ebook img

Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing PDF

20 Pages·2012·1.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing

ChCahpatpetre r130 Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing MakotoYasuda Additionalinformationisavailableattheendofthechapter http://dx.doi.org/10.5772/48659 1.Introduction Many engineering problems can be formulated as optimization problems, and the deterministicannealing(DA)method[20]isknownasaneffectiveoptimizationmethodfor such problems. DA is a deterministicvariant of simulated annealing (SA) [1, 10]. The DA characterizes the minimizationproblemof costfunctions as the minimization ofHelmholtz freeenergywhichdependsona(pseudo)temperature,andtrackstheminimumoffreeenergy while decreasing temperature and thus it can deterministically optimize the function at a giventemperature[20]. Hence,theDAismoreefficientthantheSA,butdoesnotguarantee aglobaloptimalsolution. ThestudyontheDAin[20]addressedavoidanceofthepoorlocal minimaofcostfunctionofdataclustering.Thenitwasextensivelyappliedtovarioussubjects such as combinational optimization problems[21], vector quantization [4], classifierdesign [13],pairwisedataclustering[9]andsoon. On the other hand, clustering is a method which partitions a given set of data points into subgroups,andisoneofmajortoolsfordataanalysis. Itissupposedthat,intherealworld, clusterboundariesarenotsoclearthatfuzzyclusteringismoresuitablethancrispclustering. Bezdek[2] proposed the fuzzy c-means (FCM) which is now well known as the standard techniqueforfuzzyclustering. Then, after the work of Li et al.[11] which formulated the regularization of the FCM with Shannon entropy, Miyamoto et al.[14] discussed the FCM within the framework of the Shannon entropybasedclustering. Fromthehistoricalpointofview, however, itshouldbe notedthatRoseetal.[20]firststudiedthestatisticalmechanicalanalogyoftheFCMwiththe maximumentropymethod,whichwasbasicallyprobabilisticclustering. Tomeasurethe“indefiniteness”offuzzyset,DeLucaandTermini[6]definedfuzzyentropy after Shannon. Afterwards, some similar measures from the wider viewpoints of the indefinitenesswereproposed[15,16]. Fuzzyentropyhasbeenusedforknowledgeretrieval fromfuzzydatabase[3]andimageprocessing[31],andprovedtobeuseful. Tsallis [24] achieved nonextensive extension of the Boltzmann-Gibbs statistics. Tsallis postulated a generalization form of entropy with a generalization parameter q, which, in a ©2012Yasuda,licenseeInTech.Thisisanopenaccesschapterdistributedunderthetermsofthe CreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by/3.0),whichpermits unrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. 272 2Simulated Annealing – Advances, Applications and Hybridizations Will-be-set-by-IN-TECH limitofq→1,reachestheShannonentropy.Lateron,Menardet.al.[12]derivedamembership functionbyregularizingFCMwiththeTsallisentropy. In this chapter, by maximizing the various entropies within the framework of FCM, the membershipfunctionswhichtakethefamiliarformsofthestatiticalmechanicaldistribution functionsarederived. Theadvantagetousethestatisticalmechanicalmembershipfunctions is that the fuzzy c-means clustering can be interpreted and analyzed from a statistical mechanicalpointofview[27,28] Afterthat,wefocusontheFermi-Diraclikemembershipfunction,because,ascomparedtothe Maxwell-Boltzmann-like membership function, the Fermi-Dirac-like membership function hasextraparametersα s(α correspondstoachemicalpotentialinstatisticalmechanics[19], k k and kdenotesadatapoint), whichmakeitpossibletorepresentvariousclustershapeslike former clustering methods based on such as the Gaussian mixture[7], and the degree of fuzzy entropy[23]. α s stronglyaffect clustering resultsand they mustbe optimized under k anormalizationconstraintofFCM.Ontheotherhand,theDAmethod,thoughitisefficient, does not give appropriate values of α s by itself and the DA clustering sometimes fails if k α sareimproperlygiven. Accordingly,weintroduceSAtooptimizeα sbecause,aspointed k k above, both ofDAand SAcontain the parameter correspondingto the systemtemperature andcanbenaturallycombinedasDASA. Nevertheless,thisapproachcausesafewproblems.(1)Howtoestimatetheinitialvaluesofα s k underthe normalizationconstraint? (2)Howtoestimate theinitial annealing temperature? (3)SAmustoptimizearealnumberα [5,26].(4)SAmustoptimizemanyα s[22]. k k LinearapproximationsoftheFermi-Dirac-likemembershipfunctionisusefulinguessingthe initialα sandtheinitialannealingtemperatureofDA. k InordertoperformSAinamanyvariablesdomain,α stobeoptimizedareselectedaccording k toaselectionrule. Inanearlyannealingstages,mostα sareoptimized. Inafinalannealing k stage, however, only α s of data which locate sufficiently away from all cluster centers are k optimized because their memberships might be fuzzy. Distances between the data and the cluster centers are measured by using linear approximations of the Fermi-Dirac-like membershipfunction. However, DASAsuffersafewdisadvantages. Oneofthem isthat itisnotnecessarilyeasy tointerpolatemembershipfunctionsobtainedbyDASA,sincetheirvaluesarequitedifferent eachother.Thefractalinterpolationmethod[17]issuitablefortheseroughfunctions[30]. Numerical experiments show that DASA clusters data which distribute in various shapes moreproperlyandstablythansingleDA.Also,theeffectivenessofthefractalinterpolationis examined. 2.Fuzzyc-means wLehticXh=sho{ux1ld,..b.e,xdni}v(idxked=in(txo1k,c..c.l,uxstkpe)rs∈CR=p) b{eCa1,d..a.t,aCsce}t.inLaetpV-dim=en{svio1,n.a.l.,revacl}(svpiac=e, (v1,...,v p)) be the centers of clusters and u ∈ [0,1](i = 1,...,c;k = 1,...,n) be the i i ik membershipfunction.Alsolet n c J = ∑ ∑u (d )m (m>1) (1) ik ik k=1i=1 Fuzzyc-MeansClustering,EFnutrzopzyyM cax-iMmizeaationn,sa nCdlDuestetremrininistgic,a EndnStimroulpatyed MAnanexailimngization, and Deterministic and Simulated Annealing3 273 be the objective function of the FCM where d = (cid:4)x −v(cid:4)2. In the FCM, under the ik k i normalizationconstraintof c ∑u =1 ∀k, (2) ik i=1 theLagrangefunctionL isgivenby FCM (cid:2) (cid:3) n c L = J− ∑ η ∑u −1 , (3) FCM k ik k=1 i=1 where η is the Lagrange multiplier. Bezdek[2] showed that the FCM approaches crisp k clusteringasmdecreasesto+1. 3.Entropymaximization ofFCM 3.1.Shannonentropymaximization First, we introduce the Shannon entropy into the FCM clustering. The Shannon entropy is givenby n c S=− ∑ ∑u logu . (4) ik ik k=1i=1 Underthenormalizationconstraintandsettingmto1,thefuzzyentropyfunctionalisgiven by (cid:2) (cid:3) n c n c δS− ∑ α δ ∑u −1 −β ∑ ∑δ(u d ), (5) k ik ik ik k=1 i=1 k=1i=1 whereα and βaretheLagrangemultipliers,andα mustbedeterminedsoastosatisfyEq. k k (2).ThestationaryconditionforEq.(5)leadstothefollowingmembershipfunction u = e−βdik . (6) ik ∑cj=1e−βdjk andtheclustercenters v = ∑nk=1uikxk. (7) i ∑nk=1uik 3.2.Fuzzyentropymaximization WethenintroducethefuzzyentropyintotheFCMclustering. Thefuzzyentropyisgivenby n c Sˆ=− ∑ ∑{uˆ loguˆ +(1−uˆ )log(1−ˆu )}. (8) ik ik ik ik k=1i=1 Thefuzzyentropyfunctionalisgivenby (cid:2) (cid:3) n c n c δSˆ− ∑ α δ ∑uˆ −1 −β ∑ ∑δ(uˆ d ), (9) k ik ik ik k=1 i=1 k=1i=1 274 4Simulated Annealing – Advances, Applications and Hybridizations Will-be-set-by-IN-TECH whereα andβaretheLagrangemultipliers[28].ThestationaryconditionforEq.(9)leadsto k thefollowingmembershipfunction 1 uˆ = , (10) ik eαk+βdik+1 andtheclustercenters v = ∑nk=1uˆikxk. (11) i ∑nk=1uˆik InEq. (10),βdefinestheextentofthedistribution[27]. Equation(10)isformallynormalized as uˆ = 1 /∑c 1 . (12) ik eαk+βdik+1 j=1eαk+βdjk+1 3.3.Tsallisentropymaximization Letv˜ andu˜ bethecentersofclustersandthemembershipfunctions,respectively. i ik TheTsallisentropyisdefinedas (cid:2) (cid:3) S˜=− 1 ∑n ∑c u˜q −1 , (13) q−1 k=1i=1 ik whereq∈Risanyrealnumber.Theobjectivefunctionisrewrittenas n c U˜ = ∑ ∑u˜qd˜ , (14) ik ik k=1i=1 whered˜ =(cid:4)x −v˜ (cid:4)2. ik k i Accordingly,theTsallisentropyfunctionalisgivenby (cid:2) (cid:3) n c n c δS˜− ∑ α δ ∑u˜ −1 −β ∑ ∑δ(u˜qd˜ ). (15) k ik ik ik k=1 i=1 k=1i=1 ThestationaryconditionforEq.(15)yieldstothefollowingmembershipfunction u˜ = {1−β(1−q)d˜ik}1−1q, (16) ik Z˜ where c Z˜ = ∑{1−β(1−q)d˜jk}1−1q. (17) j=1 Inthiscase,theclustercentersaregivenby v˜ = ∑nk=1u˜qikxk. (18) i ∑nk=1u˜qik Inthelimitofq→1,theTsallisentropyrecoverstheShannonentropy[24]andu˜ approaches ik u inEq.(6). ik Fuzzyc-MeansClustering,EFnutrzopzyyM cax-iMmizeaationn,sa nCdlDuestetremrininistgic,a EndnStimroulpatyed MAnanexailimngization, and Deterministic and Simulated Annealing5 275 4.Entropymaximization andstatistical physics 4.1.ShannonentropybasedFCMstatistics IntheShannonentropybasedFCM,thesumofthestates(thepartitionfunction)forthegrand canonicalensembleoffuzzyclusteringcanbewrittenas n c Z= ∏ ∑e−βdik. (19) k=1i=1 BysubstitutingEq.(19)forF=−(1/β)(logZ)[19],thefreeenergybecomes (cid:4) (cid:5) F=−1 ∑n log ∑c e−βdik . (20) β k=1 i=1 Stable thermal equilibrium requires a minimization of the free energy. By formulating deterministicannealingasaminimizationofthefreeenergy,∂F/∂v =0yields i v = ∑nk=1uikxk. (21) i ∑nk=1uik ThisclustercenteristhesameasthatinEq.(7). 4.2.FuzzyentropybasedFCMstatistics In a group of independent particles, the total energy and the total number of particles are givenby E = ∑ (cid:7)n and N = ∑ n, respectively,where(cid:7) representstheenergyleveland l l l l l l n representsthe numberofparticlesthat occupy (cid:7). Wecanwritethesumofstates, orthe l l partitionfunction,intheform: ZN = ∑ e−β∑l(cid:7)lnl (22) ∑l(cid:7)lnl=E,∑lnl=N whereβistheproductoftheinverseoftemperatureTandk (Boltzmannconstant).However, B itisdifficulttotakethesumsin(22)countingupallpossibledivisions.Accordingly,wemake thenumberofparticlesn avariable,andadjustthenewparameterα(chemicalpotential)so l astomake∑ (cid:7) n = Eand∑ n = Naresatisfied. Hence,thisbecomesthegrandcanonical l l l l l distribution,andthesumofstates(thegrandpartitionfunction)Ξisgivenby[8,19] ∞ ∞ Ξ= ∑(e−α)NZN =∏ ∑ (e−α−β(cid:7)l)nl. (23) N=0 l nl=0 ForparticlesgovernedbytheFermi-Diracdistribution,Ξcanberewrittenas Ξ=∏(1+e−α−β(cid:7)l). (24) l Also,n isaveragedas l 1 (cid:6)n (cid:7)= (25) l eα+β(cid:7)l+1 whereαisdefinedbytheconditionthatN=∑ (cid:6)n (cid:7)[19].HelmholtzfreeenergyFis,fromthe l l relationshipF=−k TlogZ , B N 276 6Simulated Annealing – Advances, Applications and Hybridizations Will-be-set-by-IN-TECH (cid:6) (cid:7) (cid:4) (cid:5) F = −kBT logΞ−α∂∂αlogΞ =−1β ∑log(1+e−α−β(cid:7)l)+αN . (26) l Takingthat (cid:7) E=∑ l (27) eα+β(cid:7)l+1 l intoaccount,theentropyS=(E−F)/Thastheform S=−k ∑{(cid:6)n (cid:7)log(cid:6)n (cid:7)+(1−(cid:6)n (cid:7))log(1−(cid:6)n (cid:7))}. (28) B l l l l l Ifstatesaredegeneratedtothedegreeofν,thenumberofparticleswhichoccupy(cid:7) is l l (cid:6)N(cid:7)=ν(cid:6)n (cid:7), (29) l l l andwecanrewritetheentropySas (cid:6) (cid:7) (cid:6) (cid:7) S=−k ∑{(cid:6)Nl(cid:7)log(cid:6)Nl(cid:7) + 1− (cid:6)Nl(cid:7) log 1− (cid:6)Nl(cid:7) }, (30) B ν ν ν ν l l l l l whichissimilartofuzzyentropyin(8). Asaresult,u correspondstoagraindensity(cid:6)n (cid:7) ik l andtheinverseofβin(10)representsthesystemorcomputationaltemperatureT. In the FCM clustering, note that any data can belong to any cluster, the grand partition functioncanbewrittenas n c Ξ= ∏∏(1+e−αk−βdik), (31) k=1i=1 which, fromthe relationship F = −(1/β)(logΞ−α ∂logΞ/∂α ), gives the Helmholtz free k k energy (cid:4) (cid:5) F=−1β ∑n ∑c log(1+e−αk−βdik)+αk . (32) k=1 i=1 TheinverseofβrepresentsthesystemorcomputationaltemperatureT. 4.3.CorrespondencebetweenFermi-Diracstatisticsandfuzzyclustering In the previoussubsection, we have formulated the fuzzy entropy regularized FCM as the DA clustering and showed that its mechanics was no other than the statistics of a particle system(theFermi-Diracstatistics). Thecorrespondencesbetweenfuzzyclustering(FC)and the Fermi-Diracstatistics (FD) are summarized in TABLE 1. The major differencebetween fuzzy clustering and statistical mechanics is the fact that data are distinguishable and can belong to multiple clusters, though particles which occupy a same energy state are not distinguishable.Thiscausesasummationoramultiplicationnotonlyonibutonkaswellin fuzzyclustering. Thus,fuzzyclusteringandstatisticalmechanicsdescribedinthispaperare notmathematicallyequivalent. • Constraints: (a)Constraintthatthesumofallparticles NisfixedinFDiscorrespondent withthenormalizationconstraintinFC.Energylevellisequivalenttotheclusternumber Fuzzyc-MeansClustering,EFnutrzopzyyM cax-iMmizeaationn,sa nCdlDuestetremrininistgic,a EndnStimroulpatyed MAnanexailimngization, and Deterministic and Simulated Annealing7 277 Fermi-DiracStatistics FuzzyClustering Constraints (a)∑nl=N(b)∑(cid:7)lnl=E (a)∑c uik=1 l l i=1 DistributionFunction (cid:6)nl(cid:7)=(cid:8)eα+β1(cid:7)l+1 uik= eαk+β1dik+1 Entropy S=−kB∑ (cid:6)Nνl(cid:7)log(cid:6)Nνl(cid:7) SFE=−∑n ∑c {uikloguik (cid:8)+(cid:6)1−(cid:6)Nνll(cid:7)(cid:7)logl(cid:6)1−(cid:6)Nνll(cid:7)(cid:7)(cid:9) +(1−ukik=)1lio=g1(1−uik)} l l Temperature(T) (given) (given) (cid:10) (cid:11) (cid:10) (cid:11) PartitionFunction(Ξ) ∏ 1+e−α−β(cid:7)l ∏n ∏c 1+e−αk−βdik (cid:4) l (cid:5) k(cid:4)=1i=1 (cid:5) FreeEnergy(F) −β1 ∑log(1+e−α−β(cid:7)l)+αN −β1 ∑n ∑c log(1+e−αk−βdik)+αk l k=1 i=1 Energy(E) ∑l eα+β(cid:7)(cid:7)ll+1 k∑=n1i∑=c1eαk+βddiikk+1 Table1.CorrespondenceofFermi-DiracStatisticsandFuzzyClustering. i. Inaddition,thefactthatdatacanbelongtomultipleclustersleadstothesummationon k.(b)ThereisnoconstraintinFCwhichcorrespondstotheconstraintthatthetotalenergy equalsEinFD.Wehavetominimize∑nk=1∑ci=1dikuikinFC. • Distribution Function: In FD, (cid:6)n (cid:7) gives an average particle number which occupies l energylevell,becauseparticlescannotbedistinguishedfromeachother.InFC,however, dataaredistinguishable,andforthatreason, u givesaprobabilityofdatabelongingto ik multipleclusters. • Entropy:(cid:6)N(cid:7)issupposedtocorrespondtoaclustercapacity. ThemeaningsofSandS l FE willbediscussedindetailinthenextsubsection. • Temperature:Temperatureisgiveninbothcases1. • Partition Function: The fact that data can belong to multiple clusters simultaneously causestheproductoverkforFC. • FreeEnergy: HelmholtzfreeenergyFisgivenby−T(logΞ−α ∂logΞ/∂α )inFC.Both k k SandS equal−∂F/∂Tasexpectedfromstatisticalphysics. FE • Energy:TherelationshipE=F+TSorE= F+TS holdsbetweenE,F,TandSorS . FE FE 4.4.MeaningsofFermi-Diracdistributionfunctionandfuzzyentropy In the entropy function (28) or (30) for the particle system, we can consider the first term to be the entropy of electrons and the second to be that of holes. In this case, the physical limitationthatonlyoneparticlecanoccupyanenergylevelatatimeresultsintheentropythat formulatesthestateinwhichanelectronandaholeexistsimultaneouslyandexchangingthem makes no difference. Meanwhile, what correspondto electronand hole infuzzy clustering are the probability of fuzzy event that a data belongs to a cluster and the probability of its complementaryevent,respectively. Fig.2showsatwo-dimensionalvirtualclusterdensitydistributionmodel. Alatticecanhave atmostonedata.LetM bethetotalnumberoflatticesandm bethenumberoflatticeswhich l l 1IntheFCM,however,temperatureisdeterminedasaresultofclustering. 278 8Simulated Annealing – Advances, Applications and Hybridizations Will-be-set-by-IN-TECH haveadatainit(markedbyablackbox). Then,thenumberofavailabledivisionsofdatato latticesisdenotedby W =∏ Ml! (33) m !(M −m )! l l l l which, from S = k logW (the Gibbs entropy), gives the form similar to (30)[8]. By B extremizing S, we have the mostprobable distributionlike(25). In this case, as thereis no distinctionbetweendata,onlythenumbersofblackandwhitelatticesconstitutetheentropy. Fuzzyentropyin(8),ontheotherhand, givestheamountofinformationofweatheradata belongstoafuzzyset(orcluster)ornot,averagedoverindependentdatax . k Changing a viewpoint, the stationary entropy values for the particle system seems to be a requestforgivingthestabilityagainsttheperturbationwithcollisionsbetweenparticles. In fuzzyclustering,datareconfigurationbetweenclusterswiththemoveofclustercentersorthe change of clustershapes is correspondentto this stability. Letus representdata densityby (cid:6)(cid:7). If data transfer from clusters Ca and Cb to Cc and Cd as a magnitude of membership function, the transition probability from {...,Ca,...,Cb,...} to {...,Cc,...,Cd,...} will be proportional to (cid:6)Ca(cid:7)(cid:6)Cb(cid:7)(1−(cid:6)Cc(cid:7))(1−(cid:6)Cd(cid:7)) because a data enters a vacant lattice. Similarly, the transition probability from {...,Cc,...,Cd,...} to {...,Ca,...,Cb,...} will be proportionalto(cid:6)Cc(cid:7)(cid:6)Cd(cid:7)(1−(cid:6)Ca(cid:7))(1−(cid:6)Cb(cid:7)). Intheequilibriumstate,thetransitionsexhibit balance(thisisknownastheprincipleofdetailedbalance[19]).Thisrequires (cid:6)Ca(cid:7)(cid:6)Cb(cid:7) = (cid:6)Cc(cid:7)(cid:6)Cd(cid:7) . (34) (1−(cid:6)Ca(cid:7))(1−(cid:6)Cb(cid:7)) (1−(cid:6)Cc(cid:7))(1−(cid:6)Cd(cid:7)) Asaresult,ifenergyd isconservedbeforeandafterthetransition,(cid:6)C(cid:7)musthavetheform i i 1−(cid:6)C(cid:6)iC(cid:7) (cid:7) =e−α−βdi (35) i orFermi-Diracdistribution 1 (cid:6)C(cid:7)= , (36) i eα+βdi+1 whereαandβareconstants. Consequently,theentropylikefuzzyentropyisstatisticallycausedbythesystemthatallows complementary states. Fuzzy clustering handles a data itself, while statistical mechanics handlesalargenumberofparticlesandexaminesthechangeofmacroscopicphysicalquantity. ThenitisconcludedthatfuzzyclusteringexistsintheextremeofFermi-Diracstatistics,orthe Fermi-Diracstatisticsincludesfuzzyclusteringconceptually. 4.5.TsallisentropybasedFCMstatistics Ontheotherhand,U˜ andS˜satisfy S˜−βU˜ = ∑n Z˜1−q−1, (37) 1−q k=1 whichleadsto ∂S˜ =β. (38) ∂U˜ Fuzzyc-MeansClustering,EFnutrzopzyyM cax-iMmizeaationn,sa nCdlDuestetremrininistgic,a EndnStimroulpatyed MAnanexailimngization, and Deterministic and Simulated Annealing9 279 M1 M3 M2 Figure1.Simplelatticemodelofclusters. M1,M2,...representclusters.Blackandwhiteboxrepresent whetheradataexistsornot. Equation(38)makesitpossibletoregardβ−1asanartificialsystemtemperatureT[19].Then, thefreeenergycanbedefinedas F˜ =U˜ −TS˜=−1 ∑n Z˜1−q−1. (39) β 1−q k=1 U˜ canbederivedfromF˜as U˜ =− ∂ ∑n Z˜1−q−1. (40) ∂β 1−q k=1 ∂F˜/∂v˜ =0alsogives i v˜ = ∑nk=1u˜qikxk. (41) i ∑nk=1u˜qik 5.Deterministic annealing TheDAmethodisadeterministicvariantofSA.DAcharacterizestheminimizationproblem of the cost function as the minimization of the Helmholtz free energy which depends on the temperature, and tracks its minimum while decreasingthe temperatureand thus itcan deterministicallyoptimizethecostfunctionateachtemperature. Accordingto the principleof minimal freeenergyin statistical mechanics, the minimum of the Helmholtz free energy determines the distribution at thermal equilibrium [19]. Thus, formulatingthe DAclusteringas aminimization of(32) leadsto ∂F/∂v = 0at the current i temperature, and gives (10) and (11) again. Desirable cluster centers are obtained by calculating(10)and(11)repeatedly. In this chapter, we focusonapplication of DAto the Fermi-Dirac-likedistributionfunction describedintheSection4.2. 5.1.LinearapproximationofFermi-Diracdistributionfunction The Fermi-Diracdistributionfunction can be approximatedby linear functions. That is, as showninFig.1,theFermi-Diracdistributionfunctionoftheform: 280 1S0imulated Annealing – Advances, Applications and Hybridizations Will-be-set-by-IN-TECH 1.0 f(x) g(x) f(x), g(x)[]0.5 0 -α-1 √(-α/β) -α+1 √(-αβ ) √(-αβ ) [x] Figure2.TheFermi-Diracdistributionfunction f(x)anditslinearapproximationfunctionsg(x). 1 T Tnew x)] 0.5 f([ Δx 0 xnew x [x] Figure3.DecreasingofextentoftheFermi-Diracdistributionfunctionfromxtoxnewwithdecreasing thetemperaturefromTtoTnew. 1 f(x)= (42) eα+βx2+1 isapproximatedbythelinearfunctions ⎧ (cid:6) (cid:7) ⎪⎪⎪⎪⎪⎪⎨1.0 (cid:6)x≤ −ακ−1 (cid:7) κ α 1 −α−1 −α+1 g(x)= − x− + ≤x≤ , (43) ⎪⎪⎪⎪⎪⎪⎩0.02 2 2 (cid:6)−ακ+1 ≤x(cid:7) κ κ

Description:
Fuzzy c-Means Clustering, Entropy Maximization, In this chapter, by maximizing the various entropies within the framework of FCM, the [3] B.P.Buckles and F.E.Petry, “Information-theoretical characterization of fuzzy relational.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.