THIRD EDITION FUNDAMENTALS OF PROBABILITY WITH STOCHASTIC PROCESSES SAEED GHAHRAMANI Western New England College UpperSaddleRiver,NewJersey07458 LibraryofCongressCataloging-in-PublicationData Ghahramani,Saeed. Fundamentalsofprobabilitywithstochasticprocesses/SaeedGhahramani.—3rdedition. p. cm. IncludesIndex. ISBN: 0-13-145340-8 1. Probabilities. I.Title. QA273.G4642005 519.2—dc22 2004048541 ExecutiveEditor: GeorgeLobell Editor-in-Chief: Sally Yagan ProductionEditor: JeanneAudino AssistantManagingEditor: BayaniMendozaDeLeon SeniorManagingEditor: LindaMihatovBehrens ExecutiveManagingEditor: KathleenSchiaparelli Vice-President/DirectorofProductionandManufacturing: DavidW.Riccardi AssistantManufacturingManager/Buyer: MichaelBell ManufacturingManager: TrudyPisciotti MarketingManager: HaleeDinsey MarketingAssistant: RachelBeckman ArtDirector: JayneConte CoverDesigner: BruceKenselaar CoverImageSpecialist: RitaWenning CoverPhoto: PhotoLibrary.com BackCoverPhoto: BenjaminShear/Taxi/GettyImages,Inc. Compositor: SaeedGhahramani Composition: -LATEX AMS ©2005,2000,1996byPearsonEducation,Inc. PearsonPrenticeHall PearsonEducation,Inc. UpperSaddleRiver, NJ 07458 Allrightsreserved. Nopartofthisbookmaybereproduced,inanyform orbyanymeans,withoutpermissioninwritingfromthepublisher. PearsonPrenticeHall®isatrademarkofPearsonEducation,Inc. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ISBN 0-13-145340-8 PearsonEducationLTD.,London PearsonEducationofAustraliaPTY,Limited,Sydney PearsonEducationSingapore,Pte. Ltd. PearsonEducationNorthAsiaLtd,HongKong PearsonEducationCanada,Ltd.,Toronto PearsonEducacióndeMexico,S.A.deC.V. PearsonEducation–Japan,Tokyo PearsonEducationMalaysia,Pte. Ltd To Lili, Adam, and Andrew C ontents ! Preface xi ! 1 Axioms of Probability 1 1.1 Introduction 1 1.2 SampleSpaceandEvents 3 1.3 AxiomsofProbability 11 1.4 BasicTheorems 18 1.5 ContinuityofProbabilityFunction 27 1.6 Probabilities0and1 29 1.7 RandomSelectionofPointsfromIntervals 30 ReviewProblems 35 ! 2 Combinatorial Methods 38 2.1 Introduction 38 2.2 CountingPrinciple 38 NumberofSubsetsofaSet 42 TreeDiagrams 42 2.3 Permutations 47 2.4 Combinations 53 2.5 Stirling’sFormula 70 ReviewProblems 71 ! 3 Conditional Probability and Independence 75 3.1 ConditionalProbability 75 ReductionofSampleSpace 79 3.2 LawofMultiplication 85 3.3 LawofTotalProbability 88 3.4 Bayes’Formula 100 3.5 Independence 107 v vi Contents 3.6 ApplicationsofProbabilitytoGenetics 126 Hardy-WeinbergLaw 130 Sex-LinkedGenes 132 ReviewProblems 136 Distribution Functions and ! 4 139 Discrete RandomVariables 4.1 RandomVariables 139 4.2 DistributionFunctions 143 4.3 DiscreteRandomVariables 153 4.4 ExpectationsofDiscreteRandomVariables 159 4.5 VariancesandMomentsofDiscreteRandomVariables 175 Moments 181 4.6 StandardizedRandomVariables 184 ReviewProblems 185 ! 5 Special Discrete Distributions 188 5.1 BernoulliandBinomialRandomVariables 188 ExpectationsandVariancesofBinomialRandomVariables 194 5.2 PoissonRandomVariable 201 PoissonasanApproximationtoBinomial 201 PoissonProcess 206 5.3 OtherDiscreteRandomVariables 215 GeometricRandomVariable 215 NegativeBinomialRandomVariable 218 HypergeometricRandomVariable 220 ReviewProblems 228 ! 6 Continuous RandomVariables 231 6.1 ProbabilityDensityFunctions 231 6.2 DensityFunctionofaFunctionofaRandomVariable 240 6.3 ExpectationsandVariances 246 ExpectationsofContinuousRandomVariables 246 VariancesofContinuousRandomVariables 252 ReviewProblems 258 Contents vii ! 7 Special Continuous Distributions 261 7.1 UniformRandomVariable 261 7.2 NormalRandomVariable 267 CorrectionforContinuity 270 7.3 ExponentialRandomVariables 284 7.4 GammaDistribution 292 7.5 BetaDistribution 297 7.6 SurvivalAnalysisandHazardFunction 303 ReviewProblems 308 ! 8 Bivariate Distributions 311 8.1 JointDistributionofTwoRandomVariables 311 JointProbabilityMassFunctions 311 JointProbabilityDensityFunctions 315 8.2 IndependentRandomVariables 330 IndependenceofDiscreteRandomVariables 331 IndependenceofContinuousRandomVariables 334 8.3 ConditionalDistributions 343 ConditionalDistributions: DiscreteCase 343 ConditionalDistributions: ContinuousCase 349 8.4 TransformationsofTwoRandomVariables 356 ReviewProblems 365 ! 9 Multivariate Distributions 369 9.1 JointDistributionofn>2RandomVariables 369 JointProbabilityMassFunctions 369 JointProbabilityDensityFunctions 378 RandomSample 382 9.2 OrderStatistics 387 9.3 MultinomialDistributions 394 ReviewProblems 398 ! 10 More Expectations andVariances 400 10.1 ExpectedValuesofSumsofRandomVariables 400 PatternAppearance 407 10.2 Covariance 415 viii Contents 10.3 Correlation 429 10.4 ConditioningonRandomVariables 434 10.5 BivariateNormalDistribution 449 ReviewProblems 454 Sums of Independent Random ! 11 457 Variables and LimitTheorems 11.1 Moment-GeneratingFunctions 457 11.2 SumsofIndependentRandomVariables 468 11.3 MarkovandChebyshevInequalities 476 Chebyshev’sInequalityandSampleMean 480 11.4 LawsofLargeNumbers 486 ProportionversusDifferenceinCoinTossing 495 11.5 CentralLimitTheorem 498 ReviewProblems 507 ! 12 Stochastic Processes 511 12.1 Introduction 511 12.2 MoreonPoissonProcesses 512 WhatIsaQueuingSystem? 523 PASTA:PoissonArrivalsSeeTimeAverage 525 12.3 MarkovChains 528 ClassificationsofStatesofMarkovChains 538 AbsorptionProbability 549 Period 552 Steady-StateProbabilities 554 12.4 Continuous-TimeMarkovChains 566 Steady-StateProbabilities 572 BirthandDeathProcesses 576 12.5 BrownianMotion 586 FirstPassageTimeDistribution 593 TheMaximumofaBrownianMotion 594 TheZerosofBrownianMotion 594 BrownianMotionwithDrift 597 GeometricBrownianMotion 598 ReviewProblems 602 Contents ix ! 13 Simulation 606 13.1 Introduction 606 13.2 SimulationofCombinatorialProblems 610 13.3 SimulationofConditionalProbabilities 614 13.4 SimulationofRandomVariables 617 13.5 MonteCarloMethod 626 ! AppendixTables 630 ! Answers to Odd-Numbered Exercises 634 ! Index 645
Description: