobed structuresplitting(FSS).Darkstateshavetypicalfinestruc- in optical interferometers where the optical beam is split ture splittings in the order of 1µeV [101] whereas bright intotwoarmsandjoinedagainafterintroducingavariable statescanhaveFSSuptoseveralhundredsofµeV[98](few timedelayτ intooneofthearms.Thelightproducedby tofewtensofµeVaremorecommonlyobserved). an ideal single-quantum emitter with a lifetime T1 is de- (cid:12) (cid:12) Besidesbrightanddarkexcitonstates,alsostateswith scribedby(cid:12)g(1)(τ)(cid:12)whichdecaysexponentiallywithatime (cid:12) (cid:12) higheroccupationsuchastrions(i.e.chargedexcitons,X− constantT =2T -correspondingtoasingle-photonpulse orX+)orbiexcitons(XX)occur.OwingtoCoulombinterac- 2 1 withnophasejumps.However,realquantumemitterssuch tionsbetweenconfinedcarriers,thesestateshaverecombina- asexcitonsinQDsareimperfectsystemsandshowfaster tionenergiesdifferentfromtheexcitontransitionsallowing (cid:12) (cid:12) thespectralfilteringofindividualexcitonictransitions.A decaysof(cid:12)(cid:12)g(1)(τ)(cid:12)(cid:12)causedbydephasingmechanismssuch typical QD spectrum showing the radiative transitions of asphononinteractions.Dephasingreducesthecoherence Copyrightlinewillbeprovidedbythepublisher 6 C.P.Dietrichetal.:GaAsintegratedquantumphotonics Figure 6 Non-resonant, quasi-resonant and resonant excita- tionscheme:high-energyparticles(dottedcircles)decaythrough phonon-interactionsintotheQDgroundstate(solidcircles).The verticalarrowsindicatetheenergynecessaryforeachprocess. Figure7 CalculatedabsorptionspectraofanInAsQDatdiffer- timeoftheQDresultingin1/T =1/2T +1/T∗(withT∗ 2 1 2 2 enttemperatures.Atlowtemperatures,aclearasymmetricbroad- beingthepuredephasingtime)andincreasesitslinewidth. eningofthezero-phononline(ZPL)causedbyexciton-phonon- Dephasingprocessesaredetrimentalinquantumphotonic interactionswithlongitudinalacousticphononsisvisible.Inset: applicationsastheymakephotonsemittedfromdifferent CalculatedbroadeningoftheZPLcomparedwithexperimental sources distinguishable and reduce the visibility in two- results from [111]. Reprinted with permission from Ref. [112]. photoninterferenceexperiments. CopyrightedbytheAmericanPhysicalSociety. The occurrence of dephasing is strongly related to theexcitationschemeusedfortheexperiment.Nowadays, threemaindifferentschemesaredistinguished:off-resonant, quasi-resonant(p-shellexcitation)andresonantpumping (s-shell excitation), see Figure 6 for the different energy configurations (less common excitation schemes omitted here include wetting layer excitation or excitation above shellresonanttoanLOphononreplica).Theexcitationofa QDwellaboveitsgroundstateorresonantwithanexcited state(e.g. p-shell)resultsintherelaxationofcarriersinto the ground state by generation of phonons [111]. In gen- eral,QDsalwaysemitandabsorbphononsthroughinelastic processes.Especially,LAphononsarewellknownsources fordephasingandcauseanasymmetricbroadeningofthe QDtransition(asvisibleinthecalculatedabsorptionspec- trumshowninFigure7)[112–116].TheinteractionofQD excitonswithphononscaneitherbesuppressedbyperform- ingtheexperimentatverylowtemperaturesorbyadapting resonants-shellexcitation(seeSection3.2).Wenotethat off-resonantandquasi-resonantexcitationalsoproducea certaintimejitterinthegenerationofsinglephotonevents, reducingtheindistinguishability[117,118,121].Another dephasingprocessisinducedbytherandomdistributionof Figure 8 (a) Typical spectrum of InAs/GaAs QDs measured chargecarriersinsideaQDandchangesintheelectronic throughanaperturewith100nmwidth.(b)Temporalevolution configurationaroundtheQD.Chargeandspinfluctuations of(a)showingspectralwanderingofalmostallQDtransitions. resultinapersistentchangeoftheexcitonicgroundstate ReprintedwithpermissionfromRef.[127].Copyrightedbythe inducingspectralwanderingoftheQDemission(seeFigure AmericanPhysicalSociety. 8).ThisleadstoaneffectiveincreaseoftheQDlinewidth and a decrease of the QD coherence time [122]. Charge producesalossofindistinguishabilityinthesamewayas fluctuations can be suppressed drastically by employing puredephasing,andmustbesuppressed[125,126]. resonantpumpingandaddingaweakauxiliarycontinuous Photonstatisticscanbeprobedbymeasuringthesecond- wavereferencebeamtotheexcitationbeamoftheQD[123]. Spectralwanderingistypicallymuchslowerthantheradia- ordercorrelationfunctiong(2)(τ)thatgivestheprobability tivedecayofexcitonsanditseffectcaninsomecasesbe ofdetectingtwophotoneventswithtimedelayτ between circumventedbypumpingtheQDwithashortpulsetwice them.Inthisregard,theg(2)(0)value(atzerotimedelay)is atshorttimeintervalstoobtaintwophotonswithverysim- particularlyimportantsinceitmeasurestheprobabilitythat ilar energies [124]. However, when interference between twophotonsaredetectedatthesametime.Experimentally, photonsfromdifferentQDsisrequired,spectralwandering g(2)(τ) is routinely determined in a Hanbury Brown and Copyrightlinewillbeprovidedbythepublisher 7 Twiss(HBT)setupthatconsistsofa50:50beamsplitterand twonominallyequalsingle-photondetectorswithatempo- ralresolutionmuchbetterthanτ.Whereasforacoherent andthermallightsourceg(2)(0)approaches1and2,respec- tively,aperfectsinglephotonsourcegivesg(2)(0)=0since theprobabilityofdetectingtwophotonseventsatthesame timeisthenzero. Thephotonstatisticsofrealsingle-photonsourcesare strongly affected by non-idealities such as multi-photon emissionfrommulti-excitonstates,collectionoftheemis- sionofotherQDs,re-pumpingoftheemitteraftertheemis- sionofthefirstphoton,etc.,andthereforeproducenon-zero coincidences [115,116]. Resonant, pulsed excitation can lead to g(2)(0) values very close to zero [124,128,129]. Pumping by adiabatic rapid passage using chirped laser Figure9 Left:Excitation-dependentPLspectraofaresonantly- pulses can further suppress multi-photon emission [130]. pumpedsingleQD.EΩ=h¯Ωdenotestheenergeticsplittingbe- Evenwiththesehighlysophisticatedexcitationanddetec- tweenzero-phononlineanditsfirstMollowsideband.Topright: tion schemes, multi-photon emission in QD systems can EvolutionofQDtransitionsinthe”dressed”picture.Bottomright: neverbeturnedoffcompletely.Inthisregard,themeasured Thedeterminedsidebandsplittingh¯Ωvs.squarerootoftheexcita- g(2)(0)valuecanbeseenasameasureofthequalityofthe tionpowershowingalineardependence.Adaptedwithpermission single-photonsource[128,129]. fromRef.[117].CopyrightedbytheAmericanPhysicalSociety. populationversusexcitationpulsearea(so-calledRabios- 3.2. Resonance fluorescence cillations [143,144]). In this way, the creation of single Asmentionedabove,resonants-shellexcitationcircumvents photonscandrasticallybeincreasedbyapplyingpulseareas severaldephasingprocesses,suchasthecreationofhigh- matchingthemaximumQDpopulation(π-pulses). energy carriers or the interaction with phonons, leading IntheMollowtripletregime,mostofthelightisscat- to a considerable increase of the coherence time of QDs teredincoherentlyowingtothesaturationoftheQDs.Re- [131].However,themonochromaticpumpingofatwo-level ducingthestrengthofthedrivingfieldchangesthescattering systematresonanceoffersmanymoreadvantagesincluding propertiesofQDs[123].Intheso-calledHeitlerregime(at thecoherentgeneration[117,132–135],manipulation[134, verylowexcitationpowers)theQDbehaveslikeapassive 136–138]andcharacterization[139]oftheexcitonicstates. scatterer and incident photons are scattered almost fully Ingeneral,thespectralandtemporalpropertiesofpho- coherently[141].Asaconsequence,thespectrumofcoher- tonsscatteredbyatwo-levelsystemaredeterminedbythe entlyscatteredphotonsisonlydeterminedbythespectral laserdetuningfromtheexcitonicresonance.Theelectric- characteristicsoftheexcitationsource[145].Inthisway, dipoleinteractionisresponsibleforacouplingoftheexci- QDs linewidths as low as 0.03µeV have been observed tonicstatestothedrivingfieldandturnsthetwolevelsof already.ThoseQDsareinthe”subnaturallinewidth”[146] theexcitoninto”dressedstates”[140].Thedressed-state or”ultracoherence”regime[147].Theapplicationofpulsed pictureallowsfourradiativetransitionsofwhichtwoarede- excitationschemesincombinationwiththeweakcoherent generateandtwoarespectrallydisplacedbytheRabienergy scatteringregimesenablespureQDspectroscopyintheab- E (seeFigure9topright).Thisresultsintheemergence sence of almost all dephasing mechanism and, with that, Ω ofthreeemissionlines,theso-calledMollowtriplet[141], facilitates the deterministic generation of single photons. withthecentrallinehavingthehighestintensity(Figure9 However,thelowphotongenerationratesareadisadvan- left).TheRabienergyscaleswiththeexcitationdensityof tage. At moderate excitation powers, coherent scattering thedrivingfield(asshowninFigure9bottomright).This andtheMollowtripletcanalsocoexistwhentheresonantly enablesadirectcontrolofthesidebandtransitions.Byin- drivendotisthermalizedwiththephononbath[148]. troducingasecondlaserbeaminresonancewithoneofthe Experimentally, the observation of resonance fluores- sidebandtransitions(preferablythelowerenergysideband), cenceischallenging.Sophisticatedresonantelectricalinjec- the Mollow triplet turns into a multitude of peaks under tionispossible[149]buttechnologicallyverychallenging. suppressionofthemainpeak(duetodeconstructiveinterfer- Morecommonopticalpumpingschemessufferfromprob- ence).InthesemultiplydressedQDstatesalsophenomena lemsrelatedtotheseparationoftheexcitonicemissionfrom likethemulti-photonACStarkeffectcanbepresentthat thescatteredlaserlightrequiringelaboratedsampledesigns havepreviouslyonlybeenobservedinatomicphysics[142]. oradvancedexcitationanddetectionschemes.Asimpleway Whereas the above mentioned phenomena can be ob- ofperformingopticallypumpedresonancefluorescenceex- servedbyusingcontinuouslaserirradiation,pulsedresonant perimentsistheuseofplanarwaveguides[132,150,151]. drivingofatwo-levelsystem(withultra-shortpulses)fur- Thelaserlightiscoupledtothewaveguidemodeexcitingthe ther facilitates the external control of the QD population QDswhichemitperpendiculartothesampleplane.Another as a consequence of the oscillatory behavior of the QD approachtothepumpsuppressionisthecross-polarization Copyrightlinewillbeprovidedbythepublisher 8 C.P.Dietrichetal.:GaAsintegratedquantumphotonics pulsestemporallyseparatedbya2nsdelay[47].Avariable mirrorabletocompensateforthedelaytimewasplacedat oneofthebeamsplitteroutputs,afixedmirroratanother output. In this way, five different scenarios were created ofphotonsimpingingonthedetectorsofwhichonlyone createsatemporaloverlapofbothphotonsshowingadip inthecorrelationfunction.Sofar,two-photoninterference couldbedemonstratedforverydifferentsystemsincluding dissimilar(betweenaQDandaPoissonianlaser[160],a parametric down-conversion source [161] or a frequency comb [162]) and similar single photon sources (between differentQDs)[137,163].Inmostcases,indistinguishabil- ity has been demonstrated between QDs of two different and spatially separate samples [48,125,126], but in the perspectiveofquantumphotonicintegratedcircuitsitisof specialimportancetodemonstratetwo-photoninterference Figure10 (a)Second-ordercorrelationfunctiong(2)(τ)fortwo between single photon sources on the same semiconduc- QDsonthesamechipseparatedby40µm.(b)Two-photoninter- torchip(Figure10).ThishasbeenachievedfortwoQDs ferenceofthetwoQDsfrom(a).Thegreyline(IRF)in(a)displays on the same substrate with only 40µm distance between theinstrumentresponsefunction.Adaptedwithpermissionfrom them[156].Theexperimentaldifficultyhereistofindtwo Ref.[156].CopyrightedbytheAmericanPhysicalSociety. QDswithinthefieldofviewthathavealmostidenticalemis- sion energies, linewidths and polarization. A much more techniquethatrequiresahighextinctionratebetweenboth practicalapproachisthetuningoftheexcitonicQDtransi- polarizations[134].Ingeneral,thedetectionofresonance tionsbychangingthepropertiesexternally,e.g.byapplying fluorescence is always aggravated by scattering at imper- anelectricfield.Seesection4.3forareviewabouttuning fections.Thiscircumstancebecomesevenmoredelicatein mechanisms. photonicnanostructuressuchasridgewaveguides[152,153] andphotoniccrystals[154,155].(Pulsed)resonancefluores- cencehassofarnotbeenobservedinwaveguide-coupled 4. Purcell-enhanced single-photon emission photoniccrystalcavities. Intrinsicdephasingprocesses(e.g.phononscattering)and extrinsicspectralfluctuations,relatedtovaryingchargeen- vironment in the vicinity of the QD, typically limit the 3.3. Two-photon interference coherencetimeofsingleQDstoT ≈100−200ps,while 2 thenaturalexcitonlifetimesarelimitedtoT >400ps.The WhentwosinglephotonswiththesameFourier-transform 1 exploitationoftwo-photoninterferenceinphotonicquan- limitedspectrum,temporalprofileandpolarizationfromtwo tum information processing (QIP) requires the reduction spatiallyseparatesourcespropagatewithalinearnetwork, ofthelifetimesinordertoachieveT ≈2T .Thiscanbe onecannotdistinguishwhichofthetwophotonsstemsfrom 2 1 achievedemployingcavityquantumelectrodynamiceffects oneortheothersource,i.e.theyareindistinguishable[157]. innanophotonicstructuresthatallowtheprecisetailoring Duetotheinterferenceoftheprobabilityamplitudes,two oftheelectromagneticfieldsurroundingofthedot.Inthis indistinguishablephotonsimpingingonthetwoinputsof way, the rate of radiative recombination from the embed- abalancedbeamsplitter(50:50)willalwaysexittogether dedemittercanbecontrolledviathePurcelleffect[164]in (so-calledphoton-bunching).Theexperimentaldemonstra- e.g.a cavity. Theenhancementfactor ofthespontaneous tion of photon-bunching was first achieved by Hong, Ou emissionrateisherebydeterminedbythespatialandspec- andMandelin1987[158]andisoneofthemainprerequi- tralmatchingbetweenemitterandcavitymode,thequality sitesforquantuminformationsciencebeingthebasisfor factorQandthemodevolumeV ofthecavitymodeinthe e.g.KLMquantumgates[15]andbosonsampling[6].This photonicnanostructure[165].Inparticular,foraspectrally so-calledtwo-photoninterferenceisusuallymeasuredusing narrow source in resonance with a broader optical mode, a Michelson interferometer consisting of a beam splitter, thePurcell-enhancementisproportionaltotheQ/V ratio twodistinctopticalpathsandtwosingle-photondetectors (badcavityregime).Inordertoapproachanalmostperfect atthetwooutputsofthesplitter(anequivalentconfigura- cavity-emitterinterfacebyincreasingthelight-matterinter- tionbasedonaMach-Zehnderinterferometercanalsobe action,photonicnanostructuresneedtoprovideveryhigh used).Atemporaldisplacementbetweenbothinputscanbe qualityfactorsandlowmodevolumes. introducedeitherbychangingthepositionofthebeamsplit- ter[158]orbyintroducingavariabledelaylineintooneof thephotonpaths[159]formakingthephotonsgraduallydis- 4.1. Cavities tinguishable.ForsinglephotonsfromsemiconductorQDs, two-photoninterferencewasfirstdemonstratedforphotons Typical examples of photonic nanostructures include mi- from the same source by exciting the QD with two short crodisks,micropillars,nanobeams,photoniccrystalslabs Copyrightlinewillbeprovidedbythepublisher 9 Figure11 OverviewoverdifferentGaAs-basedcavitytypesprovidingthree-dimensionalphotonicconfinement:(a)microdisks[166], (b)micropillars,(c)nanobeams[166],(d)PhCslabsand(e)three-dimensionalphotoniccrystals.TherespectiverecordopticalQ-factors forGaAs-basedphotonicnanocavitiesembeddingQDsaregivenatthebottomofeachimagetogetherwithestimatedmodevolumes. (b)AdaptedwithpermissionfromRef.[50].CopyrightedbytheAmericanPhysicalSociety.(d,e)AdaptedbypermissionfromMacmillan PublishersLtd:Sci.Rep.[167],©2013,andNat.Photon.[168],©2011. and3Dphotoniccrystals(seeFigure11foranoverview). latticewhereasthelatterismostcommonlypreferredasit Allstructuresprovideaneffectivethree-dimensionalpho- providesalargerphotonicbandgap[172]. tonic confinement based on the possibility to manipulate PhC cavities are formed by displacing neighboring andcontrollightpropagationbyintroducinginterfaceswith holes (H0 cavity [173]) or leaving out a single (H1 cav- veryhighrefractiveindexcontrast.Obviously,thebestindex ity[174,175])orseveralairholes,therebyformingadefect contrastforGaAs-baseddevicesisgivenfortheinterface inthephotoniccrystalbandgap.Intheprospectofsingle- betweenGaAs(withn=3.5)andair(n=1). photonemission,L3cavities(threemissingholesinaline) aremostpromisingastheysupportpolarizedsinglemodes Inmicrodisks,lightisconfinedbytotalinternalreflec- withawidespectralmargin[176].ThehighestQ-factors tion(TIR)attheGaAs/airboundaryandpropagateswithin forGaAsweresofarreportedforpassiveL3cavitiesina the disk cross section in the vicinity of the disk rim. The triangularlatticewithreducedholeradius[177]andshifted so-calledwhispering-gallerymodespossessveryhighqual- nextneighborpositions[178]withexperimentalvaluesup ityfactorsofuptoQ=100,000[169]butsufferfromthe to700,000[179,180](calculatedQ-valuesexceed1×106 relativelylargemodevolumes.EvenhigherQ-factorscan for optimised L3 designs [181]). Active structures (with be observed in micropillar resonators (Q can be as high embedded QDs) show quality factors up to Q = 35,000 as250,000[170])whereBraggmirrors(alternatingpairs (25,000) and mode volumesV/(λ/n)3 =0.9(0.4) for L3 of dielectric materials with high index contrast and λ/4- (H1) cavities [182]. Note that the difference between Q- thicknessforconstructiveinterference)belowandontop valueswithandwithoutQDsmayberelatedtothedifferent ofthecavityregionconfinephotonsinthepillareffectively. wavelength range of operation (typically around 900nm Depending on the pillar diameters mode volumes as low withQDs,thereforeinthespectralregionofband-tailab- as 2.3(λ/n)3 [171] can be achieved. However, while mi- sorption in GaAs) or to residual non-resonant absorption cropillarswithembeddedQDsareidealvertical-emitting bytheQDs.Comparableresultshavebeenobtainedusing single-photonsources,theydonotmatchtherequirements one-dimensionalPhCsinnanobeams[166,183]. ofquantumphotonicintegratedcircuitsthatinvolvein-plane Three-dimensional PhCs, for example based on the photonroutingandprocessing.Inthisregard,photoniccrys- woodpile structure [168] (see Figure 11), may, in princi- tals slabs embody the perfect compromise by facilitating ple,offerhigherqualityfactorsduetosuppressedleakage highqualityfactors,lowmodevolumesandin-planecon- intheverticaldirectionandadditionallyprovidebettercon- trol.TheyarebasedonBraggscatteringinperiodicphotonic trol of the QD spontaneous emission. However, they are structures which are most commonly realized by drilling technologicallymuchmorechallengingtofabricate. airholesinalattice-geometryintoamembraneofsemicon- ductormaterial.In-planeconfinementisthenachievedby thephotonicbandgapintroducedbytheholesetchedinto 4.2 Photon collection and routing in waveguides themembrane,whileout-of-planeconfinementfullyrelies on total internal reflection at the membrane-air interface. Quantumphotonicintegratedcircuitsaretwo-dimensional Photoniccrystalscanbefabricatedinsquareortriangular arrangementsofdifferentfunctionalitiesononesemicon- Copyrightlinewillbeprovidedbythepublisher 10 C.P.Dietrichetal.:GaAsintegratedquantumphotonics Figure13 Left:BandstructureofaStark-tunabledeviceconsist- ingofInAsQDsgrownwithinGaAsquantumwellsandAlGaAs superlattices. Right: Field-dependence of two QDs (Dot1 and DotA)aswellasthecavitymode.Reprintedwithpermissionfrom MacmillanPublishersLtd:Nat.Photon.[48],©2010. Figure12 Left:Calculatedbandstructure(insidefirstBrillouin zone)forTE-modesofaninfinitePhCwaveguide.Theblacklines indicate y-polarized modes, the gray lines indicate x-polarized 4.2. Tuning Quantum Dot and Cavity Mode modes.Right:ScanningelectronmicroscopeimageofthePhC waveguide.Thescalebarrepresents1µm.Reprintedwithper- Inaperfectcavity-emitterinterface,bothQDtransitionand missionfrom[25].©2011,AIPPublishingLLC. cavitymodehavethesameenergyformaximumPurcellen- hancement.However,inrealphotonicnanostructureswith embedded QDs it is most likely that both resonances are slightly detuned from each other as result of growth and ductor chip that allow the generation, manipulation and processingimperfections.Thiscircumstancemakesexter- detectionofsinglephotons.Thisrequiresefficientphoton nal tuning mechanisms indispensable. The simplest way collectionfromsinglephotonsources,interconnectionsbe- of tuning the QD excitonic emission with respect to the tweentheindividualfunctionalitiesaswellaslow-losstrans- cavity mode is by changing the sample temperature in a portoflightwithinthecircuitfromthestationaryqubitto temperature-variablecryostat[23,51,189],bylaserirradi- themanipulationanddetectionsites.Waveguides(suchas ationorbyimplementingheatpadsclosetothephotonic PhCwaveguides[23,25–27,184]orridgewaveguides,see crystal[190,191].Allthesemechanismswillaffecttheelec- Section 5) perfectly meet these requirements as they effi- tronicbandstructure,therefractiveindexofthedeviceand ciently collect photons emitted by the QDs (even in the thelateralexpansionofthecavity.Thetwolatterchanges absence of a cavity) and transport them via propagating onlyslightlyaffectthespectralpositionofthecavitymode, modes.PhCwaveguideshavethehugeadvantageofatight whilethebandgapchangestronglytunestheQDenergy.Ex- mode confinement paving the way for a high density of perimentallymorechallengingareotherpost-growthtuning componentsononechip.Onthedownside,theysufferfrom mechanismssuchastheapplicationofexternalmagnetic opticallossesandmechanicalinstabilities. fields[192]orstrain[193,194].Amoreintegratedapproach is the implementation of electrical contacts into the pho- One way of efficiently collecting photons in a single tonic nanostructures and shifting the QD transitions via guidedmodeistheuseofaPhCwaveguide[185–187](e.g. Stark tuning by applying an electric field across the QD ”W1”waveguide,basedonamissingrowofholesinatri- layer[27,48,195–200].Additionalheterostructurebarriers angularlatticeofholespatternedinasemiconductorslab). (seeFigure13)aroundtheQDsuppresscarriertunneling TheradiativebandgapcreatedbythePhCsuppressesthe out of the dot enabling a tuning range of several tens of emissionintoin-planemodesotherthantheintendedmode meV[48]. (seeFigure12),resultinginalarge(β =80−90%)sponta- Whereasasingleexcitoncaneasilybetunedintoreso- neousemissioncouplingfactor(definedasthefractionof nancewithacavitymodeusingtheStarkeffect,moreelab- spontaneousemissioncoupledtothedesiredmode).This oratedintegrationschemessuchastheinterferenceoftwo istrueevenintheabsenceofastrongPurcelleffect.The indistinguishablesinglephotonsfromtwoQDsintwosepa- β-factor can be even higher in case the QD is spectrally ratephotonicsurroundingsrequiretheabilitytocontrolboth closetothebottomofthedispersioncurve.Thentheemis- theQDandcavityfrequenciesindependentfromeachother sionintotheguidedmodeisenhancedduetoadecreased sothatdifferentQDandcavitylinescanbeallbroughtto groupvelocity,furtherincreasingβ.Efficientfunnelingof resonance[201].Inthisregard,Starktuningonlyaffectsthe the emission of single QDs into a PhC waveguide mode QDexcitonenergyanddoesnotshiftthecavityresonance. hasbeenobservedexperimentallyforQDsemittinginthe TheseparatetuningofPhCcavityresonancesisachalleng- 900nm[26]rangebutalsoforthetelecommunicationrange ingtask,especiallyatthelowtemperaturesofinterest.Sev- around 1300nm [27]. In this context, β-factors as high eralmethodsforcavitytuninghavebeenproposed,includ- as 0.98 [24,35] and Purcell enhancements of up to F = ingtheuseofphotosensitivematerials[202],wet-chemical p 2.7[188]werealreadyreported. etching [203], nano-oxidation techniques [204–207], the Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.