ebook img

Fundamentals of the Monte Carlo method for neutral and charged particle transport PDF

348 Pages·2000·2.743 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of the Monte Carlo method for neutral and charged particle transport

Fundamentals of the Monte Carlo method for neutral and charged particle transport Alex F Bielajew The University of Michigan Department of Nuclear Engineering and Radiological Sciences 2927 Cooley Building (North Campus) 2355 Bonisteel Boulevard Ann Arbor, Michigan 48109-2104 U. S. A. Tel: 734 764 6364 Fax: 734 763 4540 email: [email protected] (cid:13)c 1998 Alex F Bielajew (cid:13)c 1998 The University of Michigan February 11, 2000 2 Preface This book arises out of a course I am teaching for a two-credit (26 hour) graduate-level course Monte Carlo Methods being taught at the Department of Nuclear Engineering and Radiological Sciences at the University of Michigan. AFB, February 11, 2000 i ii Contents 1 What is the Monte Carlo method? 1 1.1 Why is Monte Carlo? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Some history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Elementary probability theory 15 2.1 Continuous random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 One-dimensional probability distributions . . . . . . . . . . . . . . . 15 2.1.2 Two-dimensional probability distributions . . . . . . . . . . . . . . . 17 2.1.3 Cumulative probability distributions . . . . . . . . . . . . . . . . . . 20 2.2 Discrete random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Random Number Generation 25 3.1 Linear congruential random number generators . . . . . . . . . . . . . . . . . 26 3.2 Long sequence random number generators . . . . . . . . . . . . . . . . . . . 30 4 Sampling Theory 35 4.1 Invertible cumulative distribution functions (direct method) . . . . . . . . . 36 4.2 Rejection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Mixed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Examples of sampling techniques . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.1 Circularly collimated parallel beam . . . . . . . . . . . . . . . . . . . 44 4.4.2 Point source collimated to a planar circle . . . . . . . . . . . . . . . . 46 4.4.3 Mixed method example . . . . . . . . . . . . . . . . . . . . . . . . . . 47 iii iv CONTENTS 4.4.4 Multi-dimensional example . . . . . . . . . . . . . . . . . . . . . . . . 49 5 Error estimation 53 5.1 Direct error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Batch statistics error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 Combining errors of independent runs . . . . . . . . . . . . . . . . . . . . . . 58 5.4 Error estimation for binary scoring . . . . . . . . . . . . . . . . . . . . . . . 59 5.5 Relationships between S2 and s2, S2 and s2 . . . . . . . . . . . . . . . . . . 59 x x x x 6 Oddities: Random number and precision problems 63 6.1 Random number artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Accumulation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7 Ray tracing and rotations 75 7.1 Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 Rotation of coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Changes of direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8 Transport in media, interaction models 85 8.1 Interaction probability in an in(cid:12)nite medium . . . . . . . . . . . . . . . . . . 85 8.1.1 Uniform, in(cid:12)nite, homogeneous media . . . . . . . . . . . . . . . . . . 86 8.2 Finite media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3 Regions of di(cid:11)erent scattering characteristics . . . . . . . . . . . . . . . . . . 87 8.4 Obtaining (cid:22) from microscopic cross sections . . . . . . . . . . . . . . . . . . 90 8.5 Compounds and mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.6 Branching ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.7 Other pathlength schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.8 Model interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.8.1 Isotropic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.8.2 Semi-isotropic or P scattering . . . . . . . . . . . . . . . . . . . . . . 95 1 CONTENTS v 8.8.3 Rutherfordian scattering . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.8.4 Rutherfordian scattering|small angle form . . . . . . . . . . . . . . 96 9 Lewis theory 99 9.1 The formal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.2 Isotropic scattering from uniform atomic targets . . . . . . . . . . . . . . . . 102 10 Geometry 107 10.1 Boundary crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10.2 Solutions for simple surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.2.1 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.3 General solution for an arbitrary quadric . . . . . . . . . . . . . . . . . . . . 114 10.3.1 Intercept to an arbitrary quadric surface? . . . . . . . . . . . . . . . . 117 10.3.2 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3.3 Circular Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.3.4 Circular Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.4 Using surfaces to make objects . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.4.1 Elemental volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.5 Tracking in an elemental volume . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.6 Using elemental volumes to make objects . . . . . . . . . . . . . . . . . . . . 135 10.6.1 Simply-connected elements . . . . . . . . . . . . . . . . . . . . . . . . 135 10.6.2 Multiply-connected elements . . . . . . . . . . . . . . . . . . . . . . . 140 10.6.3 Combinatorial geometry . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.7 Law of reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11 Monte Carlo and Numerical Quadrature 151 11.1 The dimensionality of deterministic methods . . . . . . . . . . . . . . . . . . 151 11.2 Convergence of Deterministic Solutions . . . . . . . . . . . . . . . . . . . . . 154 11.2.1 One dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.2.2 Two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 vi CONTENTS 11.2.3 D dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.3 Convergence of Monte Carlo solutions . . . . . . . . . . . . . . . . . . . . . . 156 11.4 Comparison between Monte Carlo and Numerical Quadrature . . . . . . . . 156 12 Photon Monte Carlo Simulation 161 12.1 Basic photon interaction processes . . . . . . . . . . . . . . . . . . . . . . . . 161 12.1.1 Pair production in the nuclear (cid:12)eld . . . . . . . . . . . . . . . . . . . 162 12.1.2 The Compton interaction (incoherent scattering) . . . . . . . . . . . 165 12.1.3 Photoelectric interaction . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.1.4 Rayleigh (coherent) interaction . . . . . . . . . . . . . . . . . . . . . 169 12.1.5 Relative importance of various processes . . . . . . . . . . . . . . . . 170 12.2 Photon transport logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 13 Electron Monte Carlo Simulation 179 13.1 Catastrophic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.1.1 Hard bremsstrahlung production . . . . . . . . . . . . . . . . . . . . 180 13.1.2 M(cid:28)ller (Bhabha) scattering . . . . . . . . . . . . . . . . . . . . . . . . 180 13.1.3 Positron annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2 Statistically grouped interactions . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2.1 \Continuous" energy loss . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2.2 Multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.3 Electron transport \mechanics" . . . . . . . . . . . . . . . . . . . . . . . . . 183 13.3.1 Typical electron tracks . . . . . . . . . . . . . . . . . . . . . . . . . . 183 13.3.2 Typical multiple scattering substeps . . . . . . . . . . . . . . . . . . . 183 13.4 Examples of electron transport . . . . . . . . . . . . . . . . . . . . . . . . . 184 13.4.1 E(cid:11)ect of physical modeling on a 20 MeV e− depth-dose curve . . . . 184 13.5 Electron transport logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 14 Electron step-size artefacts and PRESTA 203 14.1 Electron step-size artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 CONTENTS vii 14.1.1 What is an electron step-size artefact? . . . . . . . . . . . . . . . . . 203 14.1.2 Path-length correction . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.1.3 Lateral deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 14.1.4 Boundary crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 14.2 PRESTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 14.2.1 The elements of PRESTA . . . . . . . . . . . . . . . . . . . . . . . . 216 14.2.2 Constraints of the Moli(cid:18)ere Theory . . . . . . . . . . . . . . . . . . . . 218 14.2.3 PRESTA’s path-length correction . . . . . . . . . . . . . . . . . . . . 223 14.2.4 PRESTA’s lateral correlation algorithm . . . . . . . . . . . . . . . . . 226 14.2.5 Accounting for energy loss . . . . . . . . . . . . . . . . . . . . . . . . 228 14.2.6 PRESTA’s boundary crossing algorithm . . . . . . . . . . . . . . . . 231 14.2.7 Caveat Emptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 15 Advanced electron transport algorithms 237 15.1 What does condensed history Monte Carlo do? . . . . . . . . . . . . . . . . . 240 15.1.1 Numerics’ step-size constraints . . . . . . . . . . . . . . . . . . . . . . 240 15.1.2 Physics’ step-size constraints . . . . . . . . . . . . . . . . . . . . . . . 243 15.1.3 Boundary step-size constraints . . . . . . . . . . . . . . . . . . . . . . 244 15.2 The new multiple-scattering theory . . . . . . . . . . . . . . . . . . . . . . . 245 15.3 Longitudinal and lateral distributions . . . . . . . . . . . . . . . . . . . . . . 247 15.4 The future of condensed history algorithms . . . . . . . . . . . . . . . . . . . 249 16 Electron Transport in Electric and Magnetic Fields 257 16.1 Equations of motion in a vacuum . . . . . . . . . . . . . . . . . . . . . . . . 258 ~ ~ ~ ~ 16.1.1 Special cases: E =constant, B = 0; B =constant, E = 0 . . . . . . . . 259 16.2 Transport in a medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.3 Application to Monte Carlo, Benchmarks . . . . . . . . . . . . . . . . . . . . 264 17 Variance reduction techniques 275 17.0.1 Variance reduction or e(cid:14)ciency increase? . . . . . . . . . . . . . . . . 275 viii CONTENTS 17.1 Electron-speci(cid:12)c methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 17.1.1 Geometry interrogation reduction . . . . . . . . . . . . . . . . . . . . 277 17.1.2 Discard within a zone . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 17.1.3 PRESTA! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 17.1.4 Range rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 17.2 Photon-speci(cid:12)c methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 17.2.1 Interaction forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 17.2.2 Exponential transform, russian roulette, and particle splitting . . . . 287 17.2.3 Exponential transform with interaction forcing . . . . . . . . . . . . . 290 17.3 General methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 17.3.1 Secondary particle enhancement . . . . . . . . . . . . . . . . . . . . . 291 17.3.2 Sectioned problems, use of pre-computed results . . . . . . . . . . . . 292 17.3.3 Geometry equivalence theorem . . . . . . . . . . . . . . . . . . . . . . 293 17.3.4 Use of geometry symmetry . . . . . . . . . . . . . . . . . . . . . . . . 294 18 Code Library 299 18.1 Utility/General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 18.2 Subroutines for random number generation . . . . . . . . . . . . . . . . . . . 302 18.3 Subroutines for particle transport and deflection . . . . . . . . . . . . . . . . 321 18.4 Subroutines for modeling interactions . . . . . . . . . . . . . . . . . . . . . . 325 18.5 Subroutines for modeling geometry . . . . . . . . . . . . . . . . . . . . . . . 328 18.6 Test routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.