Fundamentals of Modern Unsteady Aerodynamics Ülgen Gülçat Fundamentals of Modern Unsteady Aerodynamics 123 Prof.Dr. ÜlgenGülçat Faculty ofAeronautics and Astronautics IstanbulTechnical University 34469Maslak Istanbul Turkey [email protected] ISBN 978-3-642-14760-9 e-ISBN 978-3-642-14761-6 DOI 10.1007/978-3-642-14761-6 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010933355 (cid:2)Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw of September 9, 1965, in its current version, and permission for use must always be obtained from Springer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign: WMXDesignGmbH Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The flying animate objects were present in earth’s atmosphere about hundreds of millionyearsbeforetheexistanceofhumankindonearth.Onlyatthebeginningof twentiethcentury,theproperanalysisoftheliftingforcewasmadetoprovidethe possibility of powered and manned flight. Prior to that, one of the pioneers of mechanics, Sir Isaac Newton had used ‘his impact theory’ in an attempt to for- mulate the lifting force created on a body immersed in a free stream. In late seventeenth century, his theory was a failure due to calculation of insufficient lift generation and made him come to the conclusion that ‘flying is a property of heavenly bodies’. In a similar manner, almost after two centuries, William Thomson(LordKelvin)whosecontributionstothermoandgasdynamicsarewell known, then proved that ‘only objects lighter than air’ can fly! Perhaps it was the adverse influence of these two pioneers of mechanics on Western Europe, where contributions to the discipline of hydrodynamics is unquestionable, that delayed the true analysis of the lift generation. The proper analysisofliftingforce,ontheotherhand,wasindependentlymadeattheonsetof twentieth century by the theoretical aerodynamicists Martin Kutta and Nicolai Joukowski of Central and Eastern Europe respectively. At about the same years, theWrightbrothers,whoseeffortsonpoweredflightwereridiculedbyauthorities of their time, were able to fly a short distance. Thereafter, in a time interval little more than a century, which is a considerably short span compared to the dawn of civilization, we see not only tens of thousands of aircrafts flying in earth’s atmosphere at a given moment but we also witnessed unmanned or manned missions to the moon, missions to almost every planet in our solar system and to deeper space to let the existence of life on earth be known by the other possible intelligent life forms. The foundation of the century old discipline of aeronautics and astronautics undoubtedly lies in the progress made in aerodynamics. The improvement made on the aerodynamics of wings, based on satisfying the Kutta condition at the trailingedgetogiveacirculationnecessaryforliftgeneration,wassorapidthatin less than a quarter century it led to the breaking of the sound barrier and to the discoveryofsustainablesupersonicflight,whichwasunprecedentedinnatureand v vi Preface once thought to be not possible! In many engineering applications involving motion we encounter either forced or velocity induced oscillatory motion at high speeds.Ifthechanges intheexcitations arerapid,theresponse ofthesystemlags considerably. Similarly, the response of the aerodynamic systems cannot be determined using steady aerodynamics for rapidly changing excitations. The unsteady aerodynamics, on the other hand, has sufficient tools to give accurately the phase lag between the rapid motion change and the response of the aerody- namic system.Asweobserve theperformancesofperfect aerodynamicstructures of nature, we understand the effect of unsteady phenomena to such an extent that liftcanbegeneratedwithapparentmassevenwithoutafreestream.Insomecases, when the classical unsteady aerodynamics does not suffice, we go beyond the conventionalconcepts,withobservingnatureagain,toutilizetheextraliftcreated by the suction force of strong vorticies shed from the sharp leading edge of low aspect ratio wings at high angles of attack. We implement this fact in designing highly maneuverable aircrafts at high angles of attack and low free stream velocities. If we go to angles of attack higher than this, we observe aerodynami- cally induced but undesirable unsteady phenomena called wing rock. In addition, quite recently the progress made in unsteady aerodynamics integrated with elec- tronics enable us to design and operate Micro Air Vehicles (MAVs) based on flapping wing technology having radio controlled devices. This book, which gives the progress made in unsteady aerodynamics in about less than a century, is written to be used as a graduate textbook in Aerospace Engineering. Another important aim of this work is to provide the project engi- neerswiththefoundationsaswellastheknowledgeneededaboutthemostrecent developments involvingunsteady aerodynamics. This need emerges from the fact thatthedesignandtheanalysistoolsusedbytheresearchengineersaretreatedas blackboxesprovidingresultswithinadequateinformationaboutthetheoryaswell as practice. In addition, the models of complex aerodynamic flows and their solution methodologies are provided with examples, and enhanced withproblems and questions asked at the end of each chapter. Unlike this full text, the recent developments made in unsteady aerodynamics together with the fundamentals havenotappearedasatextbookexceptinsomechaptersofbooksonaeroelasticity or helicopter dynamics! The classical parts of this book are mainly based on ‘not so terribly advanced’ lecture notes of Alvin G. Pierce and basics of vortex aerodynamics knowledge provided by James C. Wu while I was a PhD student at Georgia Tech. What was then difficult to conceive and visualize because of the involvement of special functions,now, thankstothe software allowingsymbolic operations andversatile numerical techniques, is quite simple to solve and analyze even on our PCs. Although the problems become more challenging and demanding by time, how- ever,thedevelopmentofnoveltechnologiesandmethodsrenderthempossibleto solve provided that the fundamentals are well taught and understood by well informedusers.Themodernsubjectscoveredinthebookarebasedonthelecture notesof‘UnsteadyAerodynamics’coursesofferedbymeforthepastseveralyears at Istanbul Technical University. Preface vii The first five chapters of the book are on the classical topics whereas the rest covers the modern topics, and the outlook and the possible future developments finalize the book. The examples provided at each chapter are helpful in terms of application of relevant material, and the problems at the end of each chapter are useful for the reader towards understanding of the subject matter and its future usage.Themainideatobedeliveredineachchapterisgivenasaverbalsummary at chapters’ end together with the most up to date references. There are ten Appendixes appearing to supplement the formulae driven without distracting the uniformity of the text. I had the opportunity of reusing and borrowing some material from the pub- lications of Joseph Katz, AIAA, NATO-AGARD/RTO and Annual Review of Fluid Mechanics with their kind copyright permissions. Dr. Christoph Baumann readthetextandmadethenecessaryarrangementsforitspublicationbySpringer. Zeliha Gülçat and Canan Danı(cid:2)smam provided me with their kind help in editing the entire text. N. Thiyagarajan from Scientific Publishing Services prepared the metadata of the book. Aydın Mısırlıog˘lu and Fırat Edis helped me in transferring thegraphsintoworddocuments.Ididthetypingofthebook,andobtainedmostof the graphs and plots despite the ‘carpal tunnel syndrome’ caused by the intensive usage of the mouse. Furthermore, heavy concentration on subject matter and continuous work hours spent on the text showed itself as developing ‘shingles’! MywifeZelihastoodbymeinallthesedifficulttimeswithgreatpatience.Iwould liketoextendmygratitude,oncemore,toallwhocontributedtotherealizationof this book. Datça and I_stanbul, August, 2010 Ülgen Gülçat Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Aerodynamic Coefficients. . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Center of Pressure (x ) . . . . . . . . . . . . . . . . . . . . . . 2 cp 1.1.4 Aerodynamic Center (x ) . . . . . . . . . . . . . . . . . . . . . 3 ac 1.1.5 Steady Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.6 Unsteady Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 3 1.1.7 Compressible Aerodynamics . . . . . . . . . . . . . . . . . . . 3 1.1.8 Vortex Aerodynamics. . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Generation of Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Unsteady Lifting Force Coefficient. . . . . . . . . . . . . . . . . . . . . 5 1.4 Steady Aerodynamics of Thin Wings . . . . . . . . . . . . . . . . . . . 7 1.5 Unsteady Aerodynamics of Slender Wings . . . . . . . . . . . . . . . 8 1.6 Compressible Steady Aerodynamics. . . . . . . . . . . . . . . . . . . . 8 1.7 Compressible Unsteady Aerodynamics . . . . . . . . . . . . . . . . . . 12 1.8 Slender Body Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.9 Hypersonic Aerodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.10 The Piston Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.11 Modern Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.12 Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.3 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.4 Acceleration Potential. . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.5 Moving Coordinate System. . . . . . . . . . . . . . . . . . . . 35 ix x Contents 2.2 Real Gas Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 System and Control Volume Approaches . . . . . . . . . . 37 2.2.2 GlobalContinuityandtheContinuityoftheSpecies . . . 37 2.2.3 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.4 Energy Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.5 Equation of Motion in General Coordinates. . . . . . . . . 42 2.2.6 Navier–Stokes Equations. . . . . . . . . . . . . . . . . . . . . . 44 2.2.7 Thin Shear Layer Navier–Stokes Equations. . . . . . . . . 47 2.2.8 Parabolized Navier–Stokes Equations . . . . . . . . . . . . . 49 2.2.9 Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . 50 2.2.10 Incompressible Flow Navier–Stokes Equations. . . . . . . 51 2.2.11 Aerodynamic Forces and Moments. . . . . . . . . . . . . . . 52 2.2.12 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.13 Initial and Boundary Conditions. . . . . . . . . . . . . . . . . 55 2.3 Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Incompressible Flow About an Airfoil. . . . . . . . . . . . . . . . . . . . . . 59 3.1 Impulsive Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Steady Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Unsteady Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Simple Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5 Loewy’s Problem: Returning Wake Problem. . . . . . . . . . . . . . 81 3.6 Arbitrary Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.7 Arbitrary Motion and Wagner Function . . . . . . . . . . . . . . . . . 82 3.8 Gust Problem, Küssner Function . . . . . . . . . . . . . . . . . . . . . . 87 3.9 Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Incompressible Flow About Thin Wings . . . . . . . . . . . . . . . . . . . . 95 4.1 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Steady Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1 Lifting Line Theory . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2 Weissinger’s L-Method. . . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Low Aspect Ratio Wings . . . . . . . . . . . . . . . . . . . . . 107 4.3 Unsteady Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.1 Reissner’s Approach. . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Numerical Solution. . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4 Arbitrary Motion of a Thin Wing. . . . . . . . . . . . . . . . . . . . . . 119 4.5 Effect of Sweep Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.6 Low Aspect Ratio Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.7 Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Contents xi 5 Subsonic and Supersonic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.1 Subsonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2 Subsonic Flow about a Thin Wing. . . . . . . . . . . . . . . . . . . . . 135 5.3 Subsonic Flow Past an Airfoil . . . . . . . . . . . . . . . . . . . . . . . . 137 5.4 Kernel Function Method for Subsonic Flows. . . . . . . . . . . . . . 139 5.5 Doublet–Lattice Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.6 Arbitrary Motion of a Profile in Subsonic Flow. . . . . . . . . . . . 144 5.7 Supersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.8 Unsteady Supersonic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.9 Supersonic Flow About a Profile . . . . . . . . . . . . . . . . . . . . . . 152 5.10 Supersonic Flow About Thin Wings. . . . . . . . . . . . . . . . . . . . 154 5.11 Mach Box Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.12 Supersonic Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.13 Arbitrary Motion of a Profile in Supersonic Flow . . . . . . . . . . 161 5.14 Slender Body Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.15 Munk’s Airship Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.16 Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6 Transonic flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1 Two Dimensional Transonic Flow, Local Linearization. . . . . . . 171 6.2 Unsteady Transonic Flow, Supersonic Approach . . . . . . . . . . . 176 6.3 Steady Transonic Flow, Non Linear Approach. . . . . . . . . . . . . 177 6.4 Unsteady Transonic Flow: General Approach . . . . . . . . . . . . . 180 6.5 Transonic Flow around a Finite Wing. . . . . . . . . . . . . . . . . . . 184 6.6 Unsteady Transonic Flow Past Finite Wings . . . . . . . . . . . . . . 187 6.7 Wing–Fuselage Interactions at Transonic Regimes. . . . . . . . . . 189 6.8 Problems and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7 Hypersonic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1 Newton’s Impact Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.2 Improved Newton’s Theory. . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.3 Unsteady Newtonian Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.4 The Piston Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 7.5 Improved Piston Theory: M2s2 = O(1). . . . . . . . . . . . . . . . . . 203 7.6 Inviscid Hypersonic Flow: Numerical Solutions. . . . . . . . . . . . 205 7.7 Viscous Hypersonic Flow and Aerodynamic Heating . . . . . . . . 213 7.8 High Temperature Effects in Hypersonic Flow. . . . . . . . . . . . . 220 7.9 Hypersonic Viscous Flow: Numerical Solutions. . . . . . . . . . . . 231 7.10 Hypersonic Plane: Waverider. . . . . . . . . . . . . . . . . . . . . . . . . 236 7.11 Problems and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 xii Contents 8 Modern Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.1 Static Stall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.2 Dynamic Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.3 The Vortex Lift (Polhamus Theory) . . . . . . . . . . . . . . . . . . . . 258 8.4 Wing Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 8.5 Flapping Wing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 8.6 Flexible Airfoil Flapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8.7 Finite Wing Flapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 8.8 Problems and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 9 Aerodynamics: The Outlook for the Future . . . . . . . . . . . . . . . . . 307 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Description: