Fundamentals of Quantum Mechanics The book discusses fundamental concepts of quantum mechanics, including the state of a quantum mechanical system, operators, superposition principle and measurement postulate. The notion of an operator and the algebra of operators is introduced with the help of elementary concepts of mathematical analysis. The mathematical tools developed here will help resolve the difficulties encountered in classical physics while trying to explain the experimental results involving atomic spectra and other phenomena. The differential equations that arise while solving eigenvalue problems are solved rigorously, to make the text self-sufficient. The solutions are then physically interpreted and explained. The book covers modern algebraic language of quantum mechanics, wherein the fundamental concepts and methods of solutions are translated into the algebraic formalism and compared with the earlier simpler approach. The text offers solved examples and homework problems to help students in solving practical problems of physicsrequiringquantummechanicaltreatment. Ajit Kumar is a Professor at the Department of Physics, Indian Institute of Technology, New Delhi. He is a Fellow of the Alexander von Humboldt Foundation, Bonn, Germany since1987.ArecipientoftheTeachingExcellenceAwardfromI.I.T.Delhi,hehasbeen teaching the core subjects of theoretical physics including quantum field theory, group theoryanditsapplications,andgeneraltheoryofrelativityforthepast34years.Hiscurrent research is related to the problems of nonlinear optics, solution of nonlinear Schro¨dinger equationinnonlinearopticalmedia,fiber-opticsolitonsandtheirswitchingdynamicsand electromagneticwavepropagationinmetamaterials. Fundamentals of Quantum Mechanics Ajit Kumar UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314to321,3rdFloor,PlotNo.3,SplendorForum,JasolaDistrictCentre,NewDelhi110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle: www.cambridge.org/9781107185586 (cid:2)c AjitKumar2018 Thispublicationisincopyright. Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedinIndia AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-18558-6Hardback ISBN978-1-108-46593-9Paperback Additionalresourcesforthispublicationatwww.cambridge.org/9781107185586 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Dedicatedtomyparents Contents Figures xi Tables xiii Preface xv Chapter1: Introduction 1 1.1 TheBlackbodyRadiation 2 1.2 ThePhotoelectricEffect 5 1.3 TheBohrModelofanAtom 7 1.4 TheComptonEffect 8 HomeworkProblems 12 Chapter2: ThePostulatesofQuantumMechanics 13 2.1 SpecificationofState. StatisticalInterpretation 14 2.2 ObservablesandOperators 18 2.3 HermitianOperators 19 2.4 AlgebraofOperators 27 2.5 TheSchro¨dingerEquation 32 2.6 Time-independentPotentialsandtheStationaryStates 34 2.7 MeasurementandCompatibleOperators 36 HomeworkProblems 51 Chapter3: One-dimensionalProblems 56 3.1 BoundandScatteringStates 57 3.2 TheFreeParticleSolution 58 3.3 ParticleinanInfinitePotentialWell 61 3.4 DiscontinuousPotentialsandtheDifferentiabilityoftheWaveFunction 67 3.5 ConservationofProbabilityandtheContinuityEquation 72 vii viii Contents 3.6 SymmetricPotentialandEvenandOddParitySolutions 78 3.7 ParticleinaFiniteSquareWellPotential 81 3.8 PotentialBarrierandTunneling 88 3.9 One-dimensionalHarmonicOscillator 94 3.10 Heisenberg’sUncertaintyRelation 101 3.11 Quantum–ClassicalCorrespondenceandEhrenfest’sTheorem 109 3.12 PeriodicPotentials,Bloch’sTheoremandEnergyBands 113 HomeworkProblems 119 Chapter4: AlgebraicFormulationofQuantumMechanics 124 4.1 LinearVectorSpaces 124 4.2 DiracNotation 128 4.3 HilbertSpace 136 4.4 ObservablesandOperators 138 4.5 MatrixRepresentationofOperators 141 4.6 HermitianandUnitaryOperators 146 4.7 ChangeofBasisandUnitaryTransformations 155 4.8 TheProjectionOperator 158 4.9 CoordinateandMomentumRepresentationsoftheStateVectorandthe Schro¨dingerEquation 161 4.10 BasicPostulatesofQuantumMechanics 168 4.11 GeneralizedHeisenbergUncertaintyRelation 171 4.12 Time-evolutionOperatorandPicturesofQuantumMechanics 175 4.13 AlgebraicTreatmentofOne-dimensionalHarmonicOscillator 179 HomeworkProblems 185 Chapter5: QuantumMechanicsinThreeSpatialDimensions 187 5.1 Three-dimensionalSchro¨dingerEquationinCartesianCoordinates 187 5.2 TheFreeParticleSolutioninCartesianCoordinates 189 5.3 TheInfiniteRectangularWellPotential 191 5.4 Schro¨dingerEquationinSphericalCoordinates 192 5.5 SphericallySymmetricPotentialsandSeparationofVariables 194 5.6 SolutionoftheAngularPartoftheSchro¨dingerEquationinSpherical Coordinates 195 5.7 SolutionoftheRadialPartoftheSchro¨dingerEquationinSpherical Coordinates 197 5.8 TheFreeParticleSolutioninSphericalCoordinates 199 5.9 TheInfiniteSphericalWellPotential 201
Description: