ebook img

Fuzzy Logic in Data Modeling: Semantics, Constraints, and Database Design PDF

222 Pages·1998·11.518 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Logic in Data Modeling: Semantics, Constraints, and Database Design

FUZZY LOGIC IN DATA MODELING Semantics, Constraints, and Database Design The Kluwer International Series on ADVANCES IN DATABASE SYSTEMS Series Editor Ahmed K. Elmagarmid Purdue University West Lafayette, IN 47907 Other books in the Series: DATABASE CONCURRENCY CONTROL: Methods, Performance, and Analysis by Alexander Thomasian ISBN: 0-7923-9741-X TIME-CONSTRAINED TRANSACTION MANAGEMENT: Real-Time Constraints in Database Transaction Systems byNanditR. Soparkar, Henry F. Korth, Abraham Silberschatz ISBN: 0-7923-9752-5 SEARCHING MULTIMEDIA DATABASES BY CONTENT by Christos Faloutsos ISBN: 0-7923-9777-0 REPLICATION TECHNIQUES IN DISTRIBUTED SYSTEMS by Abdelsalam A. Helal, AbdelsalamA. Heddaya, BharatB. Bhargava ISBN: 0-7923-9800-9 VIDEO DATABASE SYSTEMS: Issues, Products, and Applications by Ahmed K. Elmagarmid, Haitao Jiang, AbdelsalamA. Helal, AnupamJoshi, Magcty Ahmed ISBN: 0-7923-9872-6 DATABASE ISSUES IN GEOGRAPHIC INFORMATION SYSTEMS by Nabu R. Adam andAryya Gangopadhyay ISBN: 0-7923-9924-2 INDEX DATA STRUCTURES IN OBJECT-ORIENTED DATABASES by Thomas A. Mueckand Martin L. Polaschek ISBN: 0-7923-9971-4 INDEXING TECHNIQUES FOR ADVANCED DATABASE SYSTEMS by Elisa Bertino, Beng Chin Ooi, Ron Sacks-Davis, Kian-Lee Tan, Justin Zobel, Boris Shidlovsky and Barbara Catania ISBN: 0-7923-9985-4 MINING VERY LARGE DATABASES WITH PARALLEL PROCESSING by Alex A. Freitas and Simon H Lavington ISBN: 0-7923-8048-7 DATA MANAGEMENT FOR MOBILE COMPUTING by Evaggelia Pitoura and George Samaras ISBN: 0-7923-8053-3 PARALLEL, OBJECT-ORIENTED, AND ACTIVE KNOWLEDGE BASE SYSTEMS by Ioannis Vlahavas and Nick Bassiliades ISBN: 0-7923-8117-3 DATABASE RECOVERY by Vijay Kumar and Sang H Son ISBN: 0-7923-8192-0 FOUNDATIONS OF KNOWLEDGE SYSTEMS: With Applications to Databases and Agents by Gerd Wagner ISBN: 0-7923-8212-9 INTERCONNECTING HETEROGENEOUS INFORMATION SYSTEMS by Athman Bouguettaya, Boualem Benatallah, and Ahmed Elmagarmid ISBN: 0-7923-8216-1 FUZZY LOGIC IN DATA MODELING Semantics, Constraints, and Database Design Guoqing Chen School of Economics and Management Tsinghua University Beijing, China SPRINGER SCIENCE+BUSINESS MEDIA, LLC Electronic Services <http://www.wkap.nl> Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4613-6822-9 ISBN 978-1-4615-4068-7 (eBook) DOI 10.1007/978-1-4615-4068-7 © Springer Science+Business Media New York 1998 Originally published by Kluwer Academic Publishers 1998 Softcover reprint of the hardcover 1st edition 1998 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC Printed on acid-free paper. Table o/Contents v TABLE OF CONTENTS PREFACE ...........................................•.••..........•........••................................. Dii ACKN'OWLEDGEmNTs ................................•••.........•............•..•••••....•..... xv PART I BASIC CONCEPTS .......................................................................... 1 CHAPTER 1 THE RELATIONAL DATA MODEL ..................................... 3 1.1. The Relational Model Concepts .......................................................... 3 1.1.1. Relations and the Underlying Asswnptions ............................................. 3 1.1.2. Data Constraints ..................................................................................... 6 1.2. The Relational Algebra ...................................................................... 9 1.3. Relational Database Design .............................................................. 12 References ............................................................................................... 17 CHAPTER 2 CONCEPTUAL MODELING WITH THE ENTITY-RELATIONSIDP MODEL ..................................... 19 2.1. ER Diagrammatic Notations ............................................................. 19 2.2. The ER Model Concepts ................................................................... 22 2.2.1. Entities ................................................................................................. 22 2.2.2. Attributes ............................................................................................. 22 2.2.3. Relationships ........................................................................................ 25 2.3. Enhanced ER (EER) Model Concepts ............................................... 27 References ............................................................................................... 33 CHAPTER 3 FUZZY LOGIC ..................................................................... 35 3.1. Uncertainty and Imprecision ............................................................ 35 3.2. Fuzzy Sets and Possibility Distributions ........................................... 37 3.2.1. Support, Kernel, «-Cut, Height and Plinth of a Fuzzy Set ...................... 40 3.2.2. Some Max-Min Operations on Fuzzy Sets ............................................. 40 3.2.3. Zadeh's Extension Principle .................................................................. 42 3.2.4. Fuzzy IInplication Operators .................................................................. 43 3.3. Linguistic Variable ........................................................................... 45 3.4. Closeness Measures Between Fuzzy Sets .......................................... 49 3.5. Fuzzy Relations ................................................................................ 53 References ................................................................................................ 57 PART n FUZZY CONCEPTUAL MODELING ......................................... 59 vi Table o/Contents CHAPTER 4 FUZZY ER CONCEPTS ....................................................... 61 4.1. Levels of Concepts ........................................................................... 61 4.2. Fuzzy Entities, Relationships and Attributes ..................................... 64 4.3. Relationships and Constraints .......................................................... 69 4.4. Fuzzy ER Manipulation ................................................................... 75 References ............................................................................................... 76 CHAPTER 5 FUZZY EER CONCEPTS ..................................................... 79 5.1. Fuzzy Subclass and Superclass ......................................................... 79 5.2. Specialization and Generalization with Fuzziness ............................ 81 5.3. Fuzzy Shared Subclass and Category ................................................ 87 5.4 Inheritance of Relationships and Attributes ...................................... 90 References ............................................................................................... 92 PART m REPRESENTATION OF FUZZY DATA AND CONSTRAIN'TS •••••••••••••••••••••••••••••.•.••••••••••..••••.•••••••••••••••• 9S CHAPTER 6 FUZZY DATA REPRESENTATION .................................... 97 6.1. Data Representation Frameworks ..................................................... 98 6.1.1. The Fuzzy-relation-based Framework .................................................... 98 6.1.2. The Similarity-based Framework .......................................................... 99 6.1.3. The Possibility-based Framework ........................................................ 100 6.1.4. The Extended Possibility-based Framework ........................................ 100 6.2. Fuzzy Data Closeness and Redundancy .......................................... 102 6.2.1. The ProbleJJl ....................................................................................... 102 6.2.2. Some Existing Treabnents .................................................................. 103 6.3. The CVK Treatment ...................................................................... 108 6.3.1. The KS Treabnent ofTuple Equality ................................................... 109 6.3.2. The Extension to the KS Treabnent.. ................................................... 110 6.3.3. More Discussions On the CVK Treabnent ........................................... 113 References ............................................................................................. 117 CHAPTER 7 FUZZY FUNCTIONAL DEPENDENCIES (FFDs) AS INTEGRITY CONSTRAINTS ....................................... 119 7.1. A General Fonn ofFFDs ................................................................ 120 7.2. FFD Inference Rules ...................................................................... 122 7.3. Fuzzy Implication Operators versus the Properties Ct,~, C3 ......... 124 7.4. Semantics Represented by Specific Forms ofFFDs ......................... 127 7.5. Extended Keys and Integrity Rules ................................................. 130 References ............................................................................................. 134 Table o/Contents vii CHAPTER 8 A FFD INFERENCE SYSTEM ........................................... 135 8.1. Inference Rules in the FFD Axiomatic System ................................ 136 8.2. Transitive Closure and a Computational Algorithm ........................ 138 8.3. Soundness and Completeness of the Axiomatic System .................. 148 8.4. Equivalence of the Dependency Sets ............................................... 150 References ............................................................................................. 154 PART IV FUZZY DATABASE DESIGN AND INFORMATION MAIN'TENANCE ....••.....•...•••........................ 15S CHAPTER 9 SCHEME DECOMPOSITION AND INFORMATION MAINTENANCE ................................................................. 157 9.1. Fuzzy Data Manipulation ............................................................... 158 9.2. loin and Projection on Base Relations ............................................ 160 9.3. Lossless-loin Decomposition .......................................................... 162 9.4. Dependency-Preserving Decomposition .......................................... 167 References ............................................................................................. 176 CHAPTER 10 DESIGN OF FUZZY DATABASES TO AVOID UPDATE ANOMALIES ................................................... 179 10.1. The Update Anomaly Problems .................................................... ISO 10.2. Use of Fuzzy Normal Forms to Deal with Update Anomalies ........ 182 10.2.1. Fuzzy First Nonnal Fonn (FINF). ..................................................... 183 10.2.2. 9-Fuzzy Nonnal Fonns ...................................................................... 185 10.3. Design Algorithm and Information Maintenance .......................... 189 10.3.1. Dependency-Preserving Decomposition into Fuzzy Third Nonnal Fonns ........................................................................ 190 10.3.2. Dependency-Preserving and Lossless-loin Decomposition into Fuzzy Third Nonnal Fonns ........................................................ 194 10.3.3. Lossless-loin Decomposition into Fuzzy Boyce-Codd Nonnal Fonns .................................................................................. 196 References ............................................................................................. 199 BmLIOGRAPBY ....................................................................................... 201 APPENDIX .......•.....•.•.•.•.•...•..............••.•.....•••..•..•.............................•...•...... 207 A. List of Examples .............................................................................. 209 B. List of Definitions ............................................................................. 211 C. List of Theorems .............................................................................. 213 D. List of Lemmas ................................................................................ 215 E. List of Algorithms ............................................................................ 217 IN'DEX •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••• 119 LIST OF FIGURES Figure 1.1 Nonna! fonns based FDs ............................................................ 16 Figure 2.1 ER diagram notations ................................................................ 20 Figure 2.2 A university ER diagram ............................................................ 21 Figure 2.3 A hierarchy of composite attribute address ................................. 24 Figure 2.4 Subclass and superclass .............................................................. 28 Figure 2.5 Shared subclass and category ..................................................... 30 Figure 2.6 A university EER diagram additional component. ...................... 31 Figure 2.7 Subclasses and the attributes of their own ................................... 32 Figure 3.1 The membership function for "Large" ........................................ 38 Figure 3.2 The membership function for "Young" ....................................... 38 Figure 3.3 The linguistic variable Age with values ...................................... 46 Figure 3.4 Linguistic hedges ....................................................................... 48 Figure 3.5 The inclusion-based closeness measure ...................................... 50 Figure 3.6 ~(A, B)=d and 1tIJf(A, B) = e ................................................. SO Figure 4.1 Fuzzy ER diagrammatic notations .............................................. 65 Figure 4.2 An entity type Company with a partial degree 0.9 ...................... 66 Figure 4.3 Diagrammatic notations for fuzzy participation constraints ........ 70 Figure 4.4 An example with a cardinality ratio n:M .................................... 70 Figure 4.5 Cardinality ratios with fuzziness ................................................ 71 Figure 5.1 The attribute-defined specialization with ai e Dom(A) ................ 82 Figure 5.2 The attribute-defined specialization with FSi e F(Dom(A» ......... 83 Figure 5.3 The attribute-defined generalization upon fuzzy values of age .... 84 Figure 5.4 Membership functions for "young", "mid-aged" and "old" .......... 85 Figure 5.5 A membership function for "about 55" ....................................... 85 Figure 5.6 The attribute-defined specialization/generalization at the L1(1.f) level. ............................................................................... 87 Figure 5.7 A fuzzy shared subclass E .......................................................... 88 Figure 5.8 A fuzzy category E ..................................................................... 89 Figure 6.1 Relationships among X, y and z ................................................ 101 Figure 7.l Me mb e rs hi p functi·o ns 0 f"y oung"," high" and "a verage ". ........ . 129 Figure 7.2 The spectrum of possible a-key values ...................................... 133 Figure 8.1 Two dependency paths from X to Y ......................................... 140 Figure 8.2 A dependency diagram (Example 8.1) ...................................... 142 Figure 8.3 A dependency diagram (Example 8.2) ...................................... 146 Figure 8.4 A dependency diagram (Example 8.3) ...................................... 147 Figure 8.5 A dependency diagram (Example 8.4) ...................................... 148 x List ofF igures Figure 9.1 A dependency diagram (Example 9.6 with F\) ......................... 171 Figure 9.2 A dependency diagram (Example 9.6 with F2) ••••••••••••••••••••••••• 173 Figure 9.3 Dependency diagrams (Example 9.7) ....................................... 174 LIST OF TABLES Table 1.1 A relation (table) R. ....................................................................... 4 Table 1.2 Relation Rl (customers' physical characteristics) ............................ 4 Table 1.3 . Relation R2 (finished products) ...................................................... 5 Table 1.4 Relation R3 (customers and products) ............................................ 5 Table 3.1 The truth table for -+ ................................................................... 43 Table 3.2 Fuzzy implication operators (FIOs) ............................................. 44 Table 3.3 A fuzzy relation R (company's ordering information) .................. 53 Table 4.1 A relationship matrix R on ExF .................................................. 73 Table 4.2 A relationship matrix ~(2) on Ex2F ........................................... 74 Table 4.3 A relationship matrix R( ) of 1: 1 cardinality ................................ 74 Table 6.1 A closeness relation CHealth ........................................................... 98 Table 6.2 A resemblance relation ReSj ....................................................... 107 Table 6.3 A closeness relation Cj. .............................................................. 112 Table 6.4 A relation Itt (employees' performance) ..................................... 115 Table 6.5 The tuple closeness Fe (Case 1) .................................................. 116 Table 6.6 The tuple closeness Fc (Case 2) ................................................. 116 Table 6.7 Closeness classes and equivalence classes .................................. 116 Table 6.8 A closeness relation Cp. .............................................................. 117 Table 6.9 The tuple closeness Fe (Case 3) .................................................. 117 Table 3.2 Fuzzy implication operators (FIOs) ........................................... 124 Table 7.1 FIOs versus C), C2, C3. .............................................................. 126 Table 7.2 A relation C (customers) ........................................................... 129 Table 8.1 A relation R with DomOC"F) and U-DomOr-F) ........................... 149 Table 9.1 Relation R and two ofits projections Rl and R2 ......................... 161 Table 9.2 Relation R reconstructed via join on close elements ................... 162 Table 9.3 Relation R' and two of its projections R'l and R'2 ....................... 163 Table 9.4 Relation R'l * R'2 that is not equal to the original R' .................. 163 Table 9.5 Relation R" and two of its projections R"l and R"2 ..................... 163 Table 9.6 Rill * R"2 = R" when B-+~ ...................................................... 164 Table 9.7 Testing the lossless-join property (Example 9.3 with Fl). ........... 166 Table 9.8 Testing the lossless-join property (Example 9.3 with F2). ........... 166 Table 10.1 A non-FINF relation ................................................................. 184 Table 10.2 A FINF relation ........................................................................ 184 Table 10.3 Testing for lossless-join (Example 10.9) .................................... 196 Table 10.4 Testing for 10ssless-join (Example 10.10) .................................. 198

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.