Future Hardware Directions of Quantum Annealing Qubits Europe 2018 D-Wave Users Conference Munich Mark W Johnson D-Wave Systems Inc. April 11, 2018 Overview Where are we today? (cid:73) (cid:73) annealingoptions (cid:73) reverseannealing (cid:73) quantummaterialssimulation Where are we going? (cid:73) (cid:73) nextgenerationprocessor-improvedconnectivity (cid:73) lowernoise Copyright©D-WaveSystemsInc. 1/25 Overview Where are we today? (cid:73) (cid:73) annealingoptions (cid:73) reverseannealing (cid:73) quantummaterialssimulation Where are we going? (cid:73) (cid:73) nextgenerationprocessor-improvedconnectivity (cid:73) lowernoise Copyright©D-WaveSystemsInc. 2/25 The goal of quantum annealing (QA): model the Hamiltonian (s) = 1 (s) ∑σ + (s)(cid:34) ∑hσ +∑J σ σ (cid:35) aΦ1X "spin-up" circulating current S x,i i z,i ij z,i z,j H −2 A B − i i i<j Φ 1 12 Φ2X "spin-down" circulating current Φ 2 10 ) z Josephson z) G H junction GH 8 h( (cid:73) T. Kadowaki and H. Nishimori, PRE, 58(5), pp. y ( 6 A/h( /B 5355-5363, (1998) erg GH (cid:73) E. Farhi, et al., Science 292, 472 (2001) En 4 z) (cid:73) W. Kaminsky, S. Lloyd, T. Orlando, 2 arXiv:quant-ph/0403090, “Scalable Superconducting Architecture for Adiabatic 0 0 0.2 0.4 0.6 0.8 1 Quantum Computation” s Copyright©D-WaveSystemsInc. 3/25 D-Wave 2000Q quantum annealing processor Quantum processing unit = QPU 128,472 Josephson junctions 18,305 composite flux DACs 10,960 QFP shift register stages 4/25 2000 qubits: Chimera architecture at C16 scale D-Wave Two D-Wave 2X 2000Q Qubits (max) 512 1,152 2,048 Couplers 1472 3360 6016 Target Qubit Yield 95%+ 95%+ 97%+ Qubit degree Chimera, degree = 6 New features: Supporting more control over annealing: (cid:73) Anneal Offsets Give user per-qubit control over transverse field (cid:73) Anneal Pause Specify start and duration of global pause in anneal (cid:73) Anneal Quench Specify when to abruptly quench transverse field (cid:73) Reverse Anneal: a new quantum algorithm Copyright©D-WaveSystemsInc. 5/25 Standard annealing trajectory (cid:34) (cid:35) (s) ∑ (s) ∑ ∑ (s) = A σ + B hσ + J σ σ S x,i i z,i ij z,i z,j H − 2 2 − i i i<j 12 10 ) z H z) G (cid:73) ratio A(s) a fixed function of s (GH 8 A/ /h( for givBe(ns)qubit design y 6 h( B g r G e H (cid:73) trajectory: choose s(t) linear En 4 z) (cid:73) quadratic growth in B(s) 2 or ⇒ 0 0 0.2 0.4 0.6 0.8 1 s Copyright©D-WaveSystemsInc. 6/25 Modifications to the QA path: What is possible? A(s) dashed, B(s) solid 12 10 8 Hz) (cid:73) Added control: G y ( 6 a per qubit offset g er n E 4 (cid:73) advance or delay individual qubit schedule 2 0 0 0.2 0.4 0.6 0.8 1 s Copyright©D-WaveSystemsInc. 7/25 Application: Factoring Percentage of solved instances product standard delay long size (bits) anneal chains 6 100% 100% 8 55% 100% 10 2% 98% “Boostingintegerfactorizationperformanceviaquantumannealingoffsets”,E.Andriyash,etal.,2016 see“D-WaveWhitePapers”athttp://www.dwavesys.com/resources/publications Copyright©D-WaveSystemsInc. 8/25 Modifications to the QA path: What is possible? standard20µsannealingpattern 6 Manipulate global schedule: Hz)4 pause mid-anneal G ( B(t)2 Why? What good does this do? 0 0 20 40 60 80 100 120 (cid:73) Useful for study of instances with time(µs) 20µsannealwith100µspauseats=0.5 purturbative crossings 6 Hz)4 (cid:73) indentify regions during anneal where G ( dynamics occur B(t)2 0 (cid:73) probe of global freeze-out, localization 0 20 40 60 80 100 120 140 time(µs) Copyright©D-WaveSystemsInc. 9/25
Description: