SSRvmanuscriptNo. (willbeinsertedbytheeditor) FUV and X-ray absorption in the Warm-Hot Intergalactic Medium P.Richter · F.B.S.Paerels · J.S.Kaastra 8 0 0 2 Received:20September2007;Accepted:21September2007 n a J Abstract TheWarm-HotIntergalacticMedium(WHIM)arisesfromshock-heatedgascol- 7 lapsinginlarge-scalefilamentsandprobablyharboursasubstantialfractionofthebaryons ] inthelocal Universe. Absorption-line measurements intheultraviolet (UV)andintheX- h raybandcurrentlyrepresentthebestmethodtostudytheWHIMatlowredshifts.Wehere p describethephysical properties of theWHIMand theconcepts behind WHIMabsorption - o linemeasurementsofHIandhighionssuchasOVI,OVII,andOVIIIinthefar-ultraviolet r andX-rayband.WereviewresultsofrecentWHIMabsorptionlinestudiescarriedoutwith t s UVandX-raysatellitessuchasFUSE,HST,Chandra,andXMM-Newtonanddiscusstheir a implicationsforourknowledgeoftheWHIM. [ Keywords galaxies: intergalactic medium · quasars: absorption lines · cosmology: 1 v large-scalestructureoftheUniverse 5 7 9 1 Introduction 0 . 1 As recent cosmological simulations imply, the temperature of the intergalactic medium 0 (IGM)undergoesasignificantchangefromhightolowredshiftsparalleltotheproceeding 8 of large-scale structure formation in the Universe (e.g., Cen&Ostriker 1999; Dave´ etal. 0 2001). As a result, a substantial fraction of the baryonic matter in the local Universe is : v expectedtoresideintheso-calledWarm-Hot IntergalacticMedium(WHIM). TheWHIM Xi represents a low-density (nH ∼10−6−10−4 cm−3), high-temperature (T ∼105−107 K) plasmathatprimarilyismadeofprotons,electrons,HeII,andHeIII,togetherwithtracesof r a somehighly-ionised heavy elements. TheWHIMis believedtoemerge from intergalactic gasthatisshock-heatedtohightemperaturesasthemediumiscollapsingundertheaction P.Richter Institutfu¨rPhysik,Universita¨tPotsdam,AmNeuenPalais10,D-14469Potsdam,Germany E-mail:[email protected] F.B.S.Paerels Department ofAstronomy andColumbia Astrophysics Laboratory, Columbia University, 550West120th Street,NewYork,NY10027,USA J.S.Kaastra SRON,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 2 of gravity in large-scale filaments (e.g., Valageasetal. 2002). In this scenario, part of the warm (photoionised) intergalactic medium that gives riseto theLya forest in the spectra ofdistantquasars(QSO)isfallingintothepotentialwellsoftheincreasinglypronounced filaments,gainsenergy(throughgravity),andisheatedtohightemperaturesbyshocksthat runthroughtheplasma. Becauseofthelowdensityandthehighdegreeofionisation,directobservationsofthe shock-heatedandcollisionallyionisedWHIMarechallengingwithcurrentinstrumentation (incontrast tothephotoionised IGM, whichiseasilyobservable through theLya forest). DiffuseemissionfromtheWHIMplasmamusthaveaverylowsurfacebrightnessanditsde- tectionawaitsUVandX-rayobservatoriesmoresensitivethancurrentlyavailable(see,e.g., Fangetal.2005;Kawaharaetal.2006).ThemostpromisingapproachtostudytheWHIM withobservationsatlowredshiftistosearchforabsorptionfeaturesfromtheWHIMinFUV and in the X-ray regime in the spectra of quasars, active galactic nuclei (AGN) and other suitedextragalacticbackgroundsources.AstheWHIMrepresentsahighly-ionisedplasma, themostimportantWHIMabsorptionlinesarethoseoriginatingfromtheelectronictransi- tions ofhigh-ionisation stateions (hereafter referredtoas”high ions”)ofabundant heavy elementssuchasoxygenandcarbon.Amongthese,five-timesionisedoxygen(OVI)isthe most valuable high ion to trace the WHIM at temperatures of T ∼3×105 K in the FUV regime.IntheX-rayband,theOVIIandOVIIItransitionsrepresentthekeyobservablesto tracetheWHIMathighertemperaturesintherange3×105<T <107.Inadditiontothe spectral signatures of high ions of heavy elements the search for broad and shallow Lya absorptionfromthetinyfractionofneutralhydrogenintheWHIMrepresentsanotherpos- sibilitytoidentifyandstudythemostmassiveWHIMfilamentsintheintergalacticmedium with FUV absorption spectroscopy. Finally, for the interpretation of the observed WHIM absorptionfeaturesinUVandX-rayspectrathecomparisonbetweenrealdataandartificial spectrageneratedbynumericalsimulationsthatincluderealisticgasphysicsisofgreatim- portancetoidentifypossiblepitfallsrelatedtotechnicalandphysicalissuessuchaslimited signal-to-noiseratiosandspectralresolution,line-broadeningmechanisms,non-equilibrium conditions,andothers. Inthis chapter, wereview the physics and methodology of theUV and X-ray absorp- tionmeasurementsofwarm-hot intergalacticgasatlowredshiftandsummarisetheresults ofrecentobservationsobtainedwithspace-basedobservatories.Theoutlineofthischapter is the following. The ionisation conditions of the WHIM and the most important absorp- tion signatures of this gas in the UV and X-ray band are presented in Sect.2. Recent UV absorption measurements oftheWHIM atlow redshift arediscussedinSect.3. Similarly, measurementsoftheWHIMintheX-rayarepresentedinSect.4.InSect.5wecomparethe resultsfromWHIMobservations withpredictionsfromnumericalsimulationsandgivean overview of WHIM measurements at high redshift. Finally, some concluding remarks are giveninSect.6. 2 PhysicalpropertiesoftheWHIM 2.1 WHIMionisationconditions TheoccurrenceandcharacteristicsoftheWHIMabsorptionsignaturesintheFUVandX- raybandaredeterminedtoahighdegreebytheionisationconditionsinthegas.Webriefly discuss the WHIM ionisation properties, as this is crucial for interpretation of the WHIM absorptionlinesinFUVandX-rayspectrathatariseinsuchwarm-hotgas.Generally,there 3 are two processes that determine the ionisation state of warm-hot gas in the intergalactic medium:collisionalionisationcausedbythehightemperatureofthegasincollapsedstruc- turesandphotoionisationbythecosmicFUVbackground. 2.1.1 Hydrogen Byfar most of themass of the WHIM is inthe form of ionised hydrogen. Therefore, un- derstanding theprocesses that lead totheionisation ofhydrogen is essentialfor the inter- pretation of WHIM absorption lines and for a reliable estimate of the baryon content of warm-hotintergalacticgas.Theionisationpotentialofneutralhydrogenis13.6eVandthus bothionisationbyparticlecollisionsandionisationbyhigh-energyphotonscontributetothe ionisationofHIinwarm-hotgas.Westartwithcollisionalionisation,whichisbelievedto dominatetheionisationofhydrogenattemperatures>105K. Incollisional ionisation equilibrium (CIE)– the most simple approach tocharacterise theionisationconditionsinlow-density,high-temperatureplasmas–theionisationfraction dependsonlyonthegastemperature.Ifweignoreanycharge-exchangereactions(whichis justifiedincaseofhydrogen), theneutral hydrogen fraction inCIEissimply theratiobe- tweentherecombinationcoefficienta (T)andthecollisionalionisationcoefficientb (T): H H a (T) fHI,coll= b H(T). (1) H Above gas temperatures of ∼1.5×104 K collisions by thermal electrons efficiently ionisehydrogentoahighdegree,andalreadyatT ∼3×104 Ktheneutralhydrogenfrac- tioninthegasislessthenonepercent. Forthetemperature rangethatischaracteristicfor theWHIM, T =105−107 K,one canapproximate theionisation fraction inacollisional ionisationequilibriumintheway log fHI,coll≈13.9−5.4logT+0.33(logT)2. (2) where T is inunits K (Richteretal. 2006a; Sutherland&Dopita 1993). Thus, for WHIM gaswithT =106KtheneutralhydrogenfractioninthegasinCIEisonly∼2.4×10−7. Next to particle collisions, photons with energies >13.6 eV contribute to the ionisa- tionoftheWHIM,inparticularinthelow-temperature WHIMtailat∼105 Kandbelow. Suchionisingphotonsinintergalacticspaceareindeedprovidedbythemetagalacticultra- violet (UV) background, originating from the hard radiation emitted by QSOs and AGN. Fig.1showsthespectralshapeoftheUVbackgroundatz=0(leftpanel)andtheredshift- dependence of the hydrogen photoionisation rate from the UV background (right panel) basedonthemodelsbyHaardt&Madau(1996). Consideringphotoionisation, onegenerallycanwritefortheneutral-hydrogen fraction inthegas: n a (T) e H fHI,photo= G , (3) HI wherea (T)denotesthetemperature-dependent recombinationrateofhydrogen,n isthe H e electrondensity,andG isthephotoionisation rate.G dependsontheambientionising HI HI radiation field Jn (in units ergcm−2s−1Hz−1 sr−1) in the WHIM provided by the meta- galacticUVbackground(seeFig.1): ¥ GHI=4p shnnJn dn ≈2.5×10−14J−23s−1. (4) nZ L 4 Fig.1 Leftpanel:SpectralshapeofthemetagalacticUVbackgroundatz=0(fromHaardt&Madau1996). Plottedisthefluxofphotons(Fn =4p Jn )againstthefrequencyn .Thehydrogenionisationedgeisindicated withadashedline.Rightpanel:Redshift-dependence ofthehydrogenphotoionisationrateG fromtheUV backgroundfortherangez=0toz=5.AdaptedfromHaardt&Madau(1996). Here,n L isthefrequencyattheLymanlimitands n denotesthephotoionisationcrosssec- tion of hydrogen, which scales with n −3 for frequencies larger that n (see Kaastraetal. L 2008 -Chapter9,thisvolume). Wehaveintroduced thedimensionless scalingfactorJ −23 which gives the metagalactic UV radiation intensity at the Lyman limit in units 10−23 ergcm−2s−1Hz−1 sr−1.Forz=0wehaveJ ∼1−2,whileforz=3thevalueforJ −23 −23 is ∼80, thus significantly higher (Haardt&Madau 1996). Assuming n =n and insert- e H ingaproperfunctionfora (T),wefinallycanwriteforthelogarithmicneutralhydrogen H fractioninapurelyphotoionisedWHIMplasma 16n T−0.76 logfHI,photo≈log JH 4 , (5) −23 ! wheren isthehydrogenvolumedensityinunitscm−3andT isthetemperatureinunits104 H 4 K.Thus,forpurelyphotoionisedintergalacticgasatz=0withn=5×10−6 andT =106 K we find that the neutral hydrogen fraction is fHI,photo ∼2.4×10−6. This is ten times higherthanforCIE,indicatingthatcollisionsdominatetheionisationfractionofhydrogenin intermediateandhigh-temperatureWHIMregions.However,notethatatlowertemperatures nearT =105 Katthesamedensitywehave fHI,photo∼ fHI,coll.SincethisistheWHIM temperatureregimepreferentiallydetectedbyUVabsorptionfeatures(e.g.,OVIandbroad Lya ), photoionisation is important and needs to be accounted for when it comes to the interpretationofWHIMabsorbersobservedintheFUV.FromaWHIMsimulationatz=0 including both collisional ionisation and photoionisation (Richteretal. 2006b; see Fig. 2) findthefollowingempiricalrelationbetweenneutralhydrogenfractionandgastemperature foraWHIMdensityrangebetweenlogn =−5.3and−5.6: H logfHI≈0.75−1.25logT. (6) ThisequationmayserveasathumbruletoestimateionisationfractionsinWHIMab- sorbersatz=0ifthegastemperatureisknown(e.g.,frommeasurementsofthelinewidths; seeSect.2.2.1). 5 Fig. 2 The neutral hydrogen fraction, log fHI = log(nHI/nH), in a WHIM simulation (photoionisation+collisional ionisation), is plotted as a function of the gas temperature, log T. The lightgrayshadedindicatescellsinthedensityrangelognH=−5to−7.Thedarkgrayshadedarearefers tocellsthathavelognH=−5.3to−5.6,thusadensityrangethatischaracteristic forWHIMabsorbers. AdaptedfromRichteretal.(2006b). Fig.3 CIEionfractionsofselectedhighionsofoxygen(OVI,OVII,OVIII;leftpanel)andneon(NeVIII, NeIX; right panel) in the WHIM temperature range log (T/K)=4.5−7.0, based on calculations by Sutherland&Dopita(1993). 2.1.2 Oxygenandothermetals While hydrogen provides most of the mass in the WHIM, the most important diagnostic linestostudythisgasphasearefromhighlyionisedmetalssuchasoxygen, neon, carbon, magnesium,andothers.Therefore,theunderstandingoftheionisationpropertiesoftheob- servedhighionsoftheseelementsisasimportant asforhydrogen. Asforhydrogen, both 6 collisionalionisationandphotoionisationneedtobeconsidered.Withitssingleelectron,hy- drogencanonlybeeitherneutralorfullyionised.Heavyelements,incontrast,haveseveral electrons availableandare–evenatveryhightemperatures –usuallyonlypartlyionised. Thus,electronictransitionsexistforsuchhighly-ionised metals(”highions”)inwarm-hot gas.OfparticularimportanceforobservationsoftheWHIMarethehighionisationstatesof oxygen,OVI,OVII,andOVIII,astheyhavestrongelectronictransitionsintheUV(OVI) andatX-raywavelengths(OVII&OVIII)andoxygenisarelativelyabundantelement.An- otherimportantmetalforobservingwarm-hotgasintheUVandX-raybandisneon(NeVII, NeVIII,NeIX,NeX).Incollisionalionisationequilibrium, theionisationstateoftheseel- ementsisdeterminedsolelybythetemperatureofthegas.Foreachelement,theionisation fractions of the ionisation states (e.g., four-times vs. five-times ionised) then are charac- terised by the respective ionisation potentials (IPs) of the individual ionisation levels. For instance,atT ∼1−3×105K,asignificantfractionoftheoxygenisfive-timesionised(O+5 orOVI,IP=138eV).Six-timesionisedoxygen(O+6orOVII,IP=739eV)andseven-times ionisedoxygen(O+7 orOVIII,IP=871eV)predominantlyexistathighertemperaturesin therange3×105−3×106 Kand3×106−107K,respectively.Fig.3showstheionisation fractionsofthemostimportanthighionsofoxygenandneon,basedontheCIEcalculations ofSutherland&Dopita(1993);seealsoKaastraetal.2008-Chapter9,thisvolume.High ionsofotherelementssuchascarbon,nitrogen, siliconandmagnesiumarelessimportant for WHIM observations as their observable transitions trace lower temperature gas (e.g., CIV,SiIV)ortheabundanceoftheseelementsintheintergalacticmediumaretoolow.Itis important tonoteatthispoint,thatthediscussedrelationbetweenionisationstate/fraction and gas temperature explicitly assumes that the gas is in an ionisation equilibrium. This may not be generally the casein the WHIM, however, as the densities are generally very low. For instance, under particular non-equilibrium conditions the timescales for cooling, recombination, andion/electronequilibrationmaydiffersignificantlyfromeachother(see forinstanceBykovetal.2008-Chapter8,thisvolume).Insuchacase,thepresenceofhigh ionssuchasOVIand/ormeasuredhigh-ionratioswouldnotserveasareliable”thermome- ter”fortheWHIMgas.Inaddition,WHIMfilamentsmostlikelyneitherareisothermalnor dotheyhaveaconstantparticledensity.Infact,asWHIMsimulationsdemonstrate,WHIM absorbersseemtorepresentamixofcoolerphotoionisedandhottercollisionallyionisedgas withasubstantialintrinsicdensityrange.Theabsorptionfeaturesfromhighionsarisingin suchamulti-phasemediumthereforearegenerallydifficulttointerpretintermsofphysical conditionsandbaryonbudget. Inview of thehigh energies required to produce the high ions of oxygen and neon in combinationwiththespectralshapeofthemetagalacticbackground radiation(seeFig.1), photoionisationofhighmetalionsintheWHIMislessimportantthanforhydrogen.How- ever,forOVIphotoionisationisimportantatlowredshiftsinWHIMregionswithverylow densitiesorinsystemslocatedclosetoastronglocalradiationsource(e.g.,inOVIsystems associated with the background QSO). Note that at high redshift, most of the intervening OVIappearstobephotoionisedowingtothesignificantlyhigherintensityofthemetagalac- ticbackgroundradiationintheearlyUniverse(seeSect.5.2). 7 Table1 DataonOandNehighionshavingobservableabsorptionlines Ion [X/H]1 Ionisation Absorption Band CIEtemperature2 potential[eV] lines[A˚] range[106K] OVI −3.34 138 1031.926 FUV 0.2−0.5 1037.617 OVII −3.34 739 21.602 X-ray 0.3−3.0 OVIII −3.34 871 18.969 X-ray 1.0−10.0 NeVIII −4.16 239 770.409 EUV 0.5−1.3 780.324 NeIX −4.16 1196 13.447 X-ray 0.6−6.3 1[X/H]isthelogofthenumberdensityofelementXrelativetohydrogenforSolarabundances,takenhere fromAsplundetal.(2004). 2CIEmodelsfromSutherland&Dopita(1993). 2.2 WHIMabsorptionsignaturesintheUVandX-rayband 2.2.1 UVabsorption Asindicatedintheprevioussubsection,five-timesionisedoxygen(OVI)isbyfarthemost important highiontotracetheWHIMattemperatures ofT ∼3×105 Kintheultraviolet regime (assuming CIE, see above). Oxygen is a relatively abundant element and the two lithium-like (1s22s)2S1/2 →(1s22p)2P1/2,3/2 electronic transitions of OVI located in the FUVat1031.9and1037.6A˚ havelargeoscillatorstrengths(f =0.133,f =0.066). 1031 1037 NexttoOVI,NeVIIItracesWHIMgasnearT ∼7×105 K(incollisionalionisationequi- librium) and thus is possibly suited to complement the OVI measurements of the WHIM inahigher temperatureregime. ThetwoavailableNeVIIIlinesarelocatedintheextreme ultraviolet (EUV) at 770.4 A˚ (f =0.103) and 780.3 A˚ (f =0.051), allowing us to 770 780 tracehigh-column density WHIMabsorbers at redshifts z>0.18 withcurrent FUV satel- litessuchasFUSE.However,asthecosmicabundanceofNeVIIIisrelativelylow,NeVIII isnotexpectedtobeaparticularlysensitivetraceroftheWHIMattheS/Nlevelsachievable withcurrentUVspectrographs.ThesameargumentholdsforthehighionMgX,whichhas two transitions in the EUV at even lower wavelengths (ll 609.8, 624.9 A˚). So far, only OVIandinonecaseNeVIIIhasbeenobservedintheWHIMatlowredshift(seeSect.3.2). NotethatWHIMabsorptionfeaturesbyOVI(andNeVIII)aremostlyunsaturatedandthe lineprofilesarefullyornearlyresolvedbycurrentUVinstrumentssuchasFUSEandSTIS, whichprovidespectralresolutionsofR=l /Dl ≈20,000and45,000,respectively.Table 1summarisesphysicalparametersofOandNehighionsandtheirobservabletransitionsin theUVandX-raybands. Four-timesionisednitrogen(NV;I.P.is98eV)alsoisbelievedtotracepredominantly collisionallyionisedgasattemperaturesnearT∼2×105K,butitslowercosmicabundance togetherwithitsdeficiencyinlowmetallicityenvironments duetonucleosynthesis effects (e.g.,Pettinietal.2002)makesitverydifficulttodetectintheWHIM.Otheravailablestrong high-ion transitionsintheUVfromcarbon (CIV ll 1548.2, 1550.8 A˚)andsilicon(SiIV ll 1393.8,1402.8A˚)arebelievedtotracemainlyphotoionisedgasattemperaturesT<105 K,butnottheshock-heatedwarm-hotgasathighertemperatures. Nexttohigh-ionabsorptionfromheavyelements,recentUVobservations(Richteretal. 2004;Sembachetal.2004;Lehneretal.2007)haveindicatedthatWHIMfilamentscanbe detectedinLya absorptionofneutral hydrogen. Although thevastmajorityofthehydro- gen in the WHIM is ionised (by collisional processes and UV radiation), a tiny fraction 8 (f <10−5,typically)ofneutralhydrogenisexpectedtobepresent.Dependingontheto- HI talgascolumndensityofaWHIMabsorberanditstemperature,weakHILya absorption atcolumndensities12.5≤logN(HI)≤14.0mayarisefromWHIMfilamentsandcouldbe usedtotracetheionisedhydrogencomponent.TheLya absorptionfromWHIMfilaments isverybroadduetothermallinebroadening,resultinginlargeDopplerparametersofb>40 kms−1.Suchlinesaregenerallydifficulttodetect,astheyarebroadandshallow.Highres- olution, highS/NFUVspectraofQSOswithsmoothbackground continuaarerequired to successfullysearchforbroadLya absorptioninthelow-redshiftWHIM.STISinstalledon theHSTistheonlyinstrumentthathasprovidedsuchdata,butduetotheinstrumentallimi- tationsofspace-basedobservatories,thenumberofQSOspectraadequateforsearchingfor WHIMbroadLya absorption(inthefollowingabbreviatedas”BLA”)isverylimited. ThebvaluesoftheBLAsareassumedtobecomposedofathermalcomponent,b ,and th anon-thermalcomponent,b ,inthewaythat nt b= b 2+b 2. (7) th nt Thenon-thermalcomponentmayincpludeprocesseslikemacroscopicturbulence,unre- solvedvelocity-components,andothers(seeRichteretal.2006aforadetaileddiscussion). Thecontributionofthethermalcomponenttobdependsonthegastemperature: 2kT T b = ≈0.13 kms−1, (8) th m A r r whereT isinK,kistheBoltzmannconstant,mistheparticlemass,andAistheatomic weight.Fortheshock-heatedWHIMgaswithlogT ≥5onethusexpectsb ≥40kms−1. th Thenon-thermal broadening mechanismsareexpectedtocontributetosomedegreetothe totalbvaluesinWHIMabsorbers(seeRichteretal.2006a),sothatthemeasuredbvalueof aBLAprovidesonlyanupperlimitforthetemperatureofthegas. 2.2.2 X-rayabsorption ThehighestionisationphaseoftheWHIMwillproduceandabsorblineradiationprimarily intheHe-andH-likeionsofthelow-Z elements(C,N,O,Ne),andpossiblyintheL-shell ionsofFe.Inpractice,muchoftheattentionisfocusedonoxygen,becauseofitsrelatively high abundance, and because the strongest resonance lines in He- and H-like O are in a relatively’clean’wavelengthband.Forreference,theLya transitionsofCVI,NVII,OVIII, andNeXoccurat33.7360,24.7810,18.9689,and12.1339A˚,respectively(wavelengthsof the1s−2p doubletweightedwithoscillatorstrength;Johnson&Soff(1985).TheHe- 1/2,3/2 likeionsCV,NVI,OVII,andNeIXhavetheirstrongesttransition,then=1−2resonance line,at40.2674,28.7800,21.6015,and13.4473A˚ (Drake1988;seealsoTable1).Dataon the higher order series members can be found in Verneretal. (1996). As far as the Fe L shellionsareconcerned, themost likelytransitiontoshowupwouldbethestrongest line inNe-likeFeXVII,n=2p−3dl 15.014A˚.Inaddition,alllowerionisationstagesofC,N, O, and Ne(with theexception of neutral Ne ofcourse) canalso absorb by n=1−2; the strongest ofthesetransitions would be 1s−2p inOVI at 22.019 A˚ (Schmidtetal.2004). Likewise,thelowerionisationstagesofFecouldinprincipleproducen=2−3absorption. Thethermalwidthsofallthesetransitionswillbeverysmall,requiringresolvingpowers oforderR∼10000(C,N,O,Ne)forgastemperaturesoforder106Ktoberesolved;forFe, therequirementisevenhigher,byafactor∼2.Aswewillsee,forpracticalreasons,these requirementsexceedthecurrentcapabilitiesofastrophysicalX-rayspectroscopybyalarge 9 factor.DuetothesmallDopplerbroadening(ignoringturbulentvelocityfieldsfornow),the lineswillrapidlysaturate.ForHe-andH-likeOresonancelineabsorption, saturationsets inat an equivalent width of order 1 mA˚ (Kaastraetal.2008 -Chapter 9, this volume), or columndensitiesoforderafewtimes1014 ionscm−2.Thechallenge,therefore,forX-ray spectroscopypresentedbytheIGMistodetectsmallequivalentwidth,near-saturationlines thatareunresolved. 2.3 ThebaryoncontentoftheWHIMasmeasuredbyUVandX-rayabsorbers OneimportantresultfromabsorptionlinemeasurementsoftheWHIMintheUVistheob- servednumberdensityofWHIMabsorbers,usuallyexpressedasdN/dz,thenumberofab- sorbersperunitredshift.Forinstance,fromrecentmeasurementswithFUSEandHST/STIS onefindsforOVIabsorbersandBroadLya absorbersatz≈0valuesofdN/dz(OVI)≈20 anddN/dz(BLA)≈30(seeSect.3.2).Currently,theWHIMabsorberdensityisonlymea- surableintheUV,sinceintheX-raybandboththeobservednumberofWHIMabsorption linesandtheavailableredshift pathforWHIMobservations istoosmalltoderivestatisti- callysignificantvaluesofdN/dz(OVII)anddN/dz(OVIII). Aparticularlyinterestingquestionnowis,howtheobservednumberdensityofhigh-ion lines or BLAs translates into an estimate of the cosmological baryon mass density of the WHIM,W (WHIM).ToobtainsuchanestimateofthebaryoncontentoftheWHIMfrom b UVandX-rayabsorptionmeasurementsonehastoconsidertwomainsteps.First,oneneeds totransformtheobservedcolumndensitiesofthehighions(e.g.,OVI,OVII,OVIII)intoa totalgascolumndensitybymodellingtheionisationconditionsinthegas.Inasecondstep, one then integrates over the total gas column densities of all observed WHIM absorbers along the given redshift path and from that derives W (WHIM) for a chosen cosmology. b Throughout thepaper wewill assume aL CDMcosmology withH =70 kms−1Mpc−1, 0 W L =0.7,W m=0.3,andW b=0.045.Forthefirststeptheuncertaintyliesintheestimate of the ionisation fraction of hydrogen of the WHIM. For this, it is usually assumed that theWHIMisincollisionalionisationequilibrium,butphotoionisationandnon-equilibrium conditionsmayplayasignificantrole.InthecaseofusingmetalionssuchasOVItheun- knownoxygenabundance(O/H)ofthegasintroducesanadditionaluncertainty(seebelow) fortheestimateofW (WHIM).Forthesecondstep,itisimportanttohavealargeenough b sampleofWHIMabsorptionlinesandasufficienttotalredshiftpathalongdifferentdirec- tionsinordertohandlestatisticalerrorsandtheproblemofcosmicvariance.Asmentioned earlier,theserequirementscurrentlyarefulfilledonlyfortheUVabsorbers. ThecosmologicalmassdensityW bofOVIabsorbers(and,similarly,forotherhighions) intermsofthecurrentcriticaldensityr canbeestimatedby c W b(OVI)= m mr cHcH0 (cid:229)ij fOVI,Nij((OO/VHI))ijijD Xj. (9) Inthisequation,m =1.3isthemeanmolecularweight,m =1.673×10−27 kgisthemass H per hydrogen atom, H is the adopted local Hubble constant, and r =3H 2/8p G is the 0 c 0 currentcriticaldensity.Theindexidenotesanindividualhigh-ionabsorptionsystemalong alineofsight j.Eachmeasured high-ion absorption systemi ischaracterised by itsmea- suredioncolumndensity(e.g.,N(OVI)ij),theionisationfractionofthemeasuredion(e.g., f ),andthelocalabundanceoftheelementmeasuredcomparedtohydrogen(e.g.,the OVI,ij localoxygen-to-hydrogenratio,bynumber).Eachlineofsight jhasacharacteristicredshift 10 rangeD zinwhichhigh-ionabsorptionmaybedetected.Thecorrespondingcomovingpath lengthD X availableforthedetectionofWHIMhigh-ionabsorbersthenisgivenby: D Xj=(1+z)2[W L +W m(1+z)3]−0.5D zj. (10) Inanalogy,wecanwriteforthecosmologicalmassdensityoftheBLAs: W (BLA)= m mHH0 (cid:229) N(HI)ij . (11) b r cc ij fHI,ijD Xj Ascanbeeasilyseen,theadvantageofusingBLAsforderivingtheWHIMmassdensity isthatthemetallicityofthegasisunimportant forthedeterminationofW .Thedisadvan- b tageis,however,thattheionisationcorrectionsareverylargeanduncertain,sincetheyare determinedindirectlyfromtheBLAlinewidths(seeSect.2.2.1). 3 UVmeasurementsoftheWHIM 3.1 PastandpresentUVinstruments ThefirstandsecondgenerationsofspacebasedUVspectrographssuchasCopernicusand the International Ultraviolet Explorer (IUE) did not have sufficient sensitivity to system- atically study intervening absorption in the intergalacticmedium along alarge number of sightlines.Theearlylow-andintermediateresolutionspectrographsinstalledontheHubble SpaceTelescope(HST),namelytheFaintObjectSpectrograph(FOS)andtheGoddardHigh ResolutionSpectrograph(GHRS),wereusedtostudythepropertiesofthelocalLya forest andinterveningmetal-linesystems(e.g.,Stockeetal.1995;Shulletal.1998).Whileinter- vening OVI absorption has been detected with these instruments (e.g., Trippetal. 1998), the concept of a warm-hot intergalactic gas phase was not really established at that time. Withtheimplementationofthehigh-resolutioncapabilitiesoftheSpaceTelescopeImaging Spectrograph(STIS)installedonHSTthefirstsystematicanalysesofWHIMOVIabsorbers assignificantlow-redshift baryonreservoirs cameoutin2000(seeTrippetal.2000),thus relativelysoonaftertheimportanceofashock-heated intergalacticgasphasewasrealised incosmologicalsimulationsforthefirsttime(e.g.,Cen&Ostriker1999;Dave´etal.2001). TheSTIS echellespectrograph together withtheE140M gratingprovides ahighspectral- resolutionofR≈45000,correspondingtoavelocityresolutionof∼7kms−1 intheSTIS E140M wavelength band between 1150 and 1730 A˚ (e.g., Kimbleetal. 1998; Woodgate 1998). Anexample for a STIS quasar spectrum withintervening hydrogen and metal-line absorptionisshowninFig.4.NotethatatthespectralresolutionoftheSTISE140Mgrat- ing all intergalactic absorption lines (i.e.,hydrogen and metal lines) are fully resolved. In 1999, the Far Ultraviolet Spectroscopic Explorer (FUSE) became available, covering the wavelength range between 912 and 1187 A˚. Equipped with a Rowland-type spectrograph providingamediumspectralresolutionofR≈20000(FWHM∼20kms−1)FUSEisable toobserveextragalacticUVbackgroundsourcesbrighterthanV=16.5magwithacceptable integrationtimeandsignal-to-noise(S/N)ratios(foradescriptionofFUSEseeMoosetal. 2000;Sahnowetal.2000).Withthisresolution, FUSEisabletoresolvethebroaderinter- galacticabsorptionfromtheHILymanseries,whilemostofthenarrowmetal-lineabsorbers remainjustunresolved.ThisisnotaproblemforOVIWHIMstudieswithFUSE,however, sincethespectralresolutionisveryclosetotheactuallinewidthsandtheOVIabsorption usually is not saturated. FUSE complements the STIS instruments at lower wavelengths