ebook img

Fungal Community Assembly in the Amazonian Dark Earth PDF

12 Pages·2016·0.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fungal Community Assembly in the Amazonian Dark Earth

MicrobEcol(2016)71:962–973 DOI10.1007/s00248-015-0703-7 SOILMICROBIOLOGY Fungal Community Assembly in the Amazonian Dark Earth AdrianoReisLucheta1&FabianadeSouzaCannavan2& LuizFernandoWurdigRoesch3&SiuMuiTsai2&EikoEuryaKuramae1 Received:15May2015/Accepted:30October2015/Publishedonline:19November2015 #TheAuthor(s)2015.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract Here,wecomparethefungalcommunitycomposi- niger, Lithothelium septemseptatum, Heliocephala gracillis, tion and diversity in Amazonian Dark Earth (ADE) and the and Pestalosphaeria sp. were more abundant in ADJ soils. respective non-anthropogenic origin adjacent (ADJ) soils Differencesinfungalcommunitycompositionwereassociat- from four different sites in Brazilian Central Amazon using ed to soil chemical factors in ADE (P, Ca, Zn, Mg, organic pyrosequencingof18SribosomalRNA(rRNA)gene.Fungal matter, sum ofbases,and basesaturation) and ADJ (Al,po- community composition in ADE soils were more similar to tential acidity, Al saturation, B, and Fe) soils. These results each other than their ADJ soils, except for only one site. contributetoadeeperviewofthefungicommunitiesinADE Phosphorus and aluminum saturation were the main soil and open new perspectives for entomopathogenic fungi chemical factors contributing to ADE and ADJ fungal com- studies. munitydissimilarities.Differencesinfungalrichnesswerenot observed between ADE and ADJ soil pairs regarding to the Keywords 18SrRNA .Anthrosols .Biochar.Microbial mostsites.Ingeneral,themostdominantsubphylapresentin ecology.Pre-Columbiansoil .Pyrosequencing the soils were Pezizomycotina, Agaricomycotina, and Mortierellomycotina. The most abundant operational taxo- nomicunits(OTUs)inADEshowedsimilaritieswiththeen- tomopathogenic fungus Cordyceps confragosa and the Introduction saprobes Fomitopsis pinicola, Acremonium vitellinum, and Mortierellaceae sp., whereas OTUs similar to Aspergillus Amazonian Dark Earth (ADE), also referred to as BTerra Preta^, was described by Sombroek [1] as a Bwell-drained soilcharacterizedbythepresenceofathickblackordarkgray AdrianoReisLuchetaandFabianadeSouzaCannavansharefirst topsoilwhichcontainspiecesofartifacts^.Theanthropogen- authorship. ic, pre-Columbian soils occur in 20-ha average spots in the Electronicsupplementarymaterial Theonlineversionofthisarticle Amazonian region [2]. ADE is recognized by the elevated (doi:10.1007/s00248-015-0703-7)containssupplementarymaterial, amounts of stable carbon (70 times more black carbon) and whichisavailabletoauthorizedusers. fertility due to the high concentration of P, Ca, Mg, and Zn, * EikoEuryaKuramae nutrient holding capacity, and higher pH when compared to [email protected] adjacent non-anthropogenic origin soils [3, 4]. Despite evi- dences of human occupation in the Amazon region dating 10,000years BP(before present), Neves and co-workers[5] 1 DepartmentofMicrobialEcology,NetherlandsInstituteofEcology suggested that ADE formation occurred 2500 to 2000 years (NIOO/KNAW),Droevendaalsesteeg10,Wageningen6708PB, TheNetherlands agoasaresultofpopulationincreasingduringthatperiod.Itis 2 CentrodeEnergiaNuclearnaAgricultura(CENA),Universidadede stilluncleariftheADEwasintentionallycreatedorifitwasa SãoPaulo(USP),Piracicaba,Brazil result of disposals by native settlements. However, the con- 3 CentroInterdisciplinardePesquisasemBiotecnologia(CIP-Biotec), sensus is that the main sources of ADE nutrients originated UniversidadeFederaldoPampa,SãoGabriel,Brazil from human and animal excrements, plant and animal FungalCommunitiesinADE 963 residues, mammalian and fish bones, housing material and most studied archaeological ADE sites in Central Amazon potterydebris,ash,andcharredorganicmaterials[2,5,6]. [18]; (4) Barro Branco (BBO, 03° 18′ 24.76″ S, 60° 32′ Another remarkable characteristic ofADE is the elevated 5.10″ W), located upstream Hatahara in the margin of microbial diversity and associated bacterial species richness Solimões River close to Manacapuru (AM) under a citrus [7]. Using culture dependent and independent approaches, orchard(ADE)andcassavaplantation(ADJ). studiesrevealbacterialandarchaealcommunitiesinADEthat The soil sampling scheme in each site was set by a geo- aredistinctfromtheadjacentsoilorfromisolatedblackcar- referencedcentralpoint(A)andfourextrapoints1.5mdistant bon[8–10]. in the cardinal direction (B, C, D, E). Each soil sample was Significantadvancesinsoilmicrobialecologystudieswere composedbyfivesubsamples(A1,A2,A3,A4,A5,B1,B2, obtained in the last few years after the adoption of high- B3,B4,B5,etc.)collected0.3maroundthemainpointat0– throughput 16S ribosomal RNA (rRNA) gene sequencing 10 cm depth using sterile plastic cylinders (5-cm diameter). technologies[11].Thisapproachwasusedtoinvestigate the Sampling scheme illustration can be viewed in Online bacterialcommunityassociatedwithbiocharsamplesofADE Resource 1. To minimize the current land use effect, grass [12]andtheeffectofADEandplantspeciesontheselection layerandlitterwereremoved,andthen,thesoilsampleswere ofrhizospherebacterialcommunities[4].However,thefungal collected in the space between rows when cultivated. Soil communitiesassociatedwithADEhavenotyetbeeninvesti- samples werekeptondry ice beforestorage at −20°C. Soil gatedwithculture-independentmethodsdespitetheecological physicochemical attributes were determined following Raij importanceoffungiinterrestrialecosystems.Thedegradation et al. [19] in the Soil Fertility Laboratory of the Department of organic matter, mainly by saprophytic fungi, controls the of Soil Sciences, University of São Paulo (ESALQ-USP). balance between soil and atmospheric carbon and releases Fieldworkwasconductedunderlegalauthorization(SISBIO nutrientsforplantuptake[13–15].Thefungalcommunityin 4845833). ADE has been poorly characterized and evaluated only by low-resolutionculture-dependentmethods[16].Theapplica- tionofhigh-throughputsequencingtechnologieswillexpand DNAExtraction,Amplification,andSequencingof18S the knowledge of ADE fungal diversity. Comparison to low rRNAGeneFragment fertilityadjacentsoilswillhelptoelucidatethecarbontrans- formations by fungi in these soils and to evaluate potential TotalDNAwasextractedfrom250mgofbulksoilintriplicate land use and climate change effects for future studies. from only three of the five soil samples (A, B, D) using the Therefore, the aim of this study was to estimate the fungal Power Soil DNA isolation kit (MO BIO Laboratories Inc., richnessanddiversityassociatedtoADEandtoadjacentsoils Carlsbad,CA,USA)followingthemanufacturer’sinstructions. fromfoursitesintheCentralAmazonthroughpyrosequenc- Extracted DNAwas quantified using a NanoDrop ND-1000 ingof18SrRNAgenefragments. spectrophotometer (Thermo Scientific, Wilmington, DE, USA).The18SrRNAgenefragmentswereamplifiedbypo- lymerase chain reaction (PCR) using 0.5 μM of the fungal- MaterialsandMethods specificreverseprimerFR1[20]andthemodifiedversion(to includeGlomeromycotaarbuscularmycorrhizalfungi)offor- SiteDescriptionandSoilSampling ward primer FF390w (5′-CGWTAACGAACGAGACCT-3′) [21].FourPCRreactions(25μL)perextractedsampleDNA The study area was comprised of four locations in the werecarriedoutusing2.5×reactionbuffercontaining18mM Brazilian Central Amazonia region near Manaus, the capital ofMgCl ,0.2mMofeachdNTP,0.5μMofeachprimer,25ng 2 of Amazonas state (AM). ADE and the respective adjacent oftemplateDNA,1UTaqpolymeraseFastStartHighFidelity (ADJ) non-anthropogenic origin soils were collected at (1) (RocheAppliedSciences,Indianapolis,IN,USA),andsterile Açutuba(ACU,03°05′53.92″S,60°21′19.90″W),located water to 25 μL final volume. The thermocycling conditions at the margin of Negro River close to the municipality of wereinitialdenaturingat94°Cfor4min,29cyclesof94°C Iranduba(AM),undercultivationofeggplant(ADE)andpas- for30s,55°Cfor1min(annealingtemperaturewaslowered ture(ADJ)atthetimeofsampling;(2)Balbina(BAL,01°30′ 2 °C every 2 cycles until 47 °C), and extension at 68 °C for 24.4″S,60°05′34″W),locatedatthePresidenteFigueiredo 2 min. The technical PCR replicate (12 PCR reactions/soil municipality and characterized by the presence of an undis- replicate) amplicons were pooled and cleaned with the turbedsecondaryforest. Thissitehas not beendeforestedor QiagenPCR purificationkit(Qiagen,Valencia,CA,USA)to used for agriculture purposes for at least 20 years [17]; (3) avoidamplificationbias.Atotalof24soilsamples(4sites×2 Hatahara(HAT,03°16′28.45″S,60°12′17.14″W)located soiltypes×3replicates)wereamplifiedusingbarcodedprimers in a bluff on the margin of Solimões river cultivated with (MIDtags)formultiplexpyrosequencinginaRoche454GS banana plants (ADE) and pasture (ADJ). This is one of the FLXautomatedsequencer(454LifeSciences,Brandford,CT, 964 A.R.Luchetaetal. USA)usingtitaniumchemistry.Thecompletelistofbarcoded were transformed (function Log(x+1)) before multivariate primersislistedinOnlineResource2. analysis. The raw 454 pyrosequencing data of the 18S rRNA are available at the European Nucleotide Archive BioinformaticsandStatisticalAnalysis (ENA) (https://www.ebi.ac.uk/ena/) under the study accessionnumberPRJEB10851. The18SrRNAgenesequenceswereanalyzedusingQIIME 1.8.0 [22] following the suggested 18S dataanalysistutorial (http://qiime.org/1.8.0/tutorials/processing_18S_data.html). Results Multiplex sequence libraries were split into the original samples based onthe specificbarcodes. The 454 reads were SoilPhysicochemicalProperties denoised using Denoiser [23] and chimeric sequences checked with UCHIME [24]. Operational taxonomic units Alltheevaluatedsoilphysicochemicalandfertilityattributes (OTUs) were clustered considering evolutionary distance of werestatisticallydifferent(p≤0.05)whenADEandADJsoils 0.03 (97 % similarity cutoff) by using UCLUSTalgorithm werecomparedingroups,withtheexceptionoftheK,S,and [25] and taxonomically affiliated through BLAST search Fe attributes. On average, ADE soils were higher in pH, or- usingQIIMEBLASTTaxonAssignerdefaultparameters(ap- ganic matter (OM), macronutrients (P, Ca, Mg), and some plication blastn/megablast, max E value 0.001, min percent- micronutrients(Mn,CuandZn),whileADJsoilshadhigher age identity 90.0) against SILVA Eukaryotic database (97 levelsofAlandH+Al(Table1).WithintheADEsoilgroup, SILVA 111 rep set euk) [26, 27]. OTUs not assigned to theHataharasampleshowedthehighestamountsofP,Cu,Fe, Fungi kingdom, singletons (OTUs containing a unique se- Zn,andMn,whereasintheADJsoilgroup,theAçutubasoil quenceinthewholeanalysis)aswellasclassifiedasBnohit^ sampleshowedthe highestamountofKandlowestAlcon- by BLAST search were removed from the dataset. centrationand Alsaturation, comparablewith ADE samples InconsistencesofSILVAtaxonomicclassificationwereman- (Table1). uallycorrectedbeforerelativeabundancecalculationbasedon the OTU BLASTsearch best hit access number and NCBI DiversityofFungalCommunity taxonomy rank (http://www.ncbi.nlm.nih.gov/taxonomy). The OTU table was rarefied to the lowest number of 18SrRNASequencing sequences in any sample (1728) before calculation of alpha diversity indices. Species richness (Chao1 and Abundance Pyrosequencingof18SrRNAgenefromthe24soilsamples Coverage-based Estimator (ACE)), diversity (Shannon, generated132,764high-qualitysequencesafterdenoisingand Simpson’sreciprocal)estimators,Good’scoverage,andrare- chimerachecking,withanaveragesizeof351nucleotides.A factioncurveswerecalculatedinQIIME.Chaoentropyindex totalof105,019sequenceswereusedforfurtheranalysisafter [28] was calculated on the CHAOEntropy-Online calculator taxonomicclassificationasfungal.Thenumbersofsequences (https://yuanhan.shinyapps.io/ChaoEntropy/). A bipartite perlibraryrangedfrom1728to6712.Adetaileddescription OTU network was generated in QIIME and viewed and ofsequencingdepthandnumberofOTUsalongthebioinfor- edited in Cytoscape 3.2.1 [29]. The fungal OTUs present in matics analyses can be viewed at Online Resource 3. The allsoilsamples(totalcore)(core_table_100.biomfile),aswell number of picked OTUs ranged between 127 and 172 after asthecommonOTUsbelongingtoADEorADJsoils(group the removal ofsingletons and library normalization with the core) were also determined in QIIME (compute_core_ lowest number of sequences (1728) (Table 2). Despite the microbiome.py). OTUs showing average abundance higher decrease in the number of sequences after quality filtering than 1 % of the total number of sequences by group (ADE and library normalization (Online Resource 3), the sample or ADJ) were considered abundant. Differential OTU coverage was approximately 97 % as indicated by Good’s frequencies between ADE and ADJ soil groups was estimator(Table2).Inaddition,rarefactioncurvesalsopoint- determined by non-parametric t test followed by Monte edforadequatesequencingeffortsforfungalpopulationcov- Carlotest(100replicates)afterremovingtheOTUsthatwere erageinthesamples(OnlineResource4). notrepresentedinatleast25%ofthesamplesusingQIIME Nosignificantdifferencesintheestimatedspeciesrichness (group_significance.py).Univariateanalyses(ttest,ANOVA, wasobservedbyACEandChao1estimatorswhencomparing Tukey’stest)wereperformedusingIBMSPSSStatisticsV.22 theADEandADJsoilsamplesinthesamesites,withexcep- (IBMCorp.,Armonk,NY,USA)software,whereasmultivar- tionofahighernumberofspeciesintheHataharaADEsam- iateanalyses(canonicalcorrespondenceanalysisandsimilar- pleinrelationtoitsADJsoil(ACEestimator).Regardingthe itypercentageanalysis)wereperformedusingpaleontological fungal species diversity, Shannon and Chao entropy estima- statistics (PAST) software package V.3.05 [30]. Count data torsalsopointedtonodifferencesbetweentheADEandADJ (sequence abundances) and environmental variable values soils. Simpson’s reciprocal indicated lower species diversity FungalCommunitiesinADE 965 b n DJ di A e s ersus xpres v e E Al D * * * * * * * * A ** * ** ns ** ** ns ** * ** * ** ** ns ** ** * ** H+ d n b a b 1b 3a ab Al, Hatahara 3.73±0.12cd 33.33±1.15a 7.33±1.15bc 0.67±0.06b 6.33±1.15c 1.0±0.0c 3.67±0.58b 8.0±1.13c 103.67±15.7 7.67±0.58bc 0.32±0.11ab 0.03±0.06c 0.3±0.1bc 182.33±27.4 0.4±0.17c 14.0±1.73b 95.67±14.64 63.67±0.58a pH7(CEC), 5) n 0 BarroBranco 3.47±0.12d 34.67±5.69ab 3.67±2.08c 0.43±0.06b 1.67±0.58c 1.0±0.0c 8.33±2.08a 3.1±0.61c 135.1±30.29ab 2.33±0.58c 0.48±0.09a 0.0±0.0c 0.17±0.15c 193.0±47.13ab 0.53±0.15c 23.67±3.06a 132.00±30.05a 88.67±2.52a xchangecapacityi ’≤Tukeystest(p0. e y n b o cd 9ab b b 5bc c 6ab 1a cati nces Balbina 3.93±0.15b 32.33±10.6 2.67±1.53c 0.70±0.36b 3.33±2.31c 2.00±1.73c 3.67±0.58b 6.03±4.39c 79.37±39.2 9.33±8.5bc 0.37±0.18a 0.0±0.0c 0.1±0.1c 90.67±75.0 0.27±0.12c 13.0±4.36b 73.33±41.3 69.33±17.2 ofbases(SB), nificantdiffere m g b bc 4bc 2bc 69b abc b c c c b g,su nosi Table1PhysicochemicalandfertilityattributesofAmazonianDarkEarth(ADE)andadjacent(ADJ)soils PropertiesADEADJ AçutubaBalbinaBarroBrancoHataharaAçutuba a4.73±0.76abc5.17±0.15a5.20±0.2a4.6±0.4abcpH4.87±0.64ab OM21.67±16.44b49.0±4.58a54.67±9.24a53.0±2.65a36.0±7.81a P204.67±168.36b90.0±49.43bc130.0±34.04bc508.67±88.64a41.0±19.16 K1.0±0.17b0.30±0.0b1.03±0.35ab1.07±0.25ab3.13±2.02a Ca57.67±50.82bc44.67±49.69bc86.33±14.19ab138.33±7.64a35.67±17.0 Mg5.33±2.31bc2.67±2.08c10.67±1.15ab13.67±3.06a6.0±3.61bc S3.33±0.58b3.67±0.58b4.33±0.58b4.33±0.58b5.0±1.0b SB64.0±53.29bc47.63±51.73bc98.03±14.36ab153.07±5.39a44.80±21.0 CEC114.00±34.04b125.63±17.21b140.37±14.2ab200.73±0.6a101.80±10. V%50.67±27.59ab35.0±33.81abc69.67±4.04a76.00±2.65a43.0±17.35 B0.32±0.17ab0.17±0.05ab0.21±0.1ab0.10±0.09b0.23±0.05a Cu1.2±0.35b0.63±0.06bc1.13±0.15b3.27±0.67a0.43±0.23b Zn4.3±1.47bc5.0±1.11bc7.70±5.54b30.77±4.61a1.30±0.62b Fe48.67±22.19c36.33±10.02c66.0±2.0c210.67±36.56a70.0±14.8c Mn3.6±1.57bc4.0±0.69bc4.93±0.75b12.60±3.8a1.37±0.65b Al1.0±1.0d5.0±5.0cd0.0±0.0d0.0±0.0d2.0±2.65d H+Al50.0±19.29b78.0±34.64ab42.33±4.51b48.67±5.77b57.0±13.23 m%3.33±3.51b20.0±20.0b0.0±0.0b0.0±0.0b7.0±10.44b −−−1330.01molL);organicmatter(OM)expressedingdm;PandSexpressedinmgdm;K,Ca,MpH(CaCl2−−33mmolcdm;B,Cu,Zn,Fe,andMnexpressedinmgdm Vsoilbasesaturationindex(%),mAlsaturationindex(%),nsnotsignificantaTheshowedvaluesaretheaverageofthreereplicatesfollowedbystandarddeviation.SamelettersrepresentbIndependentsamplettestcomparingADE×ADJsoilgroups≤≤≤*p0.05;**p0.005;***p0.0005 966 A.R.Luchetaetal. Table2 EstimatedrichnessanddiversityindicesforthefungalcommunitiesintheAmazonianDarkEarth(ADE)andadjacent(ADJ)soilsfrom Açutuba(ACU),Balbina(BAL),BarroBranco(BBO),andHatahara(HAT)sites Speciesrichnessestimators Diversityestimators Soil NOTUsa ACE Chao-1 1/Dc H′d Chaoentropye Good’sf type/site ADE ACU 136(183,89)b 200.14(239.10,161.17) 197.06(245.57,148.54) 10.30(16.66,3.94) 4.58(5.86,3.31) 3.24(4.13,2.35) 0.97(0.97,0.96) BAL 132(145,119) 200.28(251.44,149.12) 193.01(262.55,123.48) 6.66(9.27,4.05) 4.19(4.83,3.56) 2.97(3.42,2.52) 0.97(0.98,0.96) BBO 139(177,102) 210.90(253.77,168.03) 206.80(285.52,128.08) 7.74(11.95,3.53) 4.46(5.33,3.59) 3.16(3.77,2.54) 0.97(0.98,0.96) HAT 172(182,162) 245.40(254.92,235.87) 248.17(294.53,201.81) 20.21(30.11,10.32) 5.60(5.74,5.46) 3.96(4.06,3.86) 0.96(0.97,0.96) ADJ ACU 164(173,155) 236.48(284.49,188.46) 238.93(348.00,129.86) 13.91(15.00,12.82) 5.18(5.29,5.06) 3.66(3.74,3.59) 0.96(0.98,0.95) BAL 166(186,146) 243.53(269.82,217.23) 246.05(326.08,166.02) 15.54(19.64,11.44) 5.22(5.72,4.73) 3.70(4.03,3.37) 0.96(0.97,0.95) BBO 127(145,109) 191.69(250.32,133.07) 180.82(221.30,140.33) 14.95(16.42,13.48) 4.94(5.10,4.79) 3.49(3.60,3.37) 0.97(0.98,0.96) HAT 138(166,110) 188.47(231.82,145.11) 184.10(202.18,166.02) 15.98(26.94,5.01) 5.12(5.93,4.30) 3.61(4.17,3.04) 0.97(0.98,0.97) aNumberofdeterminedoperationaltaxonomicunits bTheshowedvaluesrepresenttheaverageofthreereplicatesfollowedbyconfidenceintervals cSimpson’sreciprocal(1/D)index dShannonindex eChaoentropyindex(Chaoetal.2013) fGood’sestimatedsamplecoverage inthe ADE fromBALand BBOincomparisonwiththe re- Agaricomycotina fungi (Basidiomycota) (Table 3). spectiveADJsamples(Table2). Pezizomycotina fungi were statistically significantly (p≤ 0.05) more abundant in ADJ soils, and shifts were detected StatisticalMultivariateAnalysis especially in Balbina and Hatahara sites. Ascomycota Taphiromycotina (p≤0.005) and Mitosporic Acomycota (p≤ Eventhoughsimilaritieswereobservedinthespeciesrichness 0.05), Chytridiomycota Insertae sedis (p≤0.005), Fungi anddiversityoftheADEandADJsoilfungalcommunities,the Insertae sedis Mucoromycotina (p≤0.05), and OTU network and canonical correspondence analysis (CCA) Glomeromycotaphylum(arbuscularmycorrhizalfungi)were showedtwowell-definedclusterssegregatingthefungalcom- alsomoreabundantinADJsoilsatstatisticalsignificantlevel. munities of ADE and ADJ soils from BAL, BBO, and HAT The ADE soils showed significant higher abundance of (Fig. 1a, b). The same pattern could not be observed for the Basidiomycota Agaricomycotina (p≤0.05) and fungal communities of ADE and ADJ soils from ACU that Pucciniomycotina (p≤0.05), Fungi Insertae sedis weremoresimilartoeachotheranddistantfromtheothersite Zoopagomycotina (p≤0.05), and Mortierellomycotina (p≤ assemblages(Fig.1b).CCAalsoindicatedthattheADEfungal 0.05). Shifts in Mortierellomycotina abundance were observed assemblages were correlated with higher pH, macronutrients, mainlyinACUandHATsites. sumofbases(SB),percentageofsoilbasesaturation(V%),and Asignificantnumberofsequences,especiallyinADE(p≤ Cu,Zn,andMnconcentrations,whereasADJcommunitywas 0.05),weretaxonomicallyclassifiedonlyatFungidomainand correlatedwithAl,H+Al,aluminumsaturation(m%),andB environmentalsamplecategorybasedonBLASTaccesstax- levels(Fig.1b).P and m% contributedwith morethan13 % onomy rank. We cannot affirm whether these results could eachintheADEversusADJfungalcommunitydissimilarityas represent new fungal species or are resultant of SILVA and calculatedbysimilaritypercentageanalysis(SIMPER)(Online NCBIdatabaseannotationimprecision. Resource5).Conversely,theOMandpHcontributed2.5and 0.9%tothedissimilarities,respectively. FungalCoreCommunity FungalTaxonomy The fungal core community present in all soil samples and locations computed in QIIME was composed of seven The phylum Ascomycota, specifically the subphylum OTUs, most of them classified as Ascomycota phylum Pezizomycotina,wasthemostabundantinallthesoilsamples (Table 4). At species level, they showed similarity to with exception of BAL ADE that was dominated by Ascomycota Cordyceps confragosa (OTU 822), FungalCommunitiesinADE 967 Fig.1 Bipartitenetwork (a) cacct(nB(roABeanoooapnannBdtDlrhlbofneeyOiEenisesdsn)ci)eAiebca,stnnaaiyamtn(n(cliBnCgnAedacdAgCzotçeahoHrluLdAerlentidje)au)paif,sgtabcusawpBeneehanosisanagDtn(r(htr(aArdaaab(lo9e)rAC)O(kn5BHaUDcTnEr%eA)JadUa,)Tnrsct)nhoooidles denovo1678denovo962denovo930denodveon1o5v9od1e4n6o3vod1e9n4ovo1600ddeennddooeevvnnoooo72vv42oo1091652080denovo2167denovo734denovo55denovod1e9n3o7vdoe2n0o6v2od1e4dn8edo8nevoonv2oo4v7o31132936denovdode1edn5ndeo6oenv5dvnooeoov4n1vo7o5o12v122od643d1e53e7n3n4oo0vvoo772308ddedenenonovovovdo3oe101n702o55v97o14denovo9d6enovo1d8e0n1ovo3d6ed8neonvdoodev5eno7no94ov1dvo1eo4n16o50dv3eo0n1do1ve0on52o5vo1316denovo0dedneonvoov1o3138963dddeeennnooovvvooo632838313denodveon1do7edvd0ndeoe8oen1nvndo1oooev5v1von7od4o1o2e13v34n35o60o1764v90o142d5edneonvoovd1oe11n5d0dod0e9evennodnoo1eovv5nvoo8oo325vd132oe1599n04d6od8e5venono4odv1vdeo6one26no03vo63ov0o1d10e88n82o5vodd8ee9nn9oovvoo21182369dendoevnoo1v9o216d2e8n5ovo1361dedneonvoo9vo8d18e9n3o1vo5d3edndeoenvnoood2vveo1on519do994ev01noo1v8o0d38e6n5ovod1e3n9o0vo19d2e8novod1e6n1do6evnoo1v1o2770d6endoedvneoon2vo1ov19o8819006denovo23d5e4ndoevnoo7v7o5d2e1n5o4vo6dd5ee6nnoovvoo51dd79ee1nn4oovvood15e08n64o6vo14d9e4novod1e4n2o8vo1247denodveodn7eo5nv8oov9o3261d0e0novodd2ee3nn4oo9dvvoeo1n1d7o3e1v0no50o2v4o0237denovo45d7enovdoe1n8o7vo2182dedneonvdooe2vno5o22v24od21e23n8o7vo2378denovo2472ddeennoovvoo2d23e02n11do1ddeveeonnn2ooov2vvod1oo1e57d29n9e13onv0oodv2eo2n16o8v8o9929ddeennoovvoo12d4d0e7e0n0n1oovvoo554600denddoeevnnooo2vv3ood365e621n36ovo1d4e0ndd3oeevnnooo6vv8doo5e17n11o31v7o1876ddeednndeooenvvnodooove21von45o1o3919v0715o121799d6enodveon1o1dv6eo7n1o6v3o32d0de2en2noovvoo2206830denovo430ddeennoovvdooe2d2n4e2don55evo54ndovoed1ovne41oon922vo64ov152od711e15n0ovdoe5n1od8veon2o0vd6oe31n1o8vo02271denovo121d4enovo2244ddeennoovvoo11d36e63n85ovod2e2ndoevnodo1ev8nod6o1e4v7nod7o2ev2no0o22vd2oe05n00odveon2o4dve8don3e1on5vo4ov81o5135d49de6nenovodove4on21do04ev0no7o1v8do51ed8n2eo8nv6oov7o7d26e5n3dodevenono1ov6vo8o131935071denovdode1end5noed4ovne2voono2vo2o4v0d88o4e9812n58do8ev7no8ov9do8e5n8ovdode1en9no7ov3vodo1e67n50o0dv5deoen6no6ov4vodo9e12n0o2v1od6e0n9ovo434denovdoe2n4o3dv9eon1o5v7o62d0de4ennoovovo115d86e70n5ovdoe1n0do2ev4ond1oe9vno0o1v7o69475dedneonvoodv2eo1n2d8o3e0v3nod0o1edv3neo3ond52voe0dovn5e2oon63vdo65oev12no2o39v02o22088dendodevendonoe1odvn4veoo4on2v15o0o5v61d7o3e27nd42oe6vn7oo1v4o31216dendoevnoo8v5o5d1e9n6o8vddoee6nn8oovvoo1271d53dde07eennnodoovevovnoo7o116v862o19271276ddeennoovvoo41d69de60en3noovvoo120d34ed65ne0ondvoeovn1ood22dve43eon14n1od2o9vevo7no96o68dv02deo5ne5no0vo4odv1oe75n36odv4ddeoeen1nno5oov2vvo1doo1e113n508o714v83o8d6e0ndodevenono1ovd4voe7o5n199o67v7o22203denovo154d5edneonvoodv1eod8n1e2o3n7v1oov22o42d94e46n3ovod2de1ne3no2voovdo1e22dn54deo66ednv0neooonv1dvoo5eo2v7n2do10o0e10v3n45do4o5ed4dv5nde2eodoen2n2evnoon0doovvo7e1voov6n3o25oo5d9511dve6249deon165edn9o8neo0vovn8ovood2do6ve4e1o4n4n518o6o25vdv28oeo16n50do6dev8ednoneo4onvd3vooe9ov6n1o3o52dv8d8eo6e8n1no1ov4vdo7doe8e2nd3n4oe8o9vnv7ooo8v20o67150dd2ee0nndooedvvneooon75vo8ovdd81odee22enn93noo28ovvd6vodoeo2e2n61n4o36o6v44v8oo323144d1deennoovvoo1292835d3deennoodvveoon11o03v5d2o5e11n0od0ved3one2ddon0eevod5nnove7oo1donvv5e1oood2n2v21e5odd6o3n1dvee419o7oenn44v71noo3o0ovv625voo3o712629261846922denddoeevnnooo1vv1oo7d111e22n95o58vdoe2n2o9vod1ed0ne4on4voov2do0dde40een15nno2oovvvooo151944941d2d7eednneoonvvooov51o361027982denovo91denodveon3od1ve1ond6oed4vne0oon6vo2dovdd4e1doeen1e2ddnno5n5eeoov6o5nnvvov5oooo1dovv717e1oo266n521968o0810v225od41e4n1do1evnoo2dv8ddeoe1den1neno8onov9vovo0ovo16o85612106987denddoeevnnooo3vv7oodd851ee6d0nndd9e0ooeen2vvnnoodooov6e2vvo9n3oo17o4d623v1e113on1532o2d3ve8on53o0vd6oed3ne7odn9veoonv9doo1ve10don7e1o6n0vd1oo4ev28no4od28ve2o9dn53eo3nvoov4o412642deddneeonnvodoovev2ono41o82d7v05e4o0n21o7v7o016dd6ee3nddnoeeovnnvoodoo6vedv47onoe918o2n1d9v5oe0ov5n01o1od81ve55on2d1oe0vno8dod11dedve1endeond3noen1oe0ovno3vnvoovo3ood1vo10vd1e5o16oe5nd11993n2oe434d28o9dvn73e4voeo6no7nvo2do9ov1e81vod8no98e4o201nv39oo4v15ddo2eed1dd9nne1ee4oon9nnvvo8oooovvv11ooodd141d18ede918e0n0den205n5o6neo4ov9novvovooo6ov2814od2d7619e3e477n0n2oo1vvoo1d84e25n9d9oevnoo2v0do3e20n4o6v4o1573dddeeennnooovvvoood768e8d26nd1ed62oenevnonoovo2voddv0o1eeo20dd1ndn236ee2oeo5d2nn0vvn6e0oodoood6nvve72veooodn8o3nv12eo580oo3n3v43v94o5o9o9v78d191oe2dd61n5ee76o6nn9voo8ovvdd2oodee1d51enn7e35dnoo3n12eovvo3nvoovoo22o4v211o0828242025422ddedenednondeovoenvovnoo2dodovd668eovee7n02o1ndn5o260doedov65venevodo93nono1e2ovdo40dn2ovev6d4eoo16on8ed1nv2901ondeood32v3oen1ve5o44vnodo7n274oovde8o91voen1v98o2no7o242ov2526vo17do81d9de14de6edn57endndeo35noedonveovnveonoovoond1voo1dv1oeo4v24eod7vn1o64n91eo6od2523o63n16vde06v29o3oen2dov272no1e1o74ovn117vood31o52ve8712ond801doe770evn87noo1ovv0doo7e195n33do08ev8on1ov7do6de19en9no6ov6voo2d10de17en35dno4eovnvodoo5ev82no5o2d9v3eo1ndd15oee1vnn8oodo2vev2ono05od281ve29ond51oe1d4vne2oon22voo4v86o1611320dedneonvoov3do3e1n94od8vddeoeen6nno5odov7vevoonod183oe67v1n4o0o7d2ve2on51do61evdd2noee5o1nndv0ooeo4dvvn16eooo9dn21v0eo29o4nv785ood909v6e8o1n10od0ve3on81o5v6o22263denovdoe8n1o6vo81d0edneonvoov1o9102189dendoevndoo1evn6oo01dv11eo6n13o2ddv3eeo6nn8oo8vvoo1282d12e47novo2d4e2n6ovdoe5n5o0vdod9een8no1dovevono2o94v41o042327denovo1d0e4ndodevenono1ov0ovd7o1e025n49o9v3o3668denovo2d1e0dn1eonvoov2do1e92n55ovo227ddeennoovvoo272713dednedonevonovo1ov0d1o6e86n08o67vo17d6ded5enednoneovonvovodo1ove2d0d2don2de4e42edo3en7n7n2dev5noo0o9enoovvv0n2oovooov3o155dvo67894eo11751n8023o68v86o119d5enovdode2en4ndod3oeve6vnonoo9o9v9v7o6od41d1e1de7dn4en5eono3nvovoovo1vo5o448225326196dednedonedvoneodvon7oevo41nov81o1od0v61ddeo435een182ddnndo06eeodoev2nnvevon6ooono4odvv1o1v3deoo3vo88ne117o14no381022vo9435ov8621o15d85e47n4ovod2e1n3o8vdoe7nd7doe8evnndoooe1vvdnd0ooeoe643nvn347ooo3v1vo3od129e807n94o76vodd1ee6nn3oovvoo22113760denddoeevnnddoooee6vvnn1doooo7e15vvn3d4ooo7e381v4dn91oeo585nv43oo91vo022d2d8e5enn2oovvoo1d1d4e5e4dn0n0eo5onvvooov12o63d119e620n0o4vod1e1n9o6vo19d5enodveoddn1eedo9nnev9doono8ddevvo1eeonov3ndn1o1o3doeodv025d1evnvoe953enooo1n316no14v4oovo644vvo415o7o1197848d808e415novo2456denovo362denovo455dedneonvoov6o71d10ed3ne1onvodove3on11o97v9od83e5n7ovo1001dedneonvoov1o6d23e39dn1eo7ddnveeoonnv1ooo6vvd17oode9451edn86neo65onv1vooovd14oe762n216ddo6d8eveeonnn1ooov0vvoo5o21186140d92de0nednoevonovo1ov21o371555d04e3dneonvodove4don26eo9n7vo0ov1o11030d6e5novo2420denovdode2en3no6ov7vodo8e12n77o8v5doe7n4o2vod1e7ndd2oee7vdnnodeood1envve3nooodn7ov67eov5o40nvo273oo24v234o192147589dd8eennoovvoo1d25e59n52o0vo5d7ed2neonvodove2dodn1e1eo8n4dnv7o0eoovn9v1dooo7ed2v14ne2o18on226vod554ove13on245o49vd4oe1n3do2dev6neono1vo6ov72o92100768denodveon2o3v5o751denodveon1od3ve5on81o6v8o51777dendoevnoo3dve8ond57oe5vn4ood2dvedo2ene1n1on1o0vov3odvo6d1eo9e3n51n8o85o5v6vodo1e12n11o45v8od1e2n7o9vod1e4n2ovo214d5enovdoe1ndd2oeed0vnne8ooon1vvo4oovd673oe51d38n9e07odn5veodonve1oon1v7do3o6ev12on31o70v3o5d11e7dn8edo0nevonov1oov95o175582ddeennoovvoo1524332dedneondvoeovdn1doeo5e6nv5noo1ovd2voe4od2n3d4e3o8e7n6vnd6oo3oev2vnddo5dooee34e9vnn30n9ooo6o51vvv8ooo012d1260e245n145o2vdoe2n5do1ev3noo1v9o415732denovo219dendoevndooe1vn9odo47ev28dnoedo7nev4dono4evo5nov5o1o4v61o425831d52enovod1e3dn9eo1nvoov1o31d2dd5ed7ee2neddnn0oneeoovonnvvovoooo1ovv1102oo42632173d955129e531n56ovo1763ddeennodovevoon12o30v8o2615d0de8en9nooddvdveeoeonn5n1oo8o2vv1v2dooo28e171n00o62v1o1d4e9n3ovo1040ddeendnoeovnvooo2v84od181e877n9o1vddoee1nn9oo8vvo3o1193382denodveon8o2v5o15d6e7nodveon2o1v5o3d3e3n3ovo2d2e6n6oddvdeeoenn1noo0dovv6edvoo1neo21on508vo719ov741o010695dedneonvoov1o918595denovo2217dendoevno2ov1o0d12e7n7o6vod2e1n4odveond2ode1ven8ondo82oev1von2o1o20vdd1o9ee189nn46oo1dvv3deodoen2e1no0n7ov9o6ov4v2o4o142611028d8enovdo1en0o1v6o3d8de6ennoovvoo11510denovo1022dendoeddvneeoonnd1vooe3ovvdn11ooeo6611nv778oo013v12o4416d28e0dn1eonvoov1o119dd3d4ee4enn0nooovvvooo7222326203denovod1e7n9ovo2093dendoevnodo1ev8dno3eo18nv4oo0v21o217d87e7n1ovo1400denovo2d1e4n6ovo45denovo1414denodvoe4nd1oe1vnoo7v3o22220dednedondevoenovno1doov5e3von89o9o67v87o62405ddeennoovvoo2930818denovdoe1dn8eo4nv8oov3do9e20dn4eo9nv6oov1o113654dendoevndoode1ven0onod69ovde87voen1o2no10ov6d7vod1e1o2en63no32ov28voo9d49e28n0ovdoe2n4od9ve8on2o3v4o02523denovo2333denovod2e1n0o7vo1528denovo48dedneonvoovd1oe22n75o8vdoe1n6o1v0o9d2e7nodveodn8eo3nvoodvd1eoe9n1n0o1o2v7vo6o12836dd3d6ee8ennnooovvvooo24203525d59ed7neondvoeovn2oo17dv96eod11n1eo8nvd2ooe8v2no5dod26eve3non4o1o4v3vo8o1316d25e88n1ovo2123denovod1e3nd4oe2vnoo4v6o998d6edneonvoovd1oe91n38o85v9od8e3n2ovo296denovod2e1n7od7veon7o4v6o275denovo2003denovo2239denovo2179 AAOABBHdçmaaaTulrjtUbaaratociuzhneobaBannarrtaiaa Snnoc Doil ark Earth (b) 2.4 1.8 1.2 %) Axis 2 (12.7-3.0 -2.5 -2.0 -1.5 -1.0Aml% HB+Al -0.5 Fe 0.6 OM CEC0.5 MgpCZHunCVM%aPn1.S0B 1.5 -0.6 -1.2 ACU ADE ACU ADJ -1.8 BAL ADE BAL ADJ BBO ADE -2.4 BBO ADJ HAT ADE HAT ADJ -3.0 Axis 1 (16.5%) Lithotheliumseptemseptatum(OTU1344),Aspergillusniger ahigherdiversitywasobserved(Table4).TheADJcorecon- (OTU 2196), Ophiocordyceps clavata (OTU 2207), and sideringallsiteswascomposedofeightOTUs:twosimilarto Fomitopsis pinicola (Basidiomycota, OTU 153), and OTUs Mucoromycotina sp. (OTUs 2315 and 2057) and the others 874and1924wereclassifiedasunculturedfungus(Table4). similar to Exophiala dermatitidis (OTU 118), Acremonium WealsodeterminedthefungalcoresintheADEandADJ vitellinum (OTU 468), Pestalosphaeria sp. (OTU 938), that were present in all samples of the same group but not Cryptococcusaureus(OTU1002),unculturedBasidiomycota necessarycompletelyabsentintheotherone.Duetothepar- (OTU1523),andSpathulariaflavida(OTU2120).AfterACU ticulargroupingpatternsoftheACUsoilsamplesintheOTU ADJ sequence removal, the number of OTUs belonging to networkandCCAanalyses(Fig.1a,b),wedecidedtocompute ADJfungalcorewasraisedto12OTUs(Table4). the fungal core in two ways: including and excluding ACU samples. By considering only the most homogeneous ADE Abundance-BasedAnalyses andADJsites(BAL,BBO,andHAT),weincreasedthenum- ber of OTUs in the core. The ADE core considering all sites ThedominantOTUspresentinatleast75%oftheADEand was composed of six OTUs; of those, three had similarity to ADJ 18S rRNA soil libraries (>1 % of sequences of each Mortierellaceae sp. (OTUs 991, 1943, and 2141), one to group)wereidentifiedandtestedforstatisticalsignificantdif- Plectosphaerellasp.(OTU2425),andtheothertwohadsim- ferences in abundance (non-parametric t test followed by ilaritytounculturedChytridiomycota(OTU1462)anduncul- Monte Carlo test). Of the 30 OTUs that fit this criterion, 12 turedBoletaceae(OTU1134)(Table4).AfterACUADEse- were more abundant in ADE soils, 10 in ADJ soils, and 8 quenceexclusion,theADEcorewasincreasedto15OTUsand showed no significant abundance differences between soil 968 A.R.Luchetaetal. ACU), ADEversuscADJ * ns ** * ns * ns * ns ns ** ns ns ns ns * ** * * ** * ns ( a c c b b b b c b u a b a b b b a a b b a b a a b b b b a a b a Açut DJ 7.99 0.10 0.09 1.34 0.07 1.32 2.28 0.15 0.00 0.19 1.83 0.29 0.00 0.03 0.57 2.60 0.78 0.07 0.72 0.25 3.05 0.21 sfrom HATA 56.73± 0.06± 0.19± 2.33± 0.08± 3.80± 6.71± 0.64± 0.00± 0.27± 4.78± 3.59± 0.00± 0.04± 0.50± 4.32± 2.37± 0.04± 3.63± 0.17± 9.51± 0.23± soil c c b b bc DJ) E 05b 03b 03b 00b 03b 24b 29a 58a 07b 19b 21c 84b 50a 09a 12a 61a 37c 15a 41a 00a 26a 00c djacent(A HATAD 34.22±8. 0.02±0. 0.02±0. 0.00±0. 0.02±0. 7.77±1. 3.92±5. 2.28±0. 0.04±0. 0.14±0. 1.62±0. 2.58±1. 0.41±0. 0.08±0. 1.16±0. 18.52±2. 0.71±0. 0.50±0. 2.28±1. 0.00±0. 23.73±5. 0.00±0. 5) a 0 arth(ADE)and BBOADJ 51.54±6.40ab 0.04±0.03b 0.39±0.29ab 0.58±0.31b 0.08±0.09b 2.57±0.59b 0.19±0.07b 0.06±0.06b 0.21±0.09a 0.12±0.12b 2.66±0.49bc 9.38±0.29a 0.02±0.03a 0.00±0.00a 0.06±0.06b 4.48±0.54b 4.88±1.76a 0.02±0.03b 1.58±0.03abc 0.15±0.07a 21.01±7.33ab 0.00±0.00c ’≤keystest(p0. E u anDark ADE ±2.21ab ±0.15a ±0.00c ±0.00b ±0.00b ±0.94b ±0.19b ±1.31ab ±0.00b ±0.03b ±0.32c ±3.44a ±0.00a ±0.00a ±0.13b ±1.77b ±0.59bc ±0.12ab ±0.12c ±0.00a ±2.69ab ±0.00c cesbyT micalclassification)ofAmazoni ADEBALADJBBO ±4.70c47.28±6.41ab49.92 ±0.03b0.17±0.15b0.58 ±0.00c0.54±0.22a0.00 ±0.00b10.47±2.28a0.00 ±0.03b0.12±0.06b0.00 ±4.93a8.85±1.00b6.35 ±0.03b0.79±0.58b0.14 ±1.10ab0.02±0.03b1.22 ±0.00b0.02±0.03b0.00 ±0.07b0.12±0.15b0.02 ±0.45c1.81±1.49c0.87 ±0.55b1.23±0.34b12.38 ±0.15a0.10±0.09a0.00 ±0.00a0.00±0.00a0.00 ±0.03b0.25±0.15b0.42 ±2.61b10.15±2.57b7.39 ±0.09c3.05±0.79ab1.77 ±0.46a0.17±0.17b0.35 ±0.26bc4.75±2.61a0.46 ±0.00a0.15±0.03a0.00 ±0.35a9.93±0.49b18.13 ±0.03ab0.02±0.03ab0.00 LVA111database representnosignificantdifferen a(basedonBLASTbesthittaxono bADEACUADJBAL ±6.41abc39.68±8.18abc27.37 ±0.03b0.04±0.03b0.04 ±0.00c0.00±0.00c0.00 ±0.00b0.00±0.00b0.00 ±0.10a0.15±0.12b0.02 ±3.45b3.70±1.71b33.29 ±0.22b1.10±0.50ab0.10 ±0.00b0.04±0.03b1.10 ±0.00b0.00±0.00b0.00 ±0.83ab8.06±7.35a0.08 ±0.50c7.02±1.02a0.75 ±0.86b4.92±1.43b0.81 ±0.27a0.23±0.27a0.41 ±0.00a0.58±0.67a0.00 ±0.09b0.10±0.17b0.14 ±1.33a9.12±2.38b7.68 ±0.24bc0.79±0.32c0.44 ±0.34b0.35±0.15ab0.98 ±0.44ab4.53±1.24a0.83 ±0.00a0.10±0.07a0.00 ±6.25ab19.46±3.13ab25.95 ±0.00c0.02±0.03ab0.02 afterBLASTsearchagainst97SI ystandarddeviation.Sameletters Table3Relativeabundance(%)ofthefungi18SrRNAgenetaxBalbina(BAL),BarroBranco(BBO),andHatahara(HAT)sites aaSubphylumACUPhylum AscomycotaPezizomycotina44.27 Saccharomycotina0.08 Taphrinomycotina0.00 MitosporicAscomycota0.00 UnclassifiedAscomycota0.46 BasidiomycotaAgaricomycotina(norank)7.66 Basidiomycotaenvironmental0.15samplesPucciniomycotina0.00 Ustilaginomycotina0.00 BlastocladiomycotaBlastocladiomycotaInsertaesedis3.43 ChytridiomycotaChytridiomycotaInsertaesedis1.04 Chytridiomycotaenvironmental1.68samplesEntomophthoromycotaEntomophthoromycotainsertae0.23sedisEntorrhizomycotaEntorrhizomycotaInsertaesedis0.00 FungiincertaesedisKickxellomycotina0.15 Mortierellomycotina16.78 Mucoromycotina0.85 Zoopagomycotina0.25 GlomeromycotaGlomeromycotaInsertaesedis4.07 UnclassifiedGlomeromycota0.00 UnculturedfungusEnvironmentalsamples18.89 Unclassifiedsequence0.00 nsnotsignificantaTaxonomicclassificationbasedontheNCBIrankofthebesthitbTheshowedvaluesaretheaverageofthreereplicatesfollowedbcIndependentsamplettestcomparingADE×ADJsoilgroups≤≤*p0.05;**p0.005 FungalCommunitiesinADE 969 Table4 AmazonianDarkEarth(ADE)andadjacent(ADJ)soilsgeneralfungalOTUcoreandspecificsoiltypecores(ADEorADJ)followedbythe bestBLASThitandtheNCBItaxonomicalclassification NCBItaxonomicclassificationa OTUnumber Soilgroup Accessnumber Phylum Subphylum Specie OTU153 ADE/ADJ AY705967 Basidiomycota Agaricomycotina(norank) Fomitopsispinicola OTU822 ADE/ADJ AB111495 Ascomycota Pezizomycotina Cordycepsconfragosa OTU874 ADE/ADJ JN054669 nd nd Unculturedfungus OTU1344 ADE/ADJ AY584662 Ascomycota Pezizomycotina Lithotheliumseptemseptatum OTU2196 ADE/ADJ GQ903337 Ascomycota Pezizomycotina Aspergillusniger OTU2207 ADE/ADJ JN941726 Ascomycota Pezizomycotina Ophiocordycepsclavata OTU1924 ADE/ADJ JN054669 nd nd Unculturedfungus OTU991 ADE EU688964 Fungiincertaesedis Mortierellomycotina Mortierellaceaesp. OTU1943 ADE EU688964 Fungiincertaesedis Mortierellomycotina Mortierellaceaesp. OTU2141 ADE EU688964 Fungiincertaesedis Mortierellomycotina Mortierellaceaesp. OTU2425 ADE HQ871881 Ascomycota Pezizomycotina Plectosphaerellasp. OTU1462 ADE GQ995336 Chytridiomycota nd unculturedChytridiomycota OTU1134 ADE EF024156 Basidiomycota Agaricomycotina(norank) unculturedBoletaceae OTU310b ADE GU369995 nd nd Unculturedmarineeukaryote OTU339b ADE DQ198797 Basidiomycota Pucciniomycotina Atractiellasolani OTU362b ADE GU568155 nd nd Unculturedsoilfungus OTU548b ADE JN941713 Ascomycota Pezizomycotina Ophiocordycepsnutans OTU1526b ADE AF026592 Basidiomycota Agaricomycotina(norank) Bjerkanderaadusta OTU1878b ADE ABIS01004081 Ascomycota Pezizomycotina Coccidioidesposadasii OTU2075b ADE EU417636 Glomeromycota Incertaesedis UnculturedGlomus OTU2282b ADE AB196322 Fungiincertaesedis Kickxellomycotina Ramicandelaberlongisporus OTU2475b ADE AB901634 nd nd Unculturedeukaryote OTU118 ADJ DQ823107 Ascomycota Pezizomycotina Exophialadermatitidis OTU468 ADJ HQ232212 Ascomycota Pezizomycotina Acremoniumvitellinum OTU938 ADJ AF104356 Ascomycota Pezizomycotina Pestalosphaeriasp. OTU1002 ADJ DQ437076 Basidiomycota Agaricomycotina(norank) Cryptococcusaureus OTU1523 ADJ EF441962 Basidiomycota nd UnculturedBasidiomycota OTU2120 ADJ Z30239 Ascomycota Pezizomycotina Spathulariaflavida OTU2315 ADJ JF414214 Fungiincertaesedis Mucoromycotina Mucoromycotinasp. OTU2057 ADJ JF414228 Fungiincertaesedis Mucoromycotina Mucoromycotinasp. OTU1853b ADJ HQ333479 Ascomycota Mitosporic(norank) Heliocephalagracilis OTU1086b ADJ AB032629 Basidiomycota Agaricomycotina(norank) Cryptococcusflavus OTU2235b ADJ JF836023 Ascomycota Taphrinomycotina Archaeorhizomycesborealis OTU2242b ADJ GQ995264 Chytridiomycota nd UnculturedChytridiomycota ndnotdetermined(nd) aTaxonomicclassificationbasedonbestBLASThitaccessaftersearchagainstSILVAdatabase(97SILVA111taxamapeuks)(Quastetal.2013) bPresentonlyinBalbina,BarroBranco,andHataharasites origins(Fig.2).OTU822,similartoC.confragosa,showed Discussion thehighestnumberof18SrRNAsequences(17.8%)andwas moreabundantintheADEsoils(Fig.2a)thaninADJsoils. Up to date, the fungal community in ADE has been charac- ThesecondmostabundantwasOTU2196(6.4%),similarto terized only by culture-dependent methods [16] and poorly A. niger, and significantly more abundant in ADJ soils described when compared to Bacteria and Archaea commu- (Fig. 2b) than ADE soils. Chytridiomycota-like OTUs also nities [7–10, 12, 31, 32]. To our knowledge, this is the first showedhighabundancelevelsbutwithoutdifferencesbased study assessing the soil fungal composition and diversity of onthesoilorigin(Fig.2c). ADE sites in the Brazilian Central Amazonia compared to 970 A.R.Luchetaetal. Fig.2 Differential frequencies ofmost abundant OTUs (>1 % ofthe significantmostabundantinAmazonianDarkEarth(ADE)(a),inadja- groupsequences)determinedbynon-parametricttestusingMonteCarlo cent(ADJ)soils(b),andshowingnosignificantdifferencesbetweenthe simulation (100 replicates). Plots representing the OTUs statistically soiltypes(c) their respective adjacent non-anthropogenic origin soils by Despite the lower fungal species richness and diversity ob- using high-throughput 18S rRNA gene sequencing. No dif- served in our study, elevated ratios of amino sugar and ferenceinthefungusspeciesrichnesswasobservedbetween muramic acid in soil microbial biomass indicated a general ADE and ADJ soils, with the exception of the HATsite, in predominance of fungi over bacteria in the ADE samples which higher species richness in ADE was found with the [6]. ACE index. This finding diverges from the bacterial com- Previous studies revealed that ADE samples from different munity richness that was described being 25 % greater in originsharborsimilarbacterialandarchaealcommunitiesaswell ADE soils than in ADJ [7]. Culture-dependent [8] and asbacterialfunctionalgenes(e.g.,bph,encodingforabiphenyl culture-independent analysis [12] also showed a higher bac- dioxygenase) that are distinct from adjacent soils of non- terial diversity in ADE in comparison with ADJ soils. anthropogenicorigin[9,33].Inthisstudy,weobservedthesame However, for fungi, we have detected no differences in fun- patternforfungalcommunities.TheADEfungalcommunitiesin gal diversity in ACU and HATsoils. Only the reciprocal of three of the four evaluated sites (BAL, BBO, and HAT) were Simpson’s index estimated a lower diversity in BAL and more similar to each other than their respective ADJ soils at BBO ADE, indicating possible fungal species dominance. OTU level analysis, thus suggesting an effect of past land use FungalCommunitiesinADE 971 on the fungal community selection. Nevertheless, the same fresh organic matter instead of direct oxidation of recalcitrant groupingpatternwasnotobservedfortheACUsitewherethe BC.However,thepotentialforlowerBCoxidationratesbythe fungal communities could not be segregated by soil type and Agaricomycotinafungicannotbediscardedandshouldbein- were more dissimilar from the other ADE and ADJ sites. vestigatedinthefuture.Wewereunabletoaffirminthisstudy Currently, the ACU ADE have intensively been used for agri- if the decomposition offresh organic matter priming affected cultureunderannualcroprotationsystem(e.g.,eggplant,cow- recalcitrant BC decomposition. Controversial results are ob- pea, cabbage, zucchini, cucumber, passion fruit, papaya) [34] served in the literature showing positive effect of glucose on and also showed the lowest amount of organic matter among BCoxidationinBC/sandymixture[46]andnoprimingeffect the surveyed ADE soils. Shifts in fungal communities in onBCmineralizationbytheincorporationof13C-labeledplant Amazonian soils due to land use changes, e.g., conversion of residues to ADE in long-term experiments [39]. In the other native forest to pasture and agriculture, have already been de- direction, Glaser and Knorr [38] determined significant scribed[35],buttheextensionofthealterationsinADElanduse amounts of biological BC production under humid tropical onthemicrobialcommunitiesarestillscarce[4].Weobservedan conditionsandattributedittotheblackpigmentaspergilinpro- increase in the common ADE OTUs (ADE fungal core) after ducedbyAspergillusniger.DespitethepresenceofA.nigerin ACUsampleremoval,butwecannotaffirmthatthiseffectwasa thegeneralfungalcore,theOTU2196similartothisspecies result of the ACU ADE transformations in response to more wassignificantlyabundantintheADJsoils.A.nigerisaver- intensivelanduseorduetonaturaldifferencesinADEagesor satile ubiquitous fungus, commonly found in soil and litter formationprocesses.ThelowconcentrationofAlandaluminum [47],andabletoproduceandsecreteenzymesandsiderophore saturationinADJsoilfromACUpointstopriorlimeapplication molecules[48]andsolubilizeinorganicP[49]. beforesampling,whichcouldexplaintheout-groupingofADJ In this study, we also observed a high abundance of 18S samples.Lehmann[36]suggeststhatthespecificmicrobialcom- rRNAsequencessimilartothefungalspeciesC.confragosa,a positioninADEisaresultofitsuniqueconditionsratherthanthe pathogen of arthropods and other fungal species [50]. cause.Indeed,thehigheramountsofnutrients,mainlyP,Ca,Zn, Entomopathogenic fungi, like Cordyceps and and Mg, and higher SB and V% were associated with ADE Ophiocordyceps,arecommonlyfoundinundisturbedtropical fungalcommunities,whereasAlandaluminumsaturationswere humidforestssoilandlitterandcancontrolinsectoutbreaks moreassociatedtothefungalcommunitiesinADJsoils.High [51]. C. confragosa, also known as Lecanicillium lecanii levelsofAland Mn indirectly caused by soilpHacidity have (Zimm.)duringitsanamorphicstage,isaparasiteofthegreen been described as a limiting factor for crop production in coffeescale(Coccusviridis,Hemiptera)[52]andcoffeeleaf Amazoniansoils[37].SignificantcorrelationsofAlcontentsin rustfungus(Hemileiavastatrix)[53].Inagriculturalenviron- ADE and ADJ soils with bacterial rizhospheric and bph gene ments, soil can act as the fungus propagule reservoir during communitystructureswerealsoobserved[4,33];however,fur- the dry seasons and absence of the target insects [54]. We ther studies are still necessary to confirm this assumptions for observed a dominance of C. confragosa-like OTUs in the fungalcommunitiesintheseenvironments. BBOADEsoilthatwascultivatedwithacitrusorchardand The microbialfunctions in ADEare stillunclear[36],and speculatethatthisfunguscouldbeactingintheinsectbiolog- mosthypothesisreliesonblackcarbon(BC)oxidation,mainly ical control. Further studies are necessary to explore these byfungi[6]orBCbiologicalproduction[38].Duetoitspoly- predictions. Our findings indicated that beyond the impor- cyclicaromaticstructure,BCcannotbeconsideredanavailable tance in C transformations, ADE soils could be a source of sourceofCformicrobialgrowth[3,39];however,itmaybe newentomopathogenicfungi. mineralizedbymicrobialco-metabolism[9].Inoursurvey,we observed a significantly higher abundance in ADE of OTUs showing similarity to the brown rot fungi F. pinicola [40] as Conclusions well as the saprophytic fungi A. vitellinum [41] and Mortierellaceaesp. LN07-7-4. Aremarkablecharacteristicof OurstudyrevealedthatfungicommunitiesinADEweremore theBasidiomycotabrownrotfungiistheselectivedegradation similar to each other than to the adjacent soils, even when ofwoodpolysaccharides,whichavoidsligninmolecules[42]. considering the different origins and ages of formation. The Inthesameway,Mortierellaspp.andAcremoniumspp.were concentrationsofsoilPandAlwerethemainchemicalprop- found in thermophilic compost and vermicompost [43–45]. ertiesassociatedtothefungalassemblagesinADEandADJ Mortierellales fungi were more associated to manure silage soils, respectively. However, other potential factors driving and hay compost than hardwood composts [45]. ADE fungi communities beyond the soil chemical attributes Mortierellaceawasalsodescribedasdominantinsoilsamples might be further investigated. Recently, it was demonstrated fromprimaryfloretsandagriculturalareasinAmazonia[35]. thatplantspeciescaninfluencerhizosphericbacterialcommu- Basedontheseresults,wehypothesizethatthemostabundant nitiesinADE[4].ThemostabundantOTUsintheADEsoils fungal species in ADE are involved in the decomposition of showedsimilaritytosaprophyticfungispeciesrelatedtofresh

Description:
respective non-anthropogenic origin adjacent (ADJ) soils from four different . layer and litter were removed, and then, the soil samples were collected in the confidence ellipses (b) .. Uncultured marine eukaryote. OTU 339b.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.