G-CSF Shigekazu Nagata * Department of Genetics, Osaka University Medical School, 2-2 Yamada-oka Suita, Osaka, 565-0871, Japan *corresponding author tel: (cid:135)81-6-6879-3310, fax: (cid:135)81-6-6879-3319, e-mail: [email protected] DOI: 10.1006/rwcy.2000.09006. SUMMARY Structure G-CSF is a 20–25kDa glycoprotein that specifically G-CSF is a 20–25kDa glycoprotein. regulates the production of neutrophilic G granulo- cytes as well as enhancing the functional activities of Main activities and matureneutrophils.Itisproducedbyactivatedmacro- phages, endothelial cells, and fibroblasts. G-CSF is pathophysiological roles widelyusedclinicallyinthetreatmentofpatientswith neutropenia after cancer chemotherapy. G-CSF regulates production of neutrophilic granulo- cytes, and activates mature neutrophils. BACKGROUND Discovery GENE AND GENE REGULATION Accession numbers G-CSF (granulocyte colony-stimulating factor) was discoveredinserumfromendotoxin-treatedmiceasa factor that stimulates neutrophilic colony formation Human G-CSF: M13008 (Nagata et al., 1986a,b; from bonemarrowcells, and that inducesdifferentia- Souza et al., 1986) tion of mouse WEHI-3B D(cid:135) cells into neutrophilic Murine G-CSF: M13926 (Tsuchiya et al., 1986) granulocytes (Nicola et al., 1983). Some human cell lines such as squamous carcinoma CHU-2 and blad- Chromosome location der carcinoma 5637 were found to constitutively pro- duceG-CSF(Welteetal.,1985;Nomuraetal.,1986), and its cDNA was cloned from these cell lines Human chromosome 17q21-q22 (Kanda et al., 1987) (Nagata et al., 1986a,b; Souza et al., 1986). Mouse chromosome 11 (Buchberg et al., 1988) Subsequently, mouse G-CSF was identified from a mouse NFSA cDNA library by crosshybridization Regulatory sites and corresponding with human cDNA (Tsuchiya et al., 1986). transcription factors Alternative names There are three regulatory sequences (GPE, G-CSF G-CSF has also been known as colony-stimulating promoter element) in the 300bp upstream from the factor3(CSF-3),macrophageandgranulocyteinducer transcription initiation site. GPE1 contains cis- type 1, granulocyte (MGI-1G), granulocyte-macro- elements for NF(cid:20)B and NF-IL6, while GPE2 is a phage colony-stimulating factor (cid:12) (GM-CSF(cid:12)), and typical cis-element for OCT (octamer) transcription pluripotentcolony-stimulatingfactor(pluripoietin). factor(NishizawaandNagata,1990;Nishizawaetal., 936 Shigekazu Nagata 1990). Accordingly, fibroblasts from NF-IL6-defi- Important homologies cient mice do not produce G-CSF upon stimulation by IL-6 or TNF. HumanandmouseG-CSFsare73.6%identicalatthe amino acid sequence level (Tsuchiya et al., 1986). There is a significant sequence homology between Cells and tissues that express G-CSF and IL-6 (Hirano et al., 1986). The tertiary the gene structureofhumanG-CSFissimilartothoseofIL-4, IL-2, and growth hormone although the similarity in The G-CSF gene is expressed in monocytes, macro- the primary sequence is not significant (Hill et al., phages, endothelial cells, and fibroblasts. 1993; Lovejoy et al., 1993; Zink et al., 1994). Posttranslational modifications PROTEIN Human G-CSF is O-glycosylated at Thr133. The Accession numbers structure of the sugar moiety attached to human G- CSF is N-acetylneuraminic acid (cid:11)(2-6)[galactose (cid:12)(1- Human G-CSF: PID g117564; SwissProt P09919 3)] N-acetylgalactosamine (Souza et al., 1986; Oheda (Nagata et al., 1986a,b; Souza et al., 1986) et al., 1990). Mouse G-CSF: PID g117565; SwissProt P09920 (Tsuchiya et al., 1986) CELLULAR SOURCES AND TISSUE EXPRESSION Sequence Cellular sources that produce See Figure 1. Monocytes, macrophages, endothelial cells, and fibroblasts are induced to express G-CSF by various Description of protein stimuli (Metcalf and Nicola, 1985; Broudy et al., 1987; Koeffler et al., 1987; Seelentag et al., 1987; The N-terminal 30 amino acids serve as a signal Kaushansky et al., 1988; Lu et al., 1988; Vellenga sequence for secretion. Cys36 and Cys42, as well as et al., 1988; Nishizawa and Nagata, 1990). Some Cys67 and Cys77, are connected by disulfide bonds carcinoma cells, such as human squamous carcinoma (Luetal.,1989).Theisoelectricpointoftheproteinis CHU-2, bladder carcinoma 5637, glioblastoma 5.5–6.1, depending on the degree of sialylation U87MG,andhepatomaSK-HEP-1celllinesproduce (Nomura et al., 1986). It is relatively stable to G-CSF constitutively (Nomura et al., 1986; Tweardy extremepHlevels(pH2orpH10),temperature(50% et al., 1987). loss of the activity at 70(cid:14)C for 30min), and strong denaturation agents (6 M guanidine hydrochloride, 8M urea, 0.1% SDS) (Nicola et al., 1983). Eliciting and inhibitory stimuli, including exogenous and Discussion of crystal structure endogenous modulators G-CSFhasafour(cid:11)helixbundlestructure(Hilletal., TNF as well as IL-1 stimulate fibroblasts or 1993; Lovejoy et al., 1993; Zink et al., 1994). endothelial cells to produce G-CSF (Broudy et al., Figure 1 Amino acid sequence for human G-CSF. G-CSF 937 1987; Koeffler et al., 1987; Seelentag et al., 1987; also assayed by its ability to induce differentiation of Kaushansky et al., 1988). Endotoxins stimulate WEHI-3B D(cid:135) or 32D cells into neutrophils. macrophagestoproduceG-CSF(MetcalfandNicola, 1985; Nishizawa and Nagata, 1990). IN VIVO BIOLOGICAL ACTIVITIES OF LIGANDS IN RECEPTOR UTILIZATION ANIMAL MODELS G-CSF has a unique receptor (G-CSF receptor). Normal physiological roles ThenormalphysiologicalroleofG-CSFistheproduc- IN VITRO ACTIVITIES tion of neutrophils. In vitro findings Species differences G-CSF stimulates the colony formation of neutro- philic granulocytes in semi-solid cultures of bone G-CSF hasnospecies-specificity betweenhumanand marrow cells (Nicola et al., 1983). Unlike other CSFs mouse (Tsuchiya et al., 1986). such as GM-CSF and IL-3, G-CSF is rather specific to progenitor cells of neutrophilic granulocytes. G- CSFstimulatesnotonlyproliferationanddifferentia- Knockout mouse phenotypes tionoftheprogenitors,butalsoprolongsthesurvival ofthematureneutrophilsandenhancesthefunctional capacity of the mature neutrophils (Kitagawa et al., Mice lacking the G-CSF gene show chronic 1987; Williams et al., 1990; Yuo et al., 1989). Several neutropenia, are deficient in granulocyte and macro- myeloidleukemiacelllinessuchasmouseNFS60and phageprogenitorcells,andshowimpairedneutrophil human TF-1 cells proliferate in response to G-CSF mobilization (Lieschke et al., 1994). (Tsuchiyaetal.,1986;Kitamuraetal.,1989),whereas some other myeloid cell lines, such as mouse WEHI- Transgenic overexpression 3BD(cid:135),32D,andL-G,canbeinducedtodifferentiate into neutrophilic granulocytes by G-CSF (Nicola et al., 1983; Valtieri et al., 1987; Lee et al., 1991). Long-term exposure of mice to G-CSF in transgenic mice causes sustained granulocytosis (Chang et al., 1989). Regulatory molecules: Inhibitors and enhancers Pharmacological effects G-CSF-induced neutrophilic colony formation from Administration of G-CSF into mice stimulates bonemarrowisinhibitedbyIFN(cid:13),lymphotoxin,and granulopoiesis (Cohen et al., 1987; Tsuchiya et al., TNF(cid:11) (Barber et al., 1987). 1987; Welte et al., 1987). Bioassays used PATHOPHYSIOLOGICAL ROLES IN NORMAL HUMANS AND G-CSF can be assayed by its neutrophilic colony- DISEASE STATES AND stimulating activity in semi-solid culture of bone DIAGNOSTIC UTILITY marrow cells. In this assay, G-CSF has a specific activity of about 2(cid:2)108units/mg protein (where Normal levels and effects 50units/mL is the concentration required for half- maximal stimulation). G-CSF can be assayed by the MTT method, or [3H]thymidine incorporation into Serumofhealthypersonscontainslessthan30pg/mL G-CSF-responsive cells such as NFS-60 cells. It is of G-CSF. Its level increases to 50–2000g/mL in 938 Shigekazu Nagata patients with acute bacterial infections. The G-CSF marrow transplantation (BMT) to be replaced by levels rise during the neutropenic phase of cyclic peripheral blood stem cell (PBSC) transplants. This neutropenia (Watari et al., 1989). procedure allows more rapid hematopoietic recovery than that seen by traditional BMT (Sheridan et al., 1992). IN THERAPY G-CSF has also been used to treat patients with cyclic neutropenia. While it does not alter the cyclic Preclinical – How does it affect nature of this disease, G-CSF elevates neutrophil levelsduringthenadirphase,thuspreventingmanyof disease models in animals? the symptoms of the disease (Hammond et al., 1989). Administration of G-CSF protects neutropenic mice from lethal bacterial infection by accelerating References recovery of neutrophils (Matsumoto et al., 1987). Barber, K.E., Crosier, P. S., and Watson, J. D. (1987). The dif- ferential inhibition of hemopoietic growth factor activity by Effects of therapy: Cytokine, cytotoxinsandinterferon-gamma.J.Immunol.139,1108–1112. antibody to cytokine inhibitors, etc. Broudy, V. C., Kaushansky, K., Harlan, J. M., and Adamson, J. W. (1987). Interleukin 1 stimulates human endo- thelial cells to produce granulocyte-macrophage colony- G-CSF is effectively used to stimulate granulopoiesis stimulating factor and granulocyte colony-stimulating factor. in neutropenic patients. J.Immunol.139,464–468. Buchberg, A. M., Bedigian, H. G., Taylor, B. A., Brownell, E., Ihle, J. N., Nagata, S., Jenkins, N. A., and Copeland, N. G. (1988). Localization of Evi-2 to chromosome 11: Linkage to Pharmacokinetics otherproto-oncogeneandgrowthfactorlociusinginterspecific backcrossmice.OncogeneRes.2,149–166. The distribution half-life is about 30 minutes and the Chang, J. M., Metcalf, D., Gonda, T. J., and Johnson, G. R. (1989). Long-term exposure to retrovirally expressed granulo- eliminationhalf-lifeisabout3.8hoursinmice(Cohen cyte-colony-stimulatingfactorinducesanonneoplasticgranulo- et al., 1987). The elimination half-life in patients cytic and progenitor cell hyperplasia without tissue damage in varies from less than an hour to several hours with mice.J.Clin.Invest.84,1488–1496. some evidence that this is dependent on neutrophil Cohen,A.M.,Zsebo,K.M.,Inoue,H.,Hines,D.,Boone,T.C., numbers and receptor-mediated clearance (Watari Chazin, V. R., Tsai, L., Ritch, T., and Souza, L. M. (1987). In vivo stimulating of granulopoiesis by recombinant human et al., 1997). granulocyte colony-stimulating factor. Proc. Natl Acad. Sci. USA84,2484–2488. Ganser,A.,andKarthaus,M.(1996).Clinicaluseofhematopoie- Toxicity ticgrowthfactors.Curr.Opin.Oncol.8,265–269. Hammond, W. P., Price, T. H., Souza, L. M., and Dale, D. C. (1989). Treatment of cyclic neutropenia with granulocyte col- No severe toxicity. ony-stimulatingfactor.N.Engl.J.Med.320,1306–1311. Hill,C.P.,Osslund,T.D.,andEisenberg,D.(1993).Thestructure ofgranulocyte-colony-stimulatingfactoranditsrelationshipto Clinical results othergrowthfactors.Proc.NatlAcad.Sci.USA90,5167–5171. Hirano,T.,Yasukawa,K.,Harada,H.,Taga,T.,Watanabe,Y., G-CSF is widely used clinically in patients with Matsuda, T., Kashiwamura, S., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsui, H., granulopenia from various causes (Ganser and Takahara, Y., Taniguchi, T., and Kishimoto, T. (1986). Karthaus, 1996; Welte et al., 1996). G-CSF is admin- Complementary DNA for a novel human interleukin (BSF-2) istered to patients with cancer receiving chemo- that induces B lymphocytes to produce immunoglobulin. therapyorradiotherapywithorwithoutbonemarrow Nature324,73–76. transplantation, and to patients receiving immuno- Kanda, N., Fukushige, S.-I., Murotsu, T., Yoshida, M. C., Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1987). suppressive agents after organ transplantation. In Human gene coding for granulocyte colony-stimulating factor both types of patients, G-CSF accelerates the is assigned to the q21-q22 region of chromosome 17. Somat. recovery of neutrophilic granulocytes and diminishes CellMol.Genet.13,679–684. the risk of severe bacterial and fungal infections after Kaushansky,K.,Lin,N.,andAdamson,J.W.(1988).Interleukin chemotherapy. 1 stimulates fibroblasts to synthesize granulocyte-macrophage and granulocyte colony-stimulating factors. J. Clin. Invest. 81, In addition, G-CSF is currently used to mobilize 92–97. hematopoietic progenitor cells out of the bone Kitagawa, S., Yuo, A., Souza, L. M., Saito, M., Miura, Y., marrow into the blood allowing autologous bone and Takaku, F. (1987). Recombinant human granulocyte G-CSF 939 colony-stimulatingfactorenhancessuperoxidereleaseinhuman expression in human carcinoma cells. J. Biol. Chem. 265, granulocytes stimulated by the chemotactic peptide. Biochem. 5897–5902. Biophys.Res.Commun.144,1143–1146. Nomura, H., Imazeki, I., Oheda, M., Kubota, N., Tamura, M., Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Ono, M., Ueyama, Y., and Asano, S. (1986). Purification and Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A., and characterization of human granulocyte colony-stimulating fac- Takaku, F. (1989). Establishment and characterization of a tor(G-CSF).EMBOJ.5,871–876. unique human cell line that proliferates dependently on GM- Oheda, M., Hasegawa, M., Hattori, K., Kuboniwa, H., CSF,IL-3,orerythropoietin.J.Cell.Physiol.140,323–334. Kojima, T., Orita, T., Tomonou, K., Yamazaki, T., and Koeffler,H.P.,Gasson,J.,Ranyard,J.,Souza,L.,Shepard,M., Ochi, N. (1990). O-linked sugar chain of human granulocyte andMunker,R.(1987).RecombinanthumanTNF(cid:11)stimulates colony-stimulating factor protects it against polymerization productionofgranulocytecolony-stimulatingfactor.Blood70, and denaturation allowing it to retain its biological activity. 55–59. J.Biol.Chem.265,11432–11435. Lee, K. H., Kinashi, T., Tohyama, K., Tashiro, K., Funato, N., Seelentag,W.K.,Mermod,J.-J.,Montesano,R.,andVassalli,P. Hama,K.,andHonjo,T.(1991).Differentstromalcelllinessup- (1987). Additive effects of interleukin 1 and tumor necrosis portlineage-selective differentiation ofthemultipotential bone factor-(cid:11) on the accumulation of the three granulocyte and marrowstemcellcloneLyD9.J.Exp.Med.173,1257–1266. macrophage colony-stimulating factor mRNAs in human Lieschke,G.J.,Grail,D.,Hodgson,G.,Metcalf,D.,Stanley,E., endothelialcells.EMBOJ.6,2261–2265. Cheers,C.,Fowler,K.J.,Basu,S.,Zhan,Y.F.,andDunn,A.R. Sheridan,W.P.,Begley,C.G.,Juttner,C.A.,Szer,J.,To,L.B., (1994).Micelackinggranulocytecolony-stimulatingfactorhave Maher, D., McGrath, K. M., Morstyn, G., and Fox, R. M. chronic neutropenia, granulocyte and macrophage progenitor (1992). Effect of peripheral-blood progenitor cells mobilised cell deficiency, and impaired neutrophil mobilization. Blood byfilgrastim(G-CSF)onplateletrecoveryafterhigh-doseche- 84,1737–1746. motherapy.Lancet339,640–644. Lovejoy, B.,Cascio,D., andEisenberg,D.(1993).Crystal struc- Souza,L.M.,Boone,T.C.,Gabrilove,J.,Lai,P.H.,Zsebo,K.M., tureofcanineandbovinegranulocyte-colonystimulatingfactor Murdock, D. C., Chazin, V. R., Bruszewski, J., Lu, H., (G-CSF).J.Mol.Biol.234,640–653. Chen, K. K., Barendt, J., Platzer, E., Moore, M. A. S., Lu,L.,Walker,D.,Graham,C.D.,Waheed,A.,Shadduck,R.K., Mertelsmann, R., and Welte, K. (1986). Recombinant human and Broxmeyer, H. E. (1988). Enhancement of release from granulocyte colony-stimulating factor: effects on normal, and MHCclassIIantigen-positivemonocytesofhematopoieticcol- leukemicmyeloidcells.Science232,61–65. ony stimulating factors CSF-1 and G-CSF by recombinant Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1986). human tumor necrosis factor-alpha: synergism with recombi- IsolationandcharacterizationofthecDNAformurinegranu- nanthumaninterferon-gamma.Blood72,34–41. locytecolonystimulatingfactor.Proc.NatlAcad.Sci.USA83, Lu, H. S., Boone, T. C., Souza, L. M., and Lai, P. H. (1989). 7633–7637. Disulfideandsecondarystructuresofrecombinanthumangran- Tsuchiya,M.,Nomura,H.,Asano,S.,Kaziro,Y.,andNagata,S. ulocytecolonystimulatingfactor.Arch.Biochem.Biophys.268, (1987). Characterization of recombinant human granulocyte 81–92. colony-stimulating factor produced in mouse cells. EMBO J. Matsumoto, M., Matsubara, S., Matsuno, T., Tamura, M., 6,611–616. Hattori, K., Nomura, H., Ono, M., and Yokota, T. (1987). Tweardy, D. J., Caracciolo, D., Valtieri, M., and Rovera, G. Protective effect ofhuman granulocyte colony-stimulating fac- (1987).Tumor-derivedgrowthfactorsthatsupportproliferation tor on microbial infection in neutropenic mice. Infect. Immun. and differentiation of normal and leukemic hemopoetic cells. 55,2715–2720. Ann.NYAcad.Sci.511,30–38. Metcalf, D., and Nicola, N. A. (1985). Synthesis by mouse peri- Valtieri,M.,Tweardy,D.J.,Carraci,D.,Johnson,K.,Mavilio,F., toneal cells of G-CSF, the differentiation inducer for myeloid Altman, S., Santoli, D., and Rovela, G. (1987). Cytokine- leukemia cells: Stimulation by endotoxin, M-CSF and multi- dependent granulocyte differentiation: regulation of prolifera- CSF.LeukemiaRes.1,35–50. tive and differentiative responses in a murine progenitor cell Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., line.J.Immunol.138,3829–3835. Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Vellenga, E., Rambaldi, A., Ernst, T. J., Ostapovicz, D., and Nomura, H., and Ono, M. (1986a). Molecular cloning and Griffin, J. D. (1988). Independent regulation of M-CSF and expressionofcDNAforhumangranulocytecolony-stimulating G-CSF gene expression in human monocytes. Blood 71,1529– factor.Nature319,415–418. 1532. Nagata,S.,Tsuchiya,M.,Asano,S.,Yamamoto,O.,Hirata,Y., Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Kubota, N., Oheda, M., Nomura, H., and Yamazaki, T. Takaku, F., and Kamachi, S. (1989). Serum granulocyte col- (1986b). The chromosomal gene structure and two mRNAs ony-stimulatingfactorlevelsinhealthyvolunteersandpatients for human granulocyte colony-stimulating factor. EMBO J. 5, with various disorders as estimated by enzyme immunoassay. 575–581. Blood73,117–122. Nicola,N.A.,Metcalf,D.,Matsumoto,M.,andJohnson,G.R. Watari, K., Ozawa, K., Takahashi, S., Tojo, A., Tani, K., (1983).Purificationofafactorinducingdifferentiationinmur- Kamachi, S., and Asano, S. (1997). Pharmacokinetic studies inemyelomonocyticleukemiacells:identificationasgranulocyte of intravenous glycosylated recombinant human granulocyte colony-stimulating factor (G-CSF). J. Biol. Chem. 258, 9017– colony-stimulating factor in various hematological disorders: 9023. inversecorrelationbetweenthehalf-lifeandbonemarrowmye- Nishizawa, M., and Nagata, S. (1990). Regulatory elements loidcellpool.Int.J.Hematol.66,57–67. responsibleforinducibleexpressionofthegranulocytecolony- Welte, K., Platzer, E., Lu, L., Gabrilove, J. L., Levi, E., stimulatingfactor.Mol.CellBiol.10,2002–2011. Mertelsmann, R., and Moore, M. A. S. (1985). Purification Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and and biochemical characterization of human pluripotent hema- Nagata,S.(1990).Multipleelementsinthepromoterofgranu- topoieticcolony-stimulatingfactor.Proc.NatlAcad.Sci.USA locyte colony-stimulating factor gene regulate its constitutive 82,1526–1530. 940 Shigekazu Nagata Welte,K.,Bonilla,M.A.,Gabrilove,J.L.,Gillio,A.P.,Potter,G.K., Zink, T., Ross, A., Luers, K., Cieslar, C., Rudolph, R., and Moore,M.A.S.,O’Reilly,R.J.,Boone,T.C.,andSouza,L.M. Holak, T. A. (1994). Structure and dynamics of the human (1987). Recombinant human granulocyte-colony stimulating granulocyte colony-stimulating factor determined by NMR factor: Invitroandin vivoeffects onmyelopoiesis. BloodCells spectroscopy. Loop mobility in a four-helix-bundle protein. 13,17–30. Biochemistry33,8453–8463. Welte, K., Gabrilove, J., Bronchud, M. H., Platzer, E., and Morstyn, G. (1996). Filgrastim (r-metHuG-CSF): the first 10 years.Blood88,1907–1929. Williams, G. T., Smith, C. A., Spooncer, E., Dexter, T. M., and LICENSED PRODUCTS Taylor, D. R. (1990). Haemopoietic colony stimulating factor promote cell survival by suppressing apoptosis. Nature 343, Neutrogen1, recombinant human G-CSF produced 76–79. Yuo, A., Kitagawa, S., Ohsaka, A., Ohta, M., Miyazono, K., in CHO cells, is available from Chugai Pharma- Okabe, T., Urabe, A., Saito, M., and Takaku, F. (1989). ceutical Co., Tokyo, Japan. Recombinant human granulocyte colony-stimulating factor as Neupogen1(Filgrastim),recombinanthumanG-CSF an activator of human granulocytes: Potentiation of responses produced in E. coli, is available from Amgen, triggeredbyreceptor-mediatedagonistsandstimulationofC3bi Thousand Oaks, California, USA. receptorexpressionandadherence.Blood74,2144–2149.