ebook img

Fundamentals of optimization. Methods, minimum principles and applications PDF

252 Pages·2018·7.112 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of optimization. Methods, minimum principles and applications

Mark French Fundamentals of Optimization Methods, Minimum Principles and Applications for making Things better MarkFrench SchoolofEngineeringTechnology PurdueUniversity WestLafayette,IN,USA ISBN978-3-319-76191-6 ISBN978-3-319-76192-3 (eBook) https://doi.org/10.1007/978-3-319-76192-3 LibraryofCongressControlNumber:2018935277 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Foreword I have had the great pleasure in getting to know Mark French’s dedication and innovativewaysofteachingengineeringprinciplesoverthelastfewyears.Markis trulyanexceptionalteacherandthisisreflectedinhislatestwork:Fundamentalsof Optimization: Methods, Minimum Principles, and Applications for Making Things Better. The best textbook authors for education tend to be those that have a strong desiretosimplifyandpresentdifficulttopics insuchawayastocarefullyleadthe studentalongalearningjourneythatbuildsselfconfidenceinthesubject.Beingan author of numerous textbooks myself, I know that dedicated teachers make great textbookauthorsandMark’sdedicationisreflectedinhisbook. Thisbookisanintroductorytreatiseonthetopicofoptimization inengineering design.Thepointofthisbookistoprovideareferenceforstudentsandprofessionals who need a clear introduction to optimization, with actionable information and examples that show how the calculations work. This is basically the book Mark Frenchneededwhenhelearnedtouseoptimizationasacivilianaerospaceengineer withtheUSAirForce. There are a number of mathematically rigorous optimization books in print and someareverygood,buttheyaregenerallygearedtowardsresearchersandadvanced graduate students. They tend toward abstract and theoretical presentations, often goingsofarastointroducesubjectsusingamathematicallyformalstatement-proof structure.Whilethisisquiteappropriatefortheresearchcommunity,itisthewrong approachforstudentswhoneedtolearnhowtoimproveprocessesandproducts. The main features of the book that make it useful for teaching and learning includethefollowing: (cid:129) Afocusonmeaningful,lessabstractproblems (cid:129) Samplecalculationsincludingintermediateresults (cid:129) Preferenceforaccessible,robustmethods (cid:129) ExamplesshowingimplementationinMATLAB (cid:129) Graphicalresultswheneverpossible (cid:129) Historical and industrial examples to give context to the development of optimization Each chapter steps the reader through example problems, which include text explainingtheprocess,thecalculations,andthegraphicrepresentationoftheresults. This step-by-step learning process is an ideal teaching methodology that leads the learner through the concept being presented in a format that is easy to follow and understand. The use of real-world examples is especially compelling as it has the potentialtodrawthelearnerintotheproblem.Asweknowaself-motivatedlearner tendstobemoreengagedandinterestedinthetopic. Overall,MarkFrenchhaswrittenabookthatisverycompellinginitsapproach, and his writing style and use of examples are some of the best I have seen in mathematics textbooks. Mark is an outstanding classroom teacher and that is reflectedinthisbook. PurdueUniversity,WestLafayette, GaryBertoline IN,USA Preface Thisisanoptimizationbookforpeoplewhoneedtosolveproblems.Itiswrittenfor those who know very little – maybe nothing – about optimization, but need to understandbasicmethodswellenoughtoapplythemtopracticalproblems.Asurvey ofavailablebooksonoptimizationfindsanumberofverygoodones,butoftenones written using high-level mathematics and sometimes even written in a statement- proofformat. Clearly, these books are valuable for people wishing to work at a high level of technicalsophistication,buttheyaresometimesopaquetopeopleneeding,rather,an accessibleintroduction.Ithinkthereneedstobeabookthatbringsareaderfroma pointofknowingnexttonothingtoapointofknowingthebigideas,thenecessary vocabulary, a group of simple and robust methods, and, above all, a sense of how optimizationcanbeused. This book has resulted from years of teaching optimization to both engineering and engineering technology students and from years spent applying optimization methods to problems of practical interest. Its content has been tested on many classrooms full of inquisitive students, and only the lessons they think were suc- cessfulappearhere. The number of methods presented here is small; I have selected a few simple, robust methods to describe in detail so that readers can develop a useful mental framework for understanding how information is processed by optimization soft- ware.Whilemoresophisticatedmethodsarecertainlymoreefficient,theydon’tlook thatdifferenttotheuser.Thus,thisbookstickstothesimple,robust,andaccessible methods. Ihaveusedtwocalculationtools,MathcadandMATLAB.MATLABis,atthis writing, probably the standard tool for general technical calculation, at least in the UnitedStatesandmuchofEurope.Themoresophisticatedplotsandmoreextensive calculationsinthisbookweregenerallydoneusingMATLAB.However,MATLAB is a programming language that looks familiar to anyone who ever learned FOR- TRAN.Whilequitepowerful,MATLABcode,especiallyefficient,vectorizedcode, canbeverydifficulttoread–arealproblemforabooklikethis. Mathcadisaverydifferentanimal,designedtomakesmallercalculationssimply andwithlittleneedforformalprogramming.Itisessentiallyamathscratchpadthat iseasytouseandeasytoread.Ichosetoillustratethedetailsofspecificcalculations usingMathcadbecauseevenreaderswhoarenewtoMathcadcanprobablyreadthe samplefiles,eveniftheycouldnotwritethem.TheMathcadfilesinthisbookwere made using Mathcad V15. The name Mathcad is not, in my opinion, a very good one,thoughIverymuchlikethesoftware.IthasnothingtodowithCADorgraphics software. Finally,I hope this book will serve the needs of analysts for whom theresultis moreimportantthanthealgorithm.Thosewhowisheventuallytostudythebehavior of algorithms and to perhaps even develop better methods may, I hope, find this volumeausefulstartbeforemovingontomoreadvancedtexts. WestLafayette,IN,USA MarkFrench Contents 1 Optimization:TheBigIdea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 DesignSpace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 WhatIsOptimum?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 GettingStartedinOptimization:Problems ofaSingleVariable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 TheLifeguardProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 MaximumRangeofaProjectilewithAerodynamics. . . . . . . . . . 18 2.3 MaximumElectricalPowerDeliveredtoaLoad. . . . . . . . . . . . . 21 2.4 ShortestTimePathforaToyCar. . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 WeightonaSnap-ThroughSpring. . . . . . . . . . . . . . . . . . . . . . . 27 2.6 SolutionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1 AnalyticalSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 MonteCarloMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.3 BinarySearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.4 QuadraticApproximationMethod. . . . . . . . . . . . . . . . . . 36 2.6.5 HybridMethods. .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . 39 2.7 FindingRootsUsingMinimization. . . . . . . . . . . . . . . . . . . . . . 41 2.8 OptimizingaProcess:OceanShippingRoutes. . . . . . . . . . . . . . 43 2.9 MATLABExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 MinimumPrinciples:OptimizationintheFabricoftheUniverse. . 55 3.1 Evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 MinimumEnergyStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Optics:Fermat’sPrincipleandSnell’sLaws. . . . . . . . . . . . . . . . 66 3.4 GeneralRelativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 ProblemswithMorethanOneVariable. . . . . . . . . . . . . . . . . . . . . 71 4.1 Two-VariableLifeguardProblem. . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 LeastSquaresCurveFitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Two-VariableSoapFilmProblem. . . . . . . . . . . . . . . . . . . . . . . 77 4.4 SolutionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.1 MonteCarloMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2 MarchingGridAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.3 SteepestDescentMethod. . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.4 ConjugateGradientMethod. . . . . . . . . . . . . . . . . . . . . . 94 4.4.5 Newton’sMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.6 Quasi-Newton’sMethods. . . . . . . . . . . . . . . . . . . . . . . . 103 4.5 ApproximateSolutiontoaDifferentialEquation. . . . . . . . . . . . . 104 4.6 Evolution-InspiredSemi-RandomSearch: FollowingNature’sLead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.7 ConvexProblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.7.1 SequentialLinearProgramming. . . . . . . . . . . . . . . . . . . 117 4.8 OptimizationattheLimits:UnlimitedClassAirRacers. . . . . . . . 119 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5 Constraints:PlacingLimitsontheSolution. . . .. . . . . . .. . . . . . .. 127 5.1 MaximumVolumeofaBox. . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2 ConstrainedLifeguardProblem:ExteriorPenaltyFunction. . . . . 130 5.3 MinimumSurfaceAreaofaCan. . . . . . . . . . . . . . . . . . . . . . . . 133 5.4 EqualityConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.5 ApproximateSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5.1 HangingChainProblem. . . . . . . . . . . . . . . . . . . . . . . . . 138 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6 GeneralConditionsforSolvingOptimizationProblems: Karush-Kuhn-TuckerConditions. . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1 GeneralFormofKKTConditions. . . . . . . . . . . . . . . . . . . . . . . 143 6.2 ApplicationtoanUnconstrainedProblemofOneVariable. . . . . 144 6.3 ApplicationtoanUnconstrainedProblemofTwoVariables. . . . 145 6.4 ApplicationtoaSingleVariableProblemwithanEquality Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.5 ApplicationtoaMultivariableProblemwithInequality Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.6 MultipleConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7 DiscreteVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1 TheTravelingSalesmanProblem. . . . . . . . . . . . . . . . . . . . . . . . 159 7.2 NearestNeighborAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.3 ApplicationsoftheTravelingSalesmanProblem. . . . . .. . . . . .. 164 7.3.1 TheVehicleRoutingProblem. . . . . . . . . . . . . . . . . . . . . 164 7.3.2 ComputerCircuitDesign. . . . . . . . . . . . . . . . . . . . . . . . 165 7.4 DiscreteVariableProblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.5 ExamplesofDiscreteVariableDesignProblems. . . . . . . . . . . . . 170 7.5.1 MarineDieselEngine. . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.5.2 WindTurbines. . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 173 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8 AerospaceApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.1 MonoplaneorBiplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.2 WingPlanforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.3 VehiclePerformance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.4 AircraftDesignOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9 StructuralOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.1 TrussStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9.2 UpdatingFiniteElementModels. . . . . . . . . . . . . . . . . . . . . . . . 194 9.3 AeroelasticallyScaledWindTunnelModelDesign. . . . . . . . . . . 197 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10 MultiobjectiveOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 10.1 TheNeedforMultiobjectiveOptimization. . . . . . . . . . . . . . . . 201 10.2 ASimpleMultiobjectiveProblem. . . . . . . . . . . . . . . . . . . . . . 202 10.3 WeightedObjectivesMethod. . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.4 HierarchicalOptimizationMethod. . . . . . . . . . . . . . . . . . . . . . 205 10.5 GlobalCriterionMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 10.6 ParetoOptimality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 10.7 AMultiobjectiveInverseSpectralProblem. . . . . . . . . . . . . . . . 208 10.8 AComplexMultiobjectiveDesignProblem. . . . . . . . . . . . . . . 212 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 AppendixA:Derivatives. . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 215 DerivativesofaSingleVariable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 DerivativesofMorethanOneVariable. .. . . . . . .. . . . . . .. . . . . . .. 217 AppendixB:TestFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 SingleVariableFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 TwoVariableFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 ThreeVariableFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 AppendixC:SolvingOptimizationProblemsUsingMATLAB. . . . . . . . 229 FindingRootswithfzero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 SolvingSystemsofEquationsUsingFsolve. . . . . . . . . . . . . . . . . . . . 232 MinimizationUsingfminsearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 UnconstrainedMinimizationUsingFminunc. . . . . . . . . . . . . . . . . . . 240 ConstrainedMinimizationUsingFmincon. . . . . . . . . . . . . . . . . . . . . 242 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.