ebook img

Further Developments in Fractals and Related Fields: Mathematical Foundations and Connections PDF

295 Pages·2013·3.164 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Further Developments in Fractals and Related Fields: Mathematical Foundations and Connections

Trends in Mathematics TrendsinMathematicsisaseriesdevotedtothepublicationofvolumesarising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the communityasrapidlyaspossiblewithoutcompromisetoqualityandtoarchive theseforreference. ProposalsforvolumescanbesubmittedusingtheOnlineBookProjectSubmis- sionFormatourwebsitewww.birkhauser-science.com. Materialsubmittedforpublicationmustbescreenedandpreparedasfollows: All contributions should undergo a reviewing process similar to that carried outbyjournals andbe checkedforcorrectuse oflanguagewhich,as a rule,is English.Articleswithoutproofs,orwhichdonotcontainanysignificantlynew results,shouldberejected.Highqualitysurveypapers,however,arewelcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction.Any version of TEX is acceptable, but the entire collectionoffilesmustbeinoneparticulardialectofTEXandunifiedaccording tosimpleinstructionsavailablefromBirkha¨user. Furthermore,in orderto guaranteethe timely appearanceofthe proceedingsit isessentialthatthefinalversionoftheentirematerialbesubmittednolaterthan oneyearaftertheconference. Forfurthervolumes: http://www.springer.com/series/4961 Julien Barral • Ste´phane Seuret Editors Further Developments in Fractals and Related Fields Mathematical Foundations and Connections Editors JulienBarral Ste´phaneSeuret LAGA-InstitutGalile´e Laboratoired’AnalyseetdeMathe´matiquesApplique´es Universite´Paris13 Universite´Paris-EstCre´teil-ValdeMarne Villetaneuse,France Creteil,France ISBN978-0-8176-8399-3 ISBN978-0-8176-8400-6(eBook) DOI10.1007/978-0-8176-8400-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012956553 MathematicsSubjectClassification(2010):11Kxx,26Axx,28Axx,28Dxx,30xx,37xx,40Axx,42Axx, 60Gxx ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper Birkha¨userispartofSpringerScience+BusinessMedia(www.birkhauser-science.com) In memoriam BenoˆıtMandelbrot, whosefriendship was precious tous, and whosescientificlegacy is soimportantto ourcommunity. Preface This volume is a collection of 13 peer-reviewed chapters consisting of exposi- tory/surveychaptersandresearcharticlesonfractals.Manyofthesechapterswere presentedatthesecondeditionoftheinternationalconference“FractalsandRelated Fields,” held on Porquerolles Island, France, in June 2011. The success of this eventprovedthedynamismofthemathematicalactivityinthenumerousbranches connectedtofractalgeometry. Theselectedchapterscoverthefollowingtopics: • Geometricmeasuretheory • Ergodictheory,dynamicalsystems • Harmonicanalysis • Multifractalanalysis • Numbertheory • Probabilitytheory The three surveys are written by famous experts in their respective fields. The other chapters are either original contributions or accessible expositions of very recentdevelopments,alsowrittenbyleadersintheirrespectivedomains. Thisbooknaturallyfollowsthepreviousone,“RecentDevelopmentinFractals and Related Fields” which was published after the first conference, “Fractals and Related Fields.” It is intended for researchers and graduate students wishing to discovernewtrendsinfractalgeometry. Villetaneuse,France JulienBarral Cre´teilCedex,France Ste´phaneSeuret vii Contents TheRauzyGasket................................................................ 1 PierreArnouxandSˇteˇpa´nStarosta 1 Introduction.................................................................. 1 2 Preliminaries................................................................. 3 2.1 Background:ComplexityandSturmianWords..................... 3 2.2 Arnoux–RauzyWordsandEpisturmianWords:Definition........ 4 2.3 TernaryARWords:Renormalization ............................... 5 3 TheRauzyGasket............................................................ 7 3.1 TheRauzyGasketasanIteratedFunctionSystem................. 8 3.2 SymbolicDynamicsfortheRauzyGasket.......................... 10 4 RelationwiththeSierpin´skiGasketandaGeneralization oftheQuestionMarkFunction.............................................. 12 4.1 TheMinkowskiQuestionMarkFunction........................... 12 4.2 TheSierpin´skiGasket................................................ 14 4.3 AGeneralizationoftheMinkowskiQuestionMark Function .............................................................. 15 5 TheApollonianGasket...................................................... 16 6 RelationwiththeFullySubtractiveAlgorithm............................. 18 6.1 TheFullySubtractiveAlgorithm.................................... 18 6.2 TheFully SubtractiveAlgorithmas anExtension oftheRauzyGasket.................................................. 19 6.3 TwoPropertiesoftheRauzyGasket ................................ 20 7 FinalRemarks................................................................ 21 References......................................................................... 22 On the Hausdorff Dimension of Graphs of Prevalent ContinuousFunctionsonCompactSets....................................... 25 Fre´de´ricBayartandYanickHeurteaux 1 Introduction.................................................................. 25 2 Prevalence.................................................................... 27 3 OntheGraphofaPerturbedFractionalBrownianMotion................ 28 ix x Contents 4 ProofofTheorem3.......................................................... 31 5 TheCaseofα-Ho¨lderianFunctions ........................................ 32 References......................................................................... 33 HausdorffDimensionandDiophantineApproximation..................... 35 YannBugeaud 1 Introduction.................................................................. 35 2 ThreeFamiliesofExponentsofApproximation ........................... 37 3 ApproximationtoPointsintheMiddleThirdCantorSet.................. 41 References......................................................................... 44 SingularIntegralsonSelf-similarSubsetsofMetricGroups............... 47 VasilisChousionisandPerttiMattila 1 Introduction.................................................................. 47 2 TheOne-DimensionalCase ................................................. 49 3 TheHigher-DimensionalCase .............................................. 51 4 Self-similarSetsandSingularIntegrals .................................... 51 5 Self-similarSetsinHeisenbergGroups..................................... 52 6 Riesz-TypeKernelsinHeisenbergGroups ................................. 55 7 Δ -RemovabilityandSingularIntegrals.................................... 56 h 8 Δ -RemovableSelf-similarCantorSetsinHn ............................. 58 h 9 ConcludingComments ...................................................... 59 References......................................................................... 60 MultivariateDavenportSeries.................................................. 63 ArnaudDurandandSte´phaneJaffard 1 Introduction.................................................................. 63 2 RelationshipsBetweenDavenportandFourierSeries ..................... 65 3 DiscontinuitiesofDavenportSeries ........................................ 67 4 TheJumpOperator .......................................................... 69 5 PointwiseHo¨lderRegularity ................................................ 73 6 SparseDavenportSeries..................................................... 77 6.1 SparseSetsandLinkwithLacunaryandHadamard Sequences............................................................. 78 6.2 DecayofSequenceswithSparseSupportandBehavior oftheJumpOperator................................................. 79 6.3 PointwiseRegularityofSparseDavenportSeries .................. 81 7 ImplicationsforMultifractalAnalysis...................................... 83 8 ConvergenceandGlobalRegularityofDavenportSeries.................. 85 8.1 PreliminariesonMultivariateArithmeticFunctions................ 86 8.2 DavenportExpansionsVersusFourierExpansions................. 87 8.3 RegularityoftheSumofaDavenportSeries ....................... 88 9 ConcludingRemarksandOpenProblems.................................. 93 9.1 OptimalityofLemma2.............................................. 93 9.2 Hecke’sFunctions.................................................... 95 9.3 SpectrumofSingularitiesofCompensatedPureJumps Functions ............................................................. 96

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.