ebook img

Fuzzy Logic for Image Processing A Gentle Introduction Using Java PDF

141 Pages·2016·5.379 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Logic for Image Processing A Gentle Introduction Using Java

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Laura Caponetti Giovanna Castellano Fuzzy Logic for Image Processing A Gentle Introduction Using Java 123 www.ebook3000.com SpringerBriefs in Electrical and Computer Engineering www.ebook3000.com More information about this series at http://www.springer.com/series/10059 www.ebook3000.com Laura Caponetti Giovanna Castellano (cid:129) Fuzzy Logic for Image Processing A Gentle Introduction Using Java 123 www.ebook3000.com Laura Caponetti Giovanna Castellano Dipartimento di Informatica Dipartimento di Informatica Universitàdegli Studi diBari AldoMoro Universitàdegli Studi diBari AldoMoro Bari Bari Italy Italy ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs inElectrical andComputer Engineering ISBN978-3-319-44128-3 ISBN978-3-319-44130-6 (eBook) DOI 10.1007/978-3-319-44130-6 LibraryofCongressControlNumber:2016947389 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland www.ebook3000.com To Alfred, Philip and Vito and all my friends Laura Caponetti To David and Serena, improved images of me Giovanna Castellano www.ebook3000.com Preface Thesecrettogettingaheadisgettingstarted. MarkTwain Thisbookistheresultofmanyyearsofteachingimageprocessingandfuzzylogic taught by the authors for undergraduate courses. Most of the material used is also the result offertile interactions with the students whose case studies contributed a lot in the Java implementation of algorithms and methods. The volume has been conceived as a gentle introduction to fuzzy logic approaches useful in image pro- cessing tasks. First we describe image processing algorithms based on fuzzy logic under a methodological point of view. Then, we provide some practical applications without passing over the important formal details. We tried to identify the most important works that researchers have done in the area offuzzy image processing, and we described and illustrated them through Java examples that the interested readers can easily follow. The book covers both theoretical and practical applications offuzzy techniques in image processing. Accordingly, the chapters have been grouped into two parts: Fundamentals of Fuzzy Image Processing and Applications to Image Processing. In the first part, we explain how image processing can take advantage offuzzy logic, giving basic theoretical aspects of both fuzzy logic and image processing through five chapters. Chapter 1 is devoted to the basics of image representation usingJava.Chapter2dealswithlow-levelimageprocessing.InChap.3thereader willfindthebasicconceptsoffuzzylogic,startingfromfuzzysettheoryuptofuzzy systems. Chapter 4 discusses the issue of vagueness in digital images, that is the motivationofusingfuzzytechniquestoprocessimages.Finally,Chap.5introduces the Java language and its use for image processing. Inthesecondpart,wepresentfourchapterscoveringdifferentimageprocessing tasks, namely color contrast enhancement, image segmentation, morphological analysis,andimagethresholding.Foreachtaskanexampleofpracticalapplication vii www.ebook3000.com viii Preface is described. Some examples are presented in the medical domain, using light microscopeimages providedbythe DipartimentodiEndocrinologiaedOncologia Molecolare e Clinica of the University “Federico II” of Naples, Italy. Lastly, the appendixprovidessomeJavacodeexamplesthattheusercaneasilyrunwhichwill help create a concrete feeling of the potential fuzzy image processing. We believe that this volume will provide a state-of-art coverage of various aspects related to fuzzy image processing and show the potential of fuzzy tech- niques in solving image processing problems. We hope this book will serve as a reference for scientists and students in this area, as well as a means to stimulate some new ideas for researchers. We are grateful to a number of people from academic circles as well as from domestic environments who have contributed to the writing of this book in many differentways.Inparticular,wethankallthemembersoftheCILab(Computational IntelligenceLaboratory)oftheDepartmentofInformaticsattheUniversityofBari “Aldo Moro” for giving answers to our questions at the right time. We thank Menina Di Gennaro for reading the first draft of some chapters and giving helpful suggestions at the early stages of the work. Our special thanks go to Mara Basile and Vito Corsini who gave their contribution to the research on morphology and segmentation applied to the medical domain. We also thank our Ph.D. student Przemyslaw Gorecky for his contribution on document analysis by fuzzy approa- ches.Finally,wethankourstudentsAntonioVergaro,FrancescoTangari,Gabriella Casalino, Marco Lucarelli, and Massimo Minervini for developing some Java examples cited in this book. The contribution of everyone is truly appreciated. Bari, Italy Laura Caponetti June 2016 Giovanna Castellano www.ebook3000.com Contents Part I Fundamentals of Fuzzy Image Processing 1 Image Representation Using Java ... .... .... .... .... ..... .... 3 1.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 3 1.2 Gray-Level Images... ..... .... .... .... .... .... ..... .... 4 1.3 Color Models... .... ..... .... .... .... .... .... ..... .... 5 1.4 Color Image Representation Using Java.... .... .... ..... .... 10 References.. .... .... .... ..... .... .... .... .... .... ..... .... 13 2 Low-Level Image Processing ... .... .... .... .... .... ..... .... 15 2.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 15 2.2 Contrast Enhancement ..... .... .... .... .... .... ..... .... 18 2.2.1 Gray-Level Transformation.... .... .... .... ..... .... 20 2.2.2 Thresholding.. ..... .... .... .... .... .... ..... .... 27 2.2.3 Histogram Transformation. .... .... .... .... ..... .... 27 2.3 Image Smoothing.... ..... .... .... .... .... .... ..... .... 28 2.4 Edge Detection.. .... ..... .... .... .... .... .... ..... .... 30 2.4.1 Canny Operator..... .... .... .... .... .... ..... .... 34 2.4.2 Optimization-Based Operators.. .... .... .... ..... .... 36 References.. .... .... .... ..... .... .... .... .... .... ..... .... 37 3 Basics of Fuzzy Logic .... ..... .... .... .... .... .... ..... .... 39 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 39 3.2 Fuzzy Set Theory.... ..... .... .... .... .... .... ..... .... 40 3.3 Fuzzy Rule-Based Systems.. .... .... .... .... .... ..... .... 41 3.3.1 Fuzzification .. ..... .... .... .... .... .... ..... .... 43 3.3.2 Fuzzy Rule Base and Inference Engine... .... ..... .... 43 3.3.3 Defuzzification ..... .... .... .... .... .... ..... .... 44 3.4 Fuzzy Models... .... ..... .... .... .... .... .... ..... .... 45 3.4.1 Design of Fuzzy Rule-Based Systems.... .... ..... .... 46 3.4.2 Neuro-Fuzzy Models. .... .... .... .... .... ..... .... 48 References.. .... .... .... ..... .... .... .... .... .... ..... .... 51 ix www.ebook3000.com x Contents 4 Fuzzy Image Processing .. ..... .... .... .... .... .... ..... .... 53 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 53 4.2 Image Fuzzification .. ..... .... .... .... .... .... ..... .... 55 4.2.1 Fuzzy Image.. ..... .... .... .... .... .... ..... .... 56 4.3 Image Defuzzification. ..... .... .... .... .... .... ..... .... 59 4.4 Fuzziness Measures .. ..... .... .... .... .... .... ..... .... 60 References.. .... .... .... ..... .... .... .... .... .... ..... .... 62 5 Java for Image Processing ..... .... .... .... .... .... ..... .... 65 5.1 Basic Concepts.. .... ..... .... .... .... .... .... ..... .... 65 5.2 Java for Image Processing .. .... .... .... .... .... ..... .... 68 5.3 Applet. .... .... .... ..... .... .... .... .... .... ..... .... 71 5.4 ImageJ .... .... .... ..... .... .... .... .... .... ..... .... 74 5.4.1 Macros .. .... ..... .... .... .... .... .... ..... .... 75 5.4.2 Plugins .. .... ..... .... .... .... .... .... ..... .... 75 5.5 Fuzzy Systems in Java..... .... .... .... .... .... ..... .... 76 References.. .... .... .... ..... .... .... .... .... .... ..... .... 81 Part II Application to Image Processing 6 Color Contrast Enhancement... .... .... .... .... .... ..... .... 85 6.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 85 6.2 Multichannel Image Processing .. .... .... .... .... ..... .... 86 6.3 Fuzzy Techniques for Color Enhancement.. .... .... ..... .... 86 6.4 A Fuzzy Rule-Based System for Color Enhancement.. ..... .... 87 6.5 Example: Natural Image Enhancement. .... .... .... ..... .... 88 References.. .... .... .... ..... .... .... .... .... .... ..... .... 91 7 Image Segmentation . .... ..... .... .... .... .... .... ..... .... 93 7.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 93 7.2 The Segmentation Problem.. .... .... .... .... .... ..... .... 94 7.3 Methods for Segmentation .. .... .... .... .... .... ..... .... 95 7.3.1 Crisp Clustering .... .... .... .... .... .... ..... .... 96 7.3.2 Fuzzy Clustering.... .... .... .... .... .... ..... .... 97 7.3.3 Spatial Fuzzy Clustering.. .... .... .... .... ..... .... 98 7.4 Example: Color Segmentation ... .... .... .... .... ..... .... 99 7.5 Example: Texture Segmentation.. .... .... .... .... ..... .... 101 References.. .... .... .... ..... .... .... .... .... .... ..... .... 104 8 Morphological Analysis... ..... .... .... .... .... .... ..... .... 107 8.1 Mathematical Morphology .. .... .... .... .... .... ..... .... 107 8.1.1 Morphological Operators.. .... .... .... .... ..... .... 108 8.2 Fuzzy Morphology... ..... .... .... .... .... .... ..... .... 110 8.3 Example: Biological Image Segmentation... .... .... ..... .... 113 References.. .... .... .... ..... .... .... .... .... .... ..... .... 118 www.ebook3000.com

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.