IranianJournalofFuzzySystems Vol. 11, No. 2,(2014)pp. 71-88 71 FUZZY COLLOCATION METHODS FOR SECOND- ORDER FUZZY ABEL-VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS S.S.BEHZADI,T.ALLAHVIRANLOOANDS.ABBASBANDY Abstract. In this paper we intend to offer new numerical methods toDsolve the second-order fuzzy Abel-Volterra integro-differential equations under the generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed methods are proved in details and the effi- I ciencyofthemethodsisillustratedthroughanumericalexample. S 1. Introduction Thefuzzyintegralequationsandthefuzzyinteg ro-differentialequationsarevery useful for solving many problems in several apfplied fields like mathematical eco- nomics, electrical engineering, medicine and biology and optimal control theory. o Sincetheseequationsusuallycannotbesolvedexplicitly,soitisrequiredtoobtain approximate solutions. There are numerous numerical methods which have been focusing on the solution of these equations [16, 14, 28, 7, 2, 3, 1, 20, 4, 5, 21, 23, e 24, 18, 25, 26, 6, 27]. In this work, we develope vthe Jacobi polynomials and the Airfoil polynomials fuzzy collocation methods to solve the second- order fuzzy Abel-Volterra integro- differential equation of thie second kind as follows: u(cid:101)(cid:48)(cid:48)h(x)=f(cid:101)(x)+µ(cid:90) xk(x,t)√ 1 u(cid:101)(t) dt, (1) x−t a with fuzzy initial conditions: c u(cid:101)r(a)=b(cid:101)r, r =0,1. (2) r Where a and µ are crisp constant values and k(x,t) is function that has deriva- tivesoAnanintervala≤t≤x≤bandbr arefuzzyconstantvaluesandf(cid:101)(x)isfuzzy function. The second- order Abel-Volterra integro-differential equations occur in various physical applications including heat transfer and viscoelasticity [10] . Hereisanoutlineofthepaper. Insection2,thebasicnotationsanddefinitionsin fuzzycalculusarebrieflypresented. Section3describeshowtofindanapproximate solutionofthegivensecond-orderfuzzyAbel-Volterraintegro-differentialequations by using proposed methods. The existence and uniqueness of the solution and convergence of the proposed methods are proved in Section 4 respectively. Finally Received: January2013;Revised: June2013;Accepted: January2014 Key words and phrases: Jacobi polynomials, Airfoil polynomials, Collocation method, Fuzzy integro-differentialequations,AbelandVolterraintegralequations,Generalizeddifferentiability. www.SID.ir 72 S.S.Behzadi,T.AllahviranlooandS.Abbasbandy in section 5, we apply the proposed methods by an example to show the simplicity and efficiency of the methods, and a brief conclusion is given in Section 6. 2. Preliminaries Herebasicdefinitionsofafuzzynumberaregivenasfollows, [15,22,17,29,12, 8, 11] Definition2.1. Anarbitraryfuzzynumberuintheparametricformisrepresented (cid:101) by an ordered pair of functions (u,u) which satisfy the following requirements: (i) u:r →u− ∈R is a bounded left-continuous non-decreasing function over [0,1], r (ii)u:r →u+r ∈Risaboundedleft-continuousnon-increasingfunctiDonover[0,1], (iii) u≤u, 0≤r ≤1. Definition 2.2. Forarbitraryfuzzynumbersu˜,v˜∈E ,weusethedistance(Haus- I dorff metric) [17] D(u(r),v(r))=max{sup |u(r)−v(r)|,sup |u(r)−v(r)|}, r∈[0,1] S and it is shown [8] that (E , D) is a complete metric space and the following properties are well known: f D(u+w,v+w)=D(u,v),∀ u,v ∈E, (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) D(ku,kv)=|k |D(u,v),∀ ko∈R,u,v ∈E, (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) D(u+v,w+e)≤D(u,w)+D(v,e),∀ u,v,w,e∈E. (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) Definition 2.3. Consider x, y ∈E. If there exists z ∈E such that x=y+z then (cid:101) (cid:101) e (cid:101) (cid:101) (cid:101) (cid:101) z is called the H- difference of x and y, and is denoted by x(cid:9)y, [8]. (cid:101) (cid:101) (cid:101) (cid:101) (cid:101) v Definition 2.4. Let f(cid:101): (a,b) → E and x0 ∈ (a,b). We say that f is generalized differentiable at x0 ( Bedie-Gal differentiability), if there exists an element f(cid:101)(cid:48)(x0)∈ E, such that [8]: h i) for all h>0 sufficiently small, ∃f(cid:101)(x0+h)(cid:9)f(cid:101)(x0),∃f(cid:101)(x0)(cid:9)f(cid:101)(x0−h) and the following limits hold: c rhli→m0f(cid:101)(x0+hh)(cid:9)f(cid:101)(x0) =hli→m0f(cid:101)(x0)(cid:9)hf(cid:101)(x0−h) =f(cid:101)(cid:48)(x0) or A ii) for all h > 0 sufficiently small, ∃f(cid:101)(x0)(cid:9)f(cid:101)(x0 +h),∃f(cid:101)(x0 −h)(cid:9)f(cid:101)(x0) and the following limits hold: hli→m0f(cid:101)(x0)(cid:9)−f(cid:101)h(x0+h) =hli→m0f(cid:101)(x0−−h)h(cid:9)f(cid:101)(x0) =f(cid:101)(cid:48)(x0) or iii) for all h > 0 sufficiently small, ∃f(cid:101)(x0+h)(cid:9)f(cid:101)(x0),∃f(cid:101)(x0−h)(cid:9)f(cid:101)(x0) and the following limits hold: hli→m0f(cid:101)(x0+hh)(cid:9)f(cid:101)(x0) =hli→m0f(cid:101)(x0−h−)h(cid:9)f(cid:101)(x0) =f(cid:101)(cid:48)(x0) or www.SID.ir FuzzyCollocationMethodsforSecond-orderFuzzyAbel-VolterraIntegro-differentialEquations73 iv) for all h > 0 sufficiently small, ∃f(cid:101)(x0)(cid:9)f(cid:101)(x0+h),∃f(cid:101)(x0)(cid:9)f(cid:101)(x0−h) and the following limits hold: hli→m0f(cid:101)(x0)(cid:9)−f(cid:101)h(x0+h) =hli→m0f(cid:101)(x0)(cid:9)fh(cid:101)(x0−h) =f(cid:101)(cid:48)(x0). Definition 2.5. Let f(cid:101): (a,b) → E. We say f(cid:101)is (i)-differentiable on (a,b) if f(cid:101)is differentiable in the sense (i) of Definition (2.4) and similarly for (ii), (iii) and (iv) differentiability [11]. Definition 2.6. A fuzzy number A˜ is of LR-type if there exist shape functions L(for left), R(for right) and scalar α≥0,β ≥0 with D (cid:26) L(a−x), x≤a, µ˜ (x)= α A R(x−b), x≥a, β I the mean value of A˜,a is a real number, and α,β are called the left and right spreads, respectively. A˜ is denoted by (a,α,β). S Definition 2.7. Let M˜ =(m,α,β) and N˜ =(n,γ,δ) and λ∈R+. Then, LR LR (1):λM˜ =(λm,λα,λβ) LR (2):−λM˜ =(−λm,λβ,λα) f LR (3):M˜ ⊕N˜ =(m+n,α+γ,β+δ) o LR (mn,mγ+ nα,mδ+nβ)LR, M˜,N˜ >0, (4):M˜ (cid:12)N˜ (cid:39) (mn,nαe−mδ,nβ−mγ)LR, M˜ >0,N˜ <0, (mn,−nβ−mδ,−nα−mγ) , M˜,N˜ <0. LR v Definition 2.8. A triangular fuzzy number is defined as a fuzzy set in E, that is specified by an ordered triple u = (a,b,c) ∈ R3 with a ≤ b ≤ c such that [u]r = i [ur ,ur] are the endpoints of r-level sets for all r ∈[0,1], where ur =a+(b−a)r − + h − and ur =c−(c−b)r. Here, u0 =a,u0 =c,u1 =u1 =b, which is denoted by u1. + − + − + The set of triangular fuzzy numbers will be denoted by E. c Definition 2.9. The mapping f(cid:101): T → E for some interval T is called a fuzzy process. Trherefore, its r-level set can be written as follows: A [f(t)]r =[fr(t),fr(t)], t∈T, r ∈[0,1]. − + Definition 2.10. Let f(cid:101) : T → E be Hukuhara differentiable and denote by [f(t)]r = [fr,fr]. Then, the boundary function fr and fr are differentiable ( − + − + or Seikkala differentiable) and [f(cid:48)(t)]r =[(fr)(cid:48)(t),(fr)(cid:48)(t)], t∈T, r ∈[0,1]. − + 3. Description of the Methods In this section we are going to solve the equation (1) by using the Jacobi poly- nomials and the Airfoil polynomials fuzzy collocation methods. www.SID.ir 74 S.S.Behzadi,T.AllahviranlooandS.Abbasbandy To obtain the approximation solution of equation (1), based on Definition (2.4) there are two possible cases for each derivation, so there are four possible cases for the second order derivation. The conditions for the existence of solution in each case can now be started. Theorem 3.1. Let x0 ∈ [a,b] and assume that f(cid:101)is continuous. A mapping u : [a,b]→E is a solution to the initial value equation (1) if and if only u; and u(cid:48)(cid:48) are continuous and satisfy on the following conditions (a) (cid:82)x (cid:82)s µu(cid:101)((cid:82)xxx)0=(cid:82)xs0x(cid:82)0axkx0(sf(cid:101),(ts))√ds1−stdus(cid:101)+(t) dt ds ds+(cid:101)b1(x−x0)+(cid:101)b0,D (3) where u(cid:48) and u(cid:48)(cid:48) are (i)-differentials, or (cid:101) (cid:101) (b) I (cid:82)x (cid:82)s uµ(cid:101)((cid:82)xxx)0=(cid:82)xs0(cid:9)(cid:82)(a−xk1)([s(cid:101)b,1t()x√−s1−xt0u(cid:101))((cid:9)t)(d−t1d)s[ xd0s]]x+0f(cid:101)(cid:101)bS(0s,) ds ds+ (4) where u(cid:101)(cid:48) and u(cid:101)(cid:48)(cid:48) are (ii)-differentials, or (c) f (cid:82)x (cid:82)s uµ(cid:101)((cid:82)xxx)0=(cid:82)xs0(cid:9)(cid:82)(a−xk1)([s(cid:101)b,1t()x√−s1−xt0u(cid:101))(+ot) dxt0dxs0df(cid:101)s(]s+) d(cid:101)b0s,ds+ (5) where u(cid:48) is the (i)-differential and u (cid:48)(cid:48) is the (ii)-differential, or (cid:101) (cid:101) e (d) (cid:82)x (cid:82)s uµ(cid:101)((cid:82)xxx)0=(cid:82)ixs0[(cid:101)b(cid:82)1a(xxvk−(s,xt0))√(cid:9)s1−(t−u(cid:101)1()t[)xd0t xd0sf(cid:101)d(ss])]+ds(cid:101)b0ds+ (6) where u(cid:48) is the (ii)-differential and u(cid:48)(cid:48) is the (i)-differential. (cid:101) h (cid:101) Proof. Since f(cid:101)is continuous, it must be integrable [9]. So, cu(cid:101)(cid:48)(cid:48)(x)=f(cid:101)(x)+µ(cid:82)axk1(x,t)√s1−t u(cid:101)(t) dt, (7) r u(cid:101)(x0)=(cid:101)b0, u(cid:101)(cid:48)(x0)=(cid:101)b1, can be written in each as follows: A (a) Let u(cid:48) and u(cid:48)(cid:48) be (i)-differentiable. So, for equation (3) we have equivalently (cid:101) (cid:101) (cid:90) x (cid:90) x(cid:90) x 1 u(cid:101)(cid:48)(x)= f(cid:101)(s) ds+µ k(s,t)√ u(cid:101)(t) dt ds+(cid:101)b1, s−t x0 x0 a and thus, u(cid:101)(x)=(cid:82)xx0(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:82)xx0(cid:82)xs0(cid:82)axk(s,t)√s1−t u(cid:101)(t) dt ds ds +(cid:101)b1(x−x0)+(cid:101)b0. (b) Let u(cid:48) and u(cid:48)(cid:48) be (ii)-differentiable. So, for equation(3) we have (cid:101) (cid:101) (cid:90) x (cid:90) x(cid:90) x 1 u(cid:101)(cid:48)(x)=(cid:9)(−1)[ f(cid:101)(s) ds+µ k(s,t)√ u(cid:101)(t) dt ds]+(cid:101)b1, s−t x0 x0 a www.SID.ir FuzzyCollocationMethodsforSecond-orderFuzzyAbel-VolterraIntegro-differentialEquations75 and equivalently, (cid:82)x (cid:82)s (c) Let u(cid:48) beuµ(cid:101)(((cid:82)xixix))0-=(cid:82)dxis0ff(cid:9)e(cid:82)(ra−xenk1t)(i[sa(cid:101)b,b1t(l)ex√−as1−nxdt0u(cid:101))u((cid:48)(cid:9)(cid:48)t)b(d−et1(d)i)s[-dxd0isff]]exr+0efn(cid:101)(cid:101)bt(0is.a)bdles.dTs+hen for equation (cid:101) (cid:101) (3), we have equivalently (cid:90) x (cid:90) x(cid:90) x 1 u(cid:101)(cid:48)(x)= f(cid:101)(s) ds+µ k(s,t)√ u(cid:101)(t) dt ds+(cid:101)b1, s−t x0 x0 a so, (cid:82)x (cid:82)s u+(cid:101)(µx)(cid:82)x=x0(cid:82)(cid:9)xs0(−(cid:82)a1x)k[(cid:101)b(1s(,xt)−√sx1−0t)+u(cid:101)(t)x0dtxd0sf(cid:101)d(ss)]+ds(cid:101)b0d.s D (d) Let u(cid:48) be (i)-differentiable and u(cid:48)(cid:48) be (ii)-differentiable. Then for equation (cid:101) (cid:101) I (3) we have equivalently S (cid:90) x (cid:90) x(cid:90) x 1 u(cid:101)(cid:48)(x)=(cid:9)(−1)[ f(cid:101)(s) ds+µ k(s,t)√ u(cid:101)(t) dt ds]+(cid:101)b1, s−t so, x0 x0 a f (cid:82)x (cid:82)s u+(cid:101)(µx)(cid:82)x=x0(cid:82)[(cid:101)bxs10((cid:82)xax−k(xs0,)t)(cid:9)√(s1−−t1o)u(cid:101)[(xt)0 dxt0df(cid:101)s(sd)s]d]s+d(cid:101)bs0, which completes the proof. e (cid:3) 3.1. Description of the Jacvobli Polynomials Fuzzy Collocation Method. To obtain the approximation solution of equation (1), according to the Jacobli polynomials method [19]iwe can write: h n (cid:88) u(cid:101)n(x)=w(x) (cid:101)aipαi,β(x), α,β >−1, (8) where, i=0 c w(x)= (1−x)α, (1+x)β rpα,β(x)= (1−x)−α(1+x)−β dn [(1−x)n+α(1+x)n+β], i (−2)n n! dxn A (pα,β)(cid:48)(s)= 1(n+α+β+1)p(α+1,β+1)(s). (9) i 2 n−1 Now from this method, we have four cases as follows: Case (a): wµ((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akip(sαi,,βt)(x√)s1−=t (cid:82)(xwx0((cid:82)tx)s0(cid:80)f(cid:101)ni(=s)0(cid:101)adispαid,sβ+(t)) dt ds ds+(cid:101)b1(x−x0)+(cid:101)b0. (10) We can write equation (10) as follows: (cid:82)xx0(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0(cid:82)xs0(cid:82)axw(t)k(s,t)√s1−tpαi,β(t) dt ds ds+ (cid:101)b1(x−x0)+(cid:101)b0 =w(x)(cid:80)ni=0(cid:101)aipαi,β(x)+R(cid:101)n(x). (11) www.SID.ir 76 S.S.Behzadi,T.AllahviranlooandS.Abbasbandy So, we have (cid:82)xx0(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0(cid:82)xs0(cid:82)axw(t)k(s,t)√s1−tpαi,β(t) dt ds ds+ (cid:101)b1(x−x0)+(cid:101)b0(cid:9)w(x)(cid:80)ni=0(cid:101)aipαi,β(x)=R(cid:101)n(x). (12) R(cid:101)n(xj)=(cid:101)0. (13) It means, Rr(x )=0, Rr(x )=0, ∀r ∈[0,1], n j n j where x (j =1,...,n) are collocation points. j Therefore we can write, D (cid:82)xx0j(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0j(cid:82)xs0(cid:82)axjw(t)k(s,t)√s1−tpαi,β(t) dt ds ds+ (cid:101)b1(xj −x0)+(cid:101)b0(cid:9)w(xj)(cid:80)ni=0(cid:101)aipαi,β(xj)=(cid:101)0. I (14) Equation (14) can be written in the following operator form S F(cid:101)⊕A(cid:101)a(cid:9)B(cid:101)a=(cid:101)0. (15) (cid:88) (cid:88) (cid:88) (cid:88) F(cid:101)j ⊕ aij(cid:101)aj ⊕ aij (cid:9)( bfij(cid:101)aj ⊕ bij(cid:101)aj)=(cid:101)0. aij≥0 aij<0 bij≥0 bij<0 Where, o ((FA(cid:101)))ijj==(cid:82)µxx0(cid:82)jxx(cid:82)0jxs0(cid:82)xfs(cid:101)0(s(cid:82))axjdesw(d ts)k+(s(cid:101)b,1t()x√js1−−txp0αi),β+(t(cid:101)b)0,dt ds ds, (B) =w(x )pα,β(x ). (16) ij j i j Case (b): v wµ((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akip(sαih,,βt)(ix√)s1−=t (cid:9)(w(−(t1))(cid:80)[(cid:101)b1ni=(x0(cid:101)a−ipxαi0,)β(cid:9)(t)()−d1t)[d(cid:82)sxx0d(cid:82)sx]s]0+f(cid:101)((cid:101)bs0).ds ds+ (17) We can write equation (17) as follows: c (cid:82)x (cid:82)s rµ(cid:9)(cid:80)(−ni1=)0[(cid:101)b(cid:101)a1i((cid:82)xxx−0(cid:82)xxs00)(cid:82)(cid:9)axk(−(s1,)t[)√x0s1−xt0(fw(cid:101)((st))pdαis,βd(st+)) dt ds ds]]+(cid:101)b0 = Aw(x)(cid:80)ni=0(cid:101)aipαi,β(x)+R(cid:101)n(x). (18) So, we have (cid:82)x (cid:82)s µ(cid:9)(cid:80)(−ni1=)0[(cid:101)b(cid:101)a1i((cid:82)xxx−0(cid:82)xxs00)(cid:82)(cid:9)axk(−(s1,)t[)√x0s1−xt0(fw(cid:101)((st))(cid:80)dsni=ds0+(cid:101)aipαi,β(t)) dt ds ds]]+(cid:101)b0 (cid:9)w(x)(cid:80)ni=0(cid:101)aipαi,β(x)=R(cid:101)n(x). (19) Therefore we can write, µ(cid:9)(cid:80)(−ni1=)0[(cid:101)b(cid:101)a1i((cid:82)xxjx0j−(cid:82)xxs00(cid:82))a(cid:9)xj(k−(s1,)t[)(cid:82)x√x0js1−(cid:82)txs0(fw(cid:101)((st))(cid:80)dsni=ds0+(cid:101)aipαi,β(t)) dt ds ds]]+(cid:101)b0 (cid:9)w(xj)(cid:80)ni=0(cid:101)aipαi,β(xj)=(cid:101)0. (20) www.SID.ir FuzzyCollocationMethodsforSecond-orderFuzzyAbel-VolterraIntegro-differentialEquations77 Equation (20) can be written in the following operator form F(cid:101)⊕A(cid:101)a(cid:9)B(cid:101)a=(cid:101)0. (21) (cid:88) (cid:88) (cid:88) (cid:88) F(cid:101)j ⊕ aij(cid:101)aj ⊕ aij (cid:9)( bij(cid:101)aj ⊕ bij(cid:101)aj)=(cid:101)0. aij≥0 aij<0 bij≥0 bij<0 Where, (cid:82)x (cid:82)s ((FA(cid:101)))ijj==(cid:9)µ((cid:82)−xx10j)(cid:82)[(cid:101)bxs10((cid:82)xax−jwx(0t))(cid:9)k(s(−,t1))√[s1x−0tpxαi0,βf(cid:101)((ts))ddtsddss]d+s,(cid:101)b0, (B) =w(x )pα,β(x ). (22) ij j i j D Case (c) wµ((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akip(sαi,,βt)(x√)s1−=t (cid:9)(w(−(t1))(cid:80)[(cid:101)b1ni=(x0(cid:101)a−ipxαi0,)β+(t)(cid:82))xxd0t(cid:82)xds0sfI(cid:101)d(ss])+ds(cid:101)b0d.s+ (23) We can write equation (23) as follows: S (cid:82)x (cid:82)s µ(cid:9)(cid:82)(−xx01(cid:82))x[s(cid:101)b01(cid:82)(axxk−(sx,0t))+√s1−xt0(wx0(tf(cid:101))((cid:80)s)nid=s0(cid:101)adisfp+αi, β(t)) dt ds ds]+(cid:101)b0 = w(x)(cid:80)ni=0(cid:101)aipαi,β(x)+R(cid:101)n(x). (24) o So, we have (cid:82)x (cid:82)s µ(cid:9)(cid:82)(−xx01(cid:82))x[s(cid:101)b01(cid:82)(axxk−(sx,0t))+√s1−xt0e(wx0 (tf(cid:101))((cid:80)s)nid=s0(cid:101)adisp+αi,β(t)) dt ds ds]+(cid:101)b0 (cid:9)w(x)(cid:80)ni=0(cid:101)aipαi,βv(x)=R(cid:101)n(x). (25) Therefore we can write, i (cid:9)µ(cid:82)(−xx0j1)(cid:82)[x(cid:101)bs01((cid:82)xahxjj−k(xs,0t))+√s(cid:82)1−xxt0j((cid:82)wxs0(tf(cid:101))((cid:80)s)ni=ds0(cid:101)adisp+αi,β(t)) dt ds ds]+(cid:101)b0 (cid:9)w(cxj)(cid:80)ni=0(cid:101)aipαi,β(xj)=(cid:101)0. (26) Equation (26) can be written in the following operator form r F(cid:101)(cid:9)A(cid:101)a(cid:9)B(cid:101)a=(cid:101)0. (27) A (cid:88) (cid:88) (cid:88) (cid:88) F(cid:101)j (cid:9)( aij(cid:101)aj ⊕ aij)(cid:9)( bij(cid:101)aj ⊕ bij(cid:101)aj)=(cid:101)0. aij≥0 aij<0 bij≥0 bij<0 Where, (cid:82)x (cid:82)s ((AF(cid:101)))ijj==(cid:9)µ((cid:82)−xx10j)(cid:82)[(cid:101)bxs10((cid:82)xax−jwx(0t))+k(s,xt0)√xs01−f(cid:101)t(psαi),βd(st)dsd]t+d(cid:101)bs0,ds, (B) =w(x )pα,β(x ). (28) ij j i j Case (d) wµ((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akip(sαi,,βt)(x√)s1−=t [((cid:101)bw1((xt)−(cid:80)xni0=)0(cid:9)(cid:101)ai(p−αi,1β)([t(cid:82))x)x0d(cid:82)txs0dfs(cid:101)(dss)]]d+s d(cid:101)bs0.+ (29) www.SID.ir 78 S.S.Behzadi,T.AllahviranlooandS.Abbasbandy We can write equation (29) (cid:82)x (cid:82)s µ[(cid:101)b1(cid:82)(xxx0(cid:82)−xs0x(cid:82)0a)x(cid:9)k((s−,t1))√[s1x−0t x(w0f((cid:101)t()s(cid:80)) dnis=0d(cid:101)asi+pαi,β(t)) dt ds ds]]+(cid:101)b0 = w(x)(cid:80)ni=0(cid:101)aipαi,β(x)+R(cid:101)n(x). (30) So, we have (cid:82)x (cid:82)s µ[(cid:101)b1(cid:82)(xxx0(cid:82)−xs0x(cid:82)0a)x(cid:9)k((s−,t1))√[s1x−0t x(w0f((cid:101)t()s(cid:80)) dnis=0d(cid:101)asi+pαi,β(t)) dt ds ds]]+(cid:101)b0 (cid:9)w(x)(cid:80)ni=0(cid:101)aipαi,β(x)=R(cid:101)n(x). (31) D Therefore we can write, [µ(cid:101)b1(cid:82)(xxx0jj(cid:82)−xs0x(cid:82)0ax)j(cid:9)k((s−,1t))[√(cid:82)sx1x−0jt(cid:82)(xsw0f((cid:101)t()s(cid:80)) dni=s0d(cid:101)asi+pαi,β(t)) dt dIs ds]]+(cid:101)b0 (cid:9)w(xj)(cid:80)ni=0(cid:101)aipαi,β(xj)=(cid:101)0. S (32) Equation (32) can be written in the following operator form F(cid:101)⊕A(cid:101)a(cid:9)B(cid:101)a=f(cid:101)0. (33) (cid:88) (cid:88) (cid:88)o (cid:88) F(cid:101)j ⊕ aij(cid:101)aj ⊕ aij (cid:9)( bij(cid:101)aj ⊕ bij(cid:101)aj)=(cid:101)0. aij≥0 aij<0 bij≥0 bij<0 Where, e (cid:82)x (cid:82)s ((AF(cid:101)))ijj==(cid:101)bµ1((cid:82)xxx0−j(cid:82)xxvs00)(cid:82)(cid:9)axj(w−(1t))kx(s0,tx)0√f(cid:101)s1(−st)pdαis,β(dts)+d(cid:101)bt0d,s ds, (B)ij =w(ixj)pαi,β(xj). (34) h 3.2. Description of the Airfoil polynomials fuzzy collocation method. To obtain the approximation solution of equation (1), according to the airfoil polyno- mials method ocf the first kind [13] we can write: n r x(cid:101)n(x)=w(x)(cid:88)(cid:101)aiti(x), (35) wheAre i=0 (cid:113) w(x)= 1+x, 1−x cos[(1)arccosx] ti(x)= cos(21arccosx) , 2 sin[(1)arcsinx] ui(x)= cos(21arcsinx) , (1+x)t(cid:48)(x)=2 (i+ 1)u (x)− 1t (x). (36) i 2 i 2 i Now from this method, we have four cases as follows: Case (a): µw((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akit(is(,xt))√=s1−(cid:82)xtx0((cid:82)wxs(0tf)(cid:101)((cid:80)s)ni=d0s(cid:101)adisti+(t)) dt ds ds+(cid:101)b1(x−x0)+(cid:101)b0. (37) www.SID.ir FuzzyCollocationMethodsforSecond-orderFuzzyAbel-VolterraIntegro-differentialEquations79 We can write equation (37) as follows: (cid:82)xx0(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0(cid:82)xs0(cid:82)axw(t)k(s,t)√s1−tti(t) dt ds ds+ (cid:101)b1(x−x0)+(cid:101)b0 =w(x)(cid:80)ni=0(cid:101)aipαi,β(x)+R(cid:101)n(x). (38) So, we have (cid:82)xx0(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0(cid:82)xs0(cid:82)axw(t)k(s,t)√s1−tti(t) dt ds ds+ (cid:101)b1(x−x0)+(cid:101)b0(cid:9)w(x)(cid:80)ni=0(cid:101)aipαi,β(x)=R(cid:101)n(x), (39) R(cid:101)n(xj)=(cid:101)0. (40) It means, D Rr(x )=0, Rr(x )=0, ∀r ∈[0,1], n j n j where xj (j =1,...,n) are collocation points. I 2i−1 x =−cos positiveimplicative, j =S0,1,...,n. j 2n+3 Therefore we can write, (cid:82)xx0j(cid:82)xs0f(cid:101)(s) ds ds+µ(cid:80)ni=0(cid:101)ai(cid:82)xx0j(cid:82)xs0(cid:82)axjwf(t)k(s,t)√s1−tti(t) dt ds ds+ (cid:101)b1(xj −x0)+(cid:101)b0(cid:9)w(xj)(cid:80)ni=0(cid:101)aiti(xj)o=(cid:101)0. (41) Equation (41) can be written in the following operator form F(cid:101)⊕eA(cid:101)a(cid:9)B(cid:101)a=(cid:101)0. (42) (cid:88) (cid:88) (cid:88) (cid:88) F(cid:101)j ⊕ aij(cid:101)aj ⊕vaij (cid:9)( bij(cid:101)aj ⊕ bij(cid:101)aj)=(cid:101)0. aij≥0 aij<0 bij≥0 bij<0 Where, i ((FA(cid:101)))ijj==h(cid:82)µxx0(cid:82)jxx(cid:82)0jxs0(cid:82)xfs(cid:101)0(s(cid:82))axjdsw(dts)k+(s(cid:101)b,1t()x√js1−−txt0i()t+) (cid:101)bd0t,ds ds, c(B) =w(x )t (x ). (43) ij j i j Case (b): r Awµ((cid:82)xxx0)(cid:80)(cid:82)xs0ni=(cid:82)0ax(cid:101)akit(is(,xt))√=s1−(cid:9)t(−(w1()t[(cid:101)b)1(cid:80)(xni=−0x(cid:101)a0it)i(cid:9)(t)()−d1t)[d(cid:82)sxx0d(cid:82)sx]s]0+f(cid:101)((cid:101)bs0).ds ds+ (44) We can write equation (44) as follows: (cid:82)x (cid:82)s (cid:9)µ(cid:80)(−ni1=)0[(cid:101)b(cid:101)a1i((cid:82)xxx−0(cid:82)xxs00)(cid:82)(cid:9)axk(−(s1,)t[)√x0s1−xt0(fw(cid:101)((st))tdi(st)d)s+dt ds ds]]+(cid:101)b0 = w(x)(cid:80)ni=0(cid:101)aiti(x)+R(cid:101)n(x). (45) So, we have (cid:82)x (cid:82)s µ(cid:9)(cid:80)(−ni1=)0[(cid:101)b(cid:101)a1i((cid:82)xxx−0(cid:82)xxs00)(cid:82)(cid:9)axk(−(s1,)t[)√x0s1−xt0(fw(cid:101)((st))(cid:80)dsni=ds0+(cid:101)aiti(t)) dt ds ds]]+(cid:101)b0 (cid:9)w(x)(cid:80)ni=0(cid:101)aiti(x)=R(cid:101)n(x). (46) www.SID.ir
Description: